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Abstract: In recent years, N-heterocyclic carbenes (NHC) have gained recognition as versatile
molecules capable of acting as organocatalysts in various reactions, particularly through the ac-
tivation of aldehydes via Breslow-type adducts. This organocatalytic activation has enabled the
production of numerous 3,4-dihydropyran-2-ones and related derivatives. In this review, we pro-
vide an overview of the production of 3,4-dihydropyran-2-ones and derivatives via organocatalytic
processes involving NHCs over the past eight years. These processes involve the use of a diverse
range of substrates, catalysts, and reaction conditions, which can be classified into [4+2]-and [3+3]-
type cycloadditions, primarily aimed at synthesizing this skeleton due to its biological activity and
multiple stereocenters. These processes are scaled up to the gram scale, and the resulting products
are often directed towards epimerization and functionalization to produce more complex molecules
with potential applications in the biological field. Finally, we provide a perspective and the future
directions of this topic in organic synthesis.

Keywords: 3,4-dihydropyran-2-ones; N-heterocyclic carbenes; cycloaddition; organocatalysis

1. Introduction

Also known as enol δ-lactones, 3,4-Dihydropyran-2-ones have become increasingly
popular due to their biological activity [1], presence in various pharmaceutical products [2],
and usefulness in organic synthesis. These compounds provide a versatile platform for
accessing functionalized enones, γ-lactones, cyclic enamines, and 2-pyrones, among oth-
ers [3], making them a subject of significant interest in natural product extraction and novel
synthesis. One of the most commonly used methods for producing 3,4-dihydropyran-2-
ones is through organocatalysis with N-heterocyclic carbenes (NHCs) [4–14]. Research in
this field has been increasing since the publication of the annulation of tropones and enals
via homoenolate in 2006 [15]. Although this catalytic process has been reviewed exten-
sively [7,9,16–22], including a recent review by Albanese and Gaggero in 2014 [23], research
in this field continues to advance, and this review aims to highlight recent developments in
the organocatalytic production of 3,4-dihydropyran-2-ones using NHCs (Figure 1).

NHCs are easily produced in situ from the deprotonation of the corresponding azole
(imidazolium and/or triazolium salts). Their versatility in modulating stereoelectronic
properties through the modification of the backbone and N-substituents has generated
considerable interest their role as catalysts in various types of reactions [9,10], either alone
or coordinated to metals [24–28]. In the context of 3,4-dihydropyran-2-one synthesis, NHC
catalysis involves [4+2]- and [3+3]-type cycloadditions, which, depending on the estab-
lished reaction mechanisms, rely first on the in situ formation of the free NHC (I) with a
subsequent nucleophilic attack to the corresponding substrate to yield the Breslow interme-
diate (II). Further, a rearrangement allows the formation of a homoenolate species III that,
depending on the reaction conditions, is able to form either the azolium enolate species
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IV or the α, β-unsaturated acylazolium species IV′ (when oxidant conditions are used)
as key reactive intermediates. Finally, these species are converted to the corresponding
dihydropyranones V and V′, respectively (Scheme 1). The key reactive intermediates
species can be generated from a variety of functional groups, including aldehydes, ketones,
carboxylic acids, and acyl halides, allowing the diverse production of the skeleton to meet
different synthetic needs and challenges.
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Figure 1. Imidazolium and triazolium salts employed as precatalysts in the present review.
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In this review, we provide an overview of recent advances in the NHC-organocatalyzed
synthesis of dihydropyranones from a variety of substrates. To facilitate practical applica-
tions, we have organized our discussion by the chemical functions involved in the reaction.
Specifically, we will begin by examining recent reports on the use of α, β-unsaturated
aldehydes as substrates, followed by a review of reactions involving saturated aldehy-
des. We will then cover reactions using ynals, ketones, and finally carboxylic acids and
derivatives as substrates. By presenting this information in a clear and organized manner,
we hope to provide readers with a comprehensive understanding of the latest develop-
ments in this field, as well as insights into future directions for research in the synthesis of
dihydropyranones.

2. α, β-Unsaturated Aldehydes as Reagents for Dihydropyranones

Polyfunctional substrates that feature a double bond conjugated with an aldehyde
group, also known as α, β-unsaturated aldehydes, are considered valuable synthetic
building blocks. Their high reactivity makes them versatile tools for the targeted synthesis
of important natural compounds and other molecular scaffolds [29–31]. Regarding their
reactivity, these molecules are known for readily yielding the intermediate species required
for producing enol δ-lactones. In this sense, many studies have focused on cinnamaldehyde
as the main reactant. Thus, Xie and co-workers developed an efficient aerobic method
for synthesizing trisubstituted dihydropyranones 3 with high yield and enantiomeric
excess [32]. This study utilized the reactivity of α, β-unsaturated aldehydes 1 towards
1,3-dicarbonyl compounds 2 under specific conditions, including the use of DABCO, THF,
LiCl, and a 4 Å molecular sieve along with catalyst A. While other catalysts, bases, solvents,
and sieve sizes were tested, the conditions outlined in Scheme 2 yielded the best results.
The authors also explored the substrate scope, finding that both aliphatic and aromatic
substituents on the substrates worked well in the reaction. The same core structure, with
similar substitutions at positions 4, 5, and 6, have also been synthesized using isothiourea
as a catalyst. Nonetheless, the resulting yield and enantiomeric excess were significantly
lower [33].
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Axelsson and co-workers also employed an enal 1 and a 1,3-dicarbonyl compound 2 to
perform a [3+3] cyclization (Scheme 3) [34]. However, they implemented an electron trans-
fer mediator (ETM) system that allowed the formation of the unsaturated acylazolium [35]
from the homoenolate according to the proposed catalytic cycle. Iron(II) phthalocyanine
(FePC) and air passage play a key role in the reaction yield as a pure O2 atmosphere does
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not generate any product. The use of lithium acetate dihydrate as a base in this study is
not frequently observed in other research works. The reaction maintained the yield (above
54%) regardless of the type of substitution used. Although the utilization of quinone as
an oxidizing agent (OA) is frequently employed in many investigations, and dinitroben-
zenesulfonic carbamate [36] and polyhalides [37] have also been demonstrated to serve as
useful OAs.
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Likewise, Wang and co-workers developed a method for the formation of chiral δ-
lactones using a synergistic catalysis approach in which NHC and Ru work together [38].
RuCl3 was used as the metallic source, as it favors the formation of an α, β-unsaturated
species over that of a β-protonated species. The best reaction conditions involved the use
of NaOAc as a base, 1,4-dioxane as a solvent, and the catalytic system was formed by the
mixture of RuCl3 and B (Scheme 4). The authors were able to perform the reaction with
different substituents at either the aldehyde or the dicarbonyl compound with yields up to
99% and an enantiomeric excess of about 94%. The authors studied a wide range of groups,
including aryl, vinyl, heterocycles, and complicated skeletons. The authors also noted
that the replacement of the 1,3-dicarbonyl compound with β-ketosters did not prevent
annulation, whereas β-keto amides did.
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It should be noted that products 3 and 4 have been derivatized and subjected to reactions
such as epoxidations [39], alkylations [40], and ring-openings [41] that preserve chirality.

On the other hand, tricyclic δ-lactone 6 is a highly desirable product due to its ability
to undergo various functionalizations, including the reduction of the nitro groups and the
double bonding of the lactone, as well as ring openings and contractions (Scheme 5). In this
sense, Mukherjee and co-workers achieved the synthesis of this skeleton by substituting the
1,3-dicarbonyl compound with an α, β-unsaturated ketone under oxidative conditions [42].
Initially, the reaction conditions involved the use of DBU, a quinone as the OA, and catalyst
A dissolved in THF. These conditions allowed the authors to obtain an enantioselectivity
of 98% and a yield of 51%. However, when assays were performed with different bases
(tBuOK, NEt3, DMAP, Cs2CO3, and DABCO), they found that only DABCO improved
the yield to 58%. Changing the solvent did not improve the results. With the optimal
reaction conditions, various substitutions were performed on the radicals of enal 1 and
dinitrotoluene derivative 5 (Scheme 5). Notably, the absence of the two nitro groups
resulted in only trace amounts of compound 6. Furthermore, when R2 was a methyl,
ethyl, or cyclopropyl group, the yield was maintained, while yields exceeding 70% were
obtained when R1 was a 4-OMe-Ph or 2-OMe-Ph group. It should be noted that the
diastereoselectivity was consistently higher than 20:1 in all tests carried out.
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Scheme 5. Synthesis of chiral tricyclic δ-lactone from α, β-unsaturated aldehydes and α, β-
unsaturated ketones. Adapted from reference [42].

Verma and co-workers developed a novel approach using an enone as a nucleophile to
obtain phosphorylated δ-lactones 8, which can serve as precursors for amides and ketophos-
phorylated esters (Scheme 6) [43]. In this study, single enals 1 and β-phosphorylated enone
7 were reacted using catalyst B, Cs2CO3 as a base, and CH2Cl2 as the solvent. The enals and
enones were modified with various aromatic ring substitutions including halogens, MeO,
Me, NO2, etc. The reaction provided high yields, around 90%, and excellent enantiomeric
excess, close to 99%, showing a good tolerance to functional groups. This approach rep-
resents a significant advance in the development of phosphorylated δ-lactones, offering
potential as building blocks for the synthesis of various biologically active molecules. In
fact, a lactone skeleton with the same substitution pattern as 8 has been proposed as a new
pharmacophore for dual PPARγ/GR modulators with therapeutic potential against human
metabolic diseases [44].
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Scheme 6. Synthesis of phosphorylated δ-lactones from α, β-unsaturated aldehydes and β-
phosphorylenones. Adapted from reference [43].

Peng and co-workers also employed catalyst B in their reactions, as shown in Scheme 7.
However, they discovered that the substitution of the aromatic ring with Br (to form
catalyst C) significantly enhanced the yield compared to other catalysts tested during
the optimization of the reaction. The chemoselective coupling of two enals was carried
out using NEt3 as a base and THF as a solvent. The first enal was 1 and the other was
α-substituted with an alkyl group 9 to yield a 3,4,5-trisubstituted dihydropyranone 10
(Scheme 7) [45]. The reaction worked well for a wide range of groups with yields ranging
from 51–97% and enantiomeric excesses of up to 99%. It is also noteworthy that replacing
the α-alkynyl group with other groups such as vinyl, phenyl or cyano groups did not result
in cross-reactions [2+4]. Additionally, the presence of the alkynyl group as a substituent
in dihydropyranones makes it a versatile molecule that can undergo various addition
reactions, resulting in multi-functionalized alkenes.
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Wu and Yetra carried out a different approach compared to the previous studies
by utilizing heterocyclic compounds as nucleophiles in [3+3] annulations. In 2020, they
developed a method for the annulation of enal 1 with pyrrole-4-ones 11 (Scheme 8) [46].
The reaction employed tBuOK as a base, CH2Cl2 as a solvent, and quinone as the OA with
catalyst B. The yields of 12 ranged from 50–98% under these conditions, while the ee%
was above 90% for more than 25 examples. The authors proposed that the catalytic cycle
occurs through the Breslow intermediate, followed subsequently by the α, β-unsaturated
acylazolium intermediate. At this point, a 1,4 addition or a 1,2 addition can occur, ultimately
leading to an intramolecular acylation to obtain a dihydropyranone derivative.

Molecules 2023, 28, x FOR PEER REVIEW 7 of 33 
 

 

7) [45]. The reaction worked well for a wide range of groups with yields ranging from 51–
97% and enantiomeric excesses of up to 99%. It is also noteworthy that replacing the α-
alkynyl group with other groups such as vinyl, phenyl or cyano groups did not result in 
cross-reactions [2+4]. Additionally, the presence of the alkynyl group as a substituent in 
dihydropyranones makes it a versatile molecule that can undergo various addition reac-
tions, resulting in multi-functionalized alkenes. 

 
Scheme 7. Synthesis of 3,4,5-trisubstituted dihydropyranones from two enals in a [2+4] annulation 
reaction. Adapted from reference [45]. 

Wu and Yetra carried out a different approach compared to the previous studies by 
utilizing heterocyclic compounds as nucleophiles in [3+3] annulations. In 2020, they de-
veloped a method for the annulation of enal 1 with pyrrole-4-ones 11 (Scheme 8) [46]. The 
reaction employed tBuOK as a base, CH2Cl2 as a solvent, and quinone as the OA with 
catalyst B. The yields of 12 ranged from 50–98% under these conditions, while the ee% 
was above 90% for more than 25 examples. The authors proposed that the catalytic cycle 
occurs through the Breslow intermediate, followed subsequently by the α, β-unsaturated 
acylazolium intermediate. At this point, a 1,4 addition or a 1,2 addition can occur, ulti-
mately leading to an intramolecular acylation to obtain a dihydropyranone derivative. 

 
Scheme 8. Synthesis of pyrrole-substituted dihydropyranones from α, β-unsaturated aldehydes and 
pyrrol-4-ones. Adapted from reference [46]. 

In another report, Yetra and co-workers carried out an enantioselective annulation 
reaction of α, β-unsaturated aldehydes 1 with pyrazolones 13 (Scheme 9) [47]. Pyrazolone 

R1 H

O
+

R2 H

O
C (20 mol%)

NEt3 (50 mol%)
 THF, rt, 24 h

O

O

1 9 10
Selected Examples

78%
>20:1 dr

(99%)

(ee %)

R3

R3

R1

R2

O

O

Ph

Ph

Br

O

O

Ph

Ph

Br

Cl

O

O

Ph

Ph

CN

O

O

Ph

Ph

83%
18:1 dr
(98%)

51%
>20:1 dr

(99%)

51%
>20:1
(98%)

O

O

Ph

Ph

O

O

Ph

Ph

86%
>20:1 dr

(99%)

85%
>20:1 dr

(99%)

R1 H

O
+

B (20 mol%)
tBuOK (20 mol%)

OA (2 eq.)
 DCM, rt, Ar, 12 h

1 11 12
Selected Examples

92%
(92%)

90%
(99%)

85%
(90%)

(ee %)

N

CO2EtO

CO2Et
N

CO2EtO

CO2Et

O

R1

N

CO2EtO

CO2Et

O

Ph

N

CO2EtO

CO2Et

O

O2N

N

CO2EtO

CO2Et

O

Me2N

63%
(98%)

N

CO2EtO

CO2Et

O

Br

67%
(96%)

N

CO2EtO

CO2Et

O

Scheme 8. Synthesis of pyrrole-substituted dihydropyranones from α, β-unsaturated aldehydes and
pyrrol-4-ones. Adapted from reference [46].

In another report, Yetra and co-workers carried out an enantioselective annulation
reaction of α, β-unsaturated aldehydes 1 with pyrazolones 13 (Scheme 9) [47]. Pyrazolone
derivatives have been extensively studied for their antimicrobial, antitumor, and anti-
inflammatory properties [48,49]. These compounds have demonstrated potential in various
fields, such as in the identification of agonists of G protein receptor 39 through homology
modeling [50], showcasing their versatility and research potential. To determine the opti-
mal reaction conditions, a set of solvents and bases were tested. Interestingly, it was found
that the reaction in the absence of a base achieved a yield of 55% of 14, which is comparable
to that achieved with bases such as Na2CO3 and DABCO. Therefore, the scoping of the
substituents was carried out without the use of a base. Yields of up to 82% and an enan-
tiomeric excess of 96% was obtained with different substitutions. Although the substitution
of pyrazolone with oxazolone and α-lactone was considered, the reaction did not yield sat-
isfactory results. Additionally, structures similar to that of 14 have demonstrated inhibitory
activity against phosphoinositide-dependent protein kinase 1 (PDK1) [51]. Therefore, the
large number of molecules obtained in this research opens the door for the exploration of
this scaffold and its potential biological activities.
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Scheme 9. Synthesis of dihydropyranones from α, β-unsaturated aldehydes and pyrazolones.
Adapted from reference [47].

An investigation using novel procedures was conducted by Latendorf and co-workers,
in which an Ag–NHC complex catalyzed the formation of dihydropyranones 16 from
cinnamaldehyde 15 (Scheme 10) [52]. In this process, the addition of PPh3 was essential
to obtain the desired product and to prevent the formation of the competing γ-lactone
17. Although the dihydropyranone was obtained with a maximum yield of 48% and 66%
ee in its major diastereoisomer, this report provides a potential pathway for obtaining
chiral dihydropyranones using a single substrate through the combined action of NHC and
metals. Product 16 has been used as a substratein the synthesis of yohimbine-type alkaloids,
a family of pentacyclic indole compounds with a broad pharmacological spectrum [53].
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Scheme 10. Synthesis of dihydropyranone 16 from self-condensation of cinnamaldehyde. Adapted
from reference [52].

On the other hand, a method published by Lin and co-workers represented a break-
through from previous studies where the α, β-unsaturated aldehyde was typically β-
substituted with small electron-donating and electron-withdrawing groups. Specifically,
the authors developed a highly efficient protocol for synthesizing spirooxindole δ-lactones
19 from isatin-derived enals 18 and 1,3-dicarbonyl compounds 2 (Scheme 11) [54]. The
authors found that the optimal conditions consisted of using DBU as a base, toluene as a
solvent, catalyst E, and a reaction time of just one hour (one of the shortest reported). When
substituents on the dicarbonyl compounds were methyl and substituted phenyl moieties,
the yields of the products reported ranged from 77–84% with enantiomeric excesses of up
to 96%. While the substitution of the benzyl group in 18 with methyl, allyl, and n-butyl
moieties was also tested, poor yields were obtained.
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Scheme 11. Synthesis of spirooxindole δ-lactones from isatin derivatives and 1,3-dicarbonyl com-
pounds. Adapted from reference [54].

Xu and co-workers conducted a similar study to the one mentioned above, where
they investigated the reactivity of α-substituted isatin derivative 20 towards 1,3-dicarbonyl
compounds 2 with the aim to obtain spirooxindole δ-lactones 31 (Scheme 12) [55]. Initially,
they screened different catalysts and found that only catalyst F (in the presence of THF
and DBU) gave a yield of over 10%, hence the other catalysts were eliminated. The authors
then explored different solvents and bases and determined that Cs2CO3 and 1,4-dioxane
resulted in a 42% yield. By adding a Lewis acid (LiCl) to the reaction, the yield was further
increased to 63%. Finally, the researchers studied the substrate scope of the reaction by
using different substitutions on the substrates under the optimized conditions, achieving
yields up to 95%, except when cyclohexane-1,3-dione was used, which did not produce
any reaction. Further, they carried out a preliminary study of the enantioselectivity of
the reaction by using chiral catalyst A. However, the desired product was obtained in a
moderate yield (42%) with no enantioselectivity (0% ee).
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Scheme 12. Synthesis of dihydropyranones from α-substituted isatin derivates and 1,3-dicarbonyl
compounds. Adapted from reference [55].
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In contrast to Xu’s approach, Liu and co-workers developed novel [4+2] annulations
from α-substituted enals. They reported the synthesis of α-alkylidene-δ-lactone 24 from
α-bromoenals 22 and dioxopyrrolidines 23 (Scheme 13) [56]. The reaction conditions
were optimized by testing various catalysts, bases, and solvents, among which catalyst
G, trimethylamine, and tert-butyl methyl ether (MTBE) provided the best yields. The
substitution variations on dioxopyrrolidines retained a high enantiomeric excess of 99%, but
the yield ranged from 95–88%, with the -Ph, -PhMe, and -Ph(MeO)2 groups being the most
effective. The substitutions on α-bromoenals also maintained high enantiomeric excess
(99%) but with a significant decrease in yield (91–67%). Similar research was conducted by
Shen and co-workers, who achieved a yield of 82% and an excellent %ee (>99%), even on
a gram scale [57]. Molecules such as 24 and derivatives are highly important in synthetic
chemistry as they provide fast and simple access to the synthesis of alkaloids with great
therapeutic potential [58].
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from reference [56].

In a related study, the reactivity ofα,β-substituted aldehyde 25 with 5-alkylthiazolones 26
was investigated by other researchers, using imidazolium salt H as a catalyst (Scheme 14) [59].
The reaction resulted in the formation of bicyclic dihydropyranothiazoles 27 with excellent
enantiomeric excesses and high yields. Although the study did not evaluate the effects
of solvents or the catalyst, CH2Cl2 and H were used in all catalytic tests. However, the
effect of the base was studied, and significant yields were obtained using DMAP (97%),
DIPEA (97%), DABCO (92%), K2CO3 (98%), and NaOAc (94%). Notably, NaOAc had
slightly a lower yield than K2CO3, but it produced a higher diastereomeric ratio, exceeding
20:1. Additionally, the authors studied the substrate scope by varying the substitution of
5-alkenylthiazolone 26 with substituted aromatic rings. Specifically, when the substituent
on the aromatic ring was -4-F, -3-OMe, -3-Cl, or -2-Me, they found 96%, 92%, 93%, and
91% yields, respectively. In addition, when the groups on the α-chloroaldehyde 25 were
propyl or butyl groups, the yields obtained were 93 and 83%, respectively, presenting
an enantiomeric excess of 99%. The importance of developing skeletons such as that of
27 lies in diversifying the thiazole group, which is well known to be present in several
pesticides [60] and to have a wide range of pharmacological activities [61,62].
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Li and co-workers developed a novel method to synthesize tricyclic dihydropyranones
30 by using α-bromoenal 28 and β-tetralones 29 via a [3+3] annulation (Scheme 15) [63].
The study involved a comprehensive investigation of various reaction conditions, including
temperature (−5 ◦C to 45 ◦C), bases (NEt3, DABCO, K2CO3, NaOAC, and K2CO3), solvents
(THF, toluene, CH2Cl2, DME, and 1,4-dioxane), and catalysts. The authors also evaluated
the tolerance of the reaction towards substitutions on the aromatic rings of the substrates.
The obtained yields ranged from 62% to 90%, while the enantiomeric excess was between
81% to 96%. Interestingly, the reaction yielded undesired products when α-tetralone
was used instead of β-tetralone. However, β-indanone reacted favorably in the presence
of DABCO and toluene. Previously, products such as 30 in their hemiacetal form were
obtained using the Hayashi–Jørgensen catalyst [64], with yields and enantioselectivities
comparable to those found by Li and co-workers.
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Adapted from reference [63].

Until now, we have mainly discussed reactions involving two substrates, where
one of them has been always an α, β-unsaturated aldehyde. Due to their electrophilic
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and nucleophilic characteristics, they can participate in [4+2] or [3+3] annulations with
NHCs as a catalyst. However, Fuchs and co-workers introduced an innovative method for
synthesizing 3,5,6-trisubstituted dihydropyranones 33, involving the use of three substrates
and two NHCs as a catalytic system [65]. Initially, they performed the reaction using two
aldehydes 31 (one of them being unsaturated 1), a β-nitroalkene 32, and catalysts J and A
(Scheme 16). The presence of thiourea (a nitroalkene activator), diethyl ether (solvent), and a
second catalyst was found to be indispensable to maintaining the yield of the reaction (72%).
Furthermore, it was shown that the addition of a chiral catalyst produced a product with
good enantiomeric excess. The substrate scope was then evaluated, and a wide range of
substituents was tested. Some substituents such as naphthyl, furanyl, and butyl enhanced
the initial yield, which was superior to that reported in other studies that attempted to
synthesize this core through an alternative pathway [66]. Finally, a hydrogenation of the
double bond was performed on a product with two phenyl substituents and a pyridyl group,
yielding an “all-cis” δ-lactone to demonstrate the suitability of this synthetic methodology.
A significant advantage of compounds with a structure similar to that of 33 is their low
tendency to decompose due to moisture and their high stability in column chromatography
systems on silica gel [67], making them potentially useful in the field of chromatography as
chiral modifiers. Additionally, dihydropyranones with the substitution pattern of that of
33 have been extracted from plants distributed in Asia that are attributed with medicinal
benefits [68,69].
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Scheme 16. Synthesis of 5,6-trisubstituted dihydropyranones from aldehyde, enal and nitroalkene
derivatives. Adapted from reference [65].

On the other hand, Biju and co-workers recently reported a new method for the
synthesis of biologically relevant [70–73] tetra-substituted tetralines 35, which contain
four contiguous stereocenters. This approach uses an NHC-organocatalyzed azolium-
enolate cascade reaction from the corresponding enals 1 and enone 34 derivatives with K
as a catalyst under oxidative conditions (Scheme 17), resulting in a highly stereoselective
and broad-scope synthesis [74]. After optimizing the reaction conditions, the authors
investigated the scope of the reaction by using different enals and enone derivatives. They
discovered that various enals with electronically different groups at the ortho, meta or para
positions of the β-aryl ring furnished the tetraline derivatives with high levels of selectivity
(>20:1 dr and >86% ee in all cases) and isolated yields. Similarly, the authors found that
different substituents on the enone moiety were well tolerated under the optimized reaction
conditions, providing the target tetralines without compromising the yield and selectivity.
Notably, they observed a negative non-linear effect [45,75] on the change in ee values of
one of the products with the change in ee values of the catalyst K. The authors attributed
this observation to the possibility of more than one catalyst being involved in the enantio-
determining step of the reaction, as well as the possible Brønsted base activation of the
enone using the NHC derived from K under the reaction conditions for the facile Michael
addition to catalytically generated α, β-unsaturated acylazoliums.
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Further, Chi and co-workers disclosed a new cascade reaction that utilizes NHC
organocatalysis to facilitate the synthesis of complex multicyclic lactones that are otherwise
difficult to prepare. The reaction involves the use of β-methyl enals 36 and dienones 37
through the first NHC-catalyzed 1,6 addition of acylazolium vinyl enolate γ-carbons. The
reaction enables the construction of structurally complex molecules containing chiral qua-
ternary carbon centers, which are typically challenging to prepare. The reaction proceeds
by forming complex ring-fused dihydropyranones 38 and 38′ in excellent yields and selec-
tivities using catalyst L and NaOAc as a base at room temperature for 12 h (Scheme 18) [76].
The authors also conducted a study of the scope of the process and found that the reac-
tion was tolerant to various substitutions on the corresponding enal 36 bearing aryl rings,
including both electron-donating and -withdrawing moieties, as well as heteroaryl and
aliphatic substituents. Moreover, the reaction proceeded well with different substitution
patterns on the corresponding dienone substrates without a detriment to the yield or se-
lectivity, regardless of the electronic properties of the substituents. The authors were also
able to scale up the synthesis of one of the products on a 1 mmol scale. To demonstrate the
generality of the reaction, the authors were able to obtain fused-ring dihydropyranones
from dienones bearing substituted pyranone moieties.
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Finally, in 2022 Tiwari and co-workers successfully developed the first enantioselective
method for synthesizing selenylated dihydropyranones. This type of molecule is of par-
ticular interest due to the well-known augmentation of physical, chemical, and biological
properties through the functionalization of organic molecules with selenyl groups [77–79].
By using NHC organocatalysis, the authors achieved high yields and excellent enantioselec-
tivities of chiral selenylated dihydropyranones 40 from α, β-unsaturated aldehydes 1 and
selenyl vinyl ketones 39 (Scheme 19) [80]. The optimal reaction conditions were determined
to be Cs2CO3 as a base and B as a catalyst in toluene at room temperature for 15 h. The au-
thors briefly outlined the scope of the reaction, demonstrating that their protocol tolerated
various functional groups on both 1 and 39 substrates without compromising the yield and
enantioselectivity of the products. Notably, electron donating or withdrawing groups on
both substrates were successfully converted to the corresponding dihydropyranones in
good to excellent yields and enantiomeric excesses.
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Scheme 19. Synthesis of chiral selenylated dihydropyranones 40 from α, β-unsaturated aldehydes
and selenyl vinyl ketones. Adapted from reference [80].

3. Saturated Aldehydes as Reagents for Dihydropyranones

While unsaturated aldehydes are commonly used in NHC-organocatalyzed reactions
to produce dihydropyranones, saturated aldehydes with electron-withdrawing groups
such as halogens and aryloxy groups have also been explored. In this sense, Li and co-
workers [81] synthesized dihydropyranones with four substitutions, including a cyano
group for its synthetic versatility [82]. To achieve this, they used an α-chloro-substituted
aldehyde 34 with an α-cyano enone 35 as a substrate and B as a catalyst (Scheme 20). The
optimization of the reaction conditions involved testing various organic and inorganic
bases, with KOAc being the most effective, achieving the best yield (93%) and enantiomeric
excess (99%). CH2Cl2 was used as the solvent and catalyst B was kept constant throughout
the study. Substituent variations on the enone included monosubstituted aromatic rings
in different positions, with -Cl, -Me, -OMe, and -F groups, as well as naphthalene and
1,3-benzodioxol, while the aldehyde was mainly substituted with benzylic groups and
aliphatic chains containing two to seven carbons. The yields obtained for these substrates
were higher than 56% with enantiomeric excesses of up to 99% (dr > 20:1 in all cases).
Furthermore, the gram-scale assay showed no significant changes in yield, highlighting the
robustness of the reaction.
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α-substituted enones. Adapted from reference [81].

In another study, Li and co-workers reported the synthesis of bicyclic dihydropyra-
nones 46 from α-chloro aldehydes 44 and cyclic enones 45 on a gram scale and with a low
catalyst loading (Scheme 21) [57]. They utilized only 0.25 mol% catalyst B, which is nine
times less than the loading used in many other studies. Additionally, they made no changes
to the solvent (THF) or base (NaHCO3). The substitutions of an aromatic ring with electron-
donating and -withdrawing groups were evaluated in the enone, and the reaction exhibited
high enantioselectivity, with an enantiomeric excess greater than 93% for all substitutions
tested when B was used as a catalyst (Scheme 21). When alkyl aldehydes were used as
substrates, good yields were also obtained. The reaction was then scaled up to 1 g of the
enone and a catalyst loading of only 0.025 mol%. Despite increasing the reaction time to
48 h, the yield reached 82% with a diastereomeric ratio greater than 99%. This represents
a significant advancement in the field of dihydropyranone synthesis as it allows for the
production of gram-scale quantities of these compounds with a low catalyst loading (the
lowest catalyst loading ever reported in NHC organocatalysis), thus reducing the cost and
waste associated with the reaction. The synthesis of bicyclic dihydropyranones involves the
fusion of pyrrolidone and dihydropyranone, two important pharmacophore groups that
have shown potential for the development of novel drugs [83]. The combination of these
groups in a single molecule provides a unique structural motif that can be leveraged to
modulate the pharmacological properties of the resulting compounds. This makes bicyclic
dihydropyranones an attractive scaffold for drug discovery and development. Moreover,
the ability to efficiently synthesize these compounds using NHC catalysis offers a powerful
tool for generating structurally diverse libraries of bicyclic dihydropyranones that can be
screened for their biological activity.
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In a related study, a novel [4+2] annulation reaction between α-chloroaldehydes 41
and aurones 47 was developed to form compounds 48 (Scheme 22) [84]. This reaction
was performed using iPr2NEt and 1,4-dioxane as the base and solvent, respectively, since
they exhibited the best diastereomeric ratio (dr) and enantiomeric excess in preliminary
experiments. The authors observed that the presence of the mesityl moiety in catalyst I and
its electron-donating ability contributed to an enhanced yield compared to other catalysts.
The variations in the substituents of 41 were mainly of two types: (i) p-substituted benzyl
with halogens, Me, and OMe groups, and (ii) hydrocarbon chains with 2–8 carbons, with
the best result being obtained using a hexyl group (95% yield, 7:1 dr, and 98% ee). The
high enantiomeric excesses obtained in this study confirmed the high enantioselectivity
of catalyst I. The coexistence of dihydropyranone with benzofuran presents a promising
avenue for the development of molecules with significant biological activity, as benzofuran
is present in a large number of natural products known for their bioactivity [85].
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Adapted from reference [84].

In the search for efficient synthetic methods to obtain syn-dihydropyranones, a study
was conducted where an α-aroyloxyalkaldehyde 49 was reacted with a trichloromethylke-
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tone 50, leading to the formation of 51 in good yields (Scheme 23) [86]. The reaction was
found to be suitable for solvents such as THF, Et2O, and toluene, but the best yield was
obtained with CH2Cl2 at a loading of 5 mol% A. It was observed that a decrease in catalyst
loading leads to a lower product yield. The authors also studied the substrate scope. They
found that the reaction took place with different substituents on both 49 and 50 substrates.
Nevertheless, the reaction time and catalyst loading required were different in each case.
The enantiomeric excess obtained in the study was generally greater than 99%, indicating
the high enantioselectivity of the catalytic system studied. Furthermore, one of the isolated
products was subjected to an epimerization process with NEt3 and CD2Cl2 at room tem-
perature, which resulted in both syn and anti-isomers forming in a 67:33 ratio. To further
explore the reactivity of the synthesized dihydropyranones, the product was treated with
benzylamine and DMAP to induce ring opening, resulting in the formation of diamides,
trichloromethyl esters, and diesters with yields of 83%, 50%, and 20%, respectively. The
use of trichloromethyl ketones for the synthesis of dihydropyranones has been previously
studied due to their ability to undergo processes such as alcoholysis or aminolysis, which
facilitate ring opening and lead to the formation of stereodefined diesters or diamides [87].
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On the other hand, Taylor and co-workers developed a novel method for the synthesis
of trisubstituted dihydropyranones 53 through the reaction of α-aroyloxyaldehyde 49
and α-ketoester 52 with catalyst A, NEt3, and THF as a catalytic system (Scheme 24) [88].
Diastereoselectivity was improved at temperatures below 0 ◦C, but it decreased product
yield. Therefore, the reaction was started at 0 ◦C and slowly warmed to room temperature.
The impact of changing the solvent, base, and catalyst was not explored. In contrast, the
authors were able to study the substrate scope of the reaction. Thus, substituents including
isobutyl, benzyl, and n-butyl were evaluated on 49, while aromatic rings substituted at
the para position, methyl groups, and ethyl groups were studied on 52. The authors found
yields between 42–93% with reaction times ranging from 3 to 24 h. Subsequently, they
performed an epimerization of one product under different conditions using the same
base, solvent, and catalyst. Thus, they generated three products with chiral characteristics
distinct from those of the initial compound. Another catalytic test achieved yields of up to
90% in only 9 h at room temperature and a catalyst loading of only 5% for the reaction of
α-aroyloxyaldehydes and γ-ketoesters. While proline derivatives can catalyze the synthesis
of dihydropyranones substituted at position two with esters, an additional hemiacetal
oxidation step is necessary [89–92]. This highlights the superiority of NHC organocatalysis
over proline for synthesizing similar molecules.
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In another report, catalyst I, structurally distinct from the previous one, was used in
the presence of formylcyclopropane 54 and alkylideneoxindole 55 (Scheme 25) [93]. The
resulting tricyclic dihydropyranone 56 was obtained with a yield of up to 99% and an
enantiomeric excess of 99%. Various conditions were tested, but the yield was improved by
using iPr2NEt and CH2Cl2, rather than NEt3, K2CO3, DBU, toluene, THF, and n-hexane. As
for the substitutions, cyclopropane esters worked well in the reaction with short aliphatic
substituents, while substituents in the alkylideneoxindole were mainly carbamates. This
demonstrates that the method allows a wide variety of substrates and substituents while
maintaining good results, thereby enabling it to be improved and compared with other
reported routes for synthesizing compounds with similar structures [94,95].
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The authors also investigated the reactivity of formylcyclopropane 57 towards β,γ-
unsaturated α-keto esters 52 containing aryl groups substituted with either electron-
donating or electron-withdrawing groups located in different positions to yield the cor-
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responding trisubstituted dihydropyranones 58 using the enantiomer of catalyst I (B)
(Scheme 26). However, the yield decreased in some cases under the same reaction condi-
tions. Notably, they discovered that by using half the amount of catalyst, but increasing the
reaction time and ensuring constant stirring, it was possible to achieve comparable results
to the full catalyst loading in one of the catalytic runs.
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4. Ynals and Ketones as Reagents for Dihydropyranones

Although the reactivity of ynals and ketones towards the formation of NHC-
organocatalyzed dihydropyranones has not been as extensively explored in recent years
compared to that of saturated aldehydes, the introduction of these functional groups adds
new structural and electronic features to the molecule’s main nucleus. In this sense, Ren
and co-workers investigated these functional groups by reacting an ynal 59 with a cyclic
dicarbonyl compound 60 to produce bicyclic dihydropyranones 61 (Scheme 27) [96]. The
authors extensively evaluated various reaction conditions, including testing eleven solvents
and ten bases. The optimal results were obtained using acetonitrile and Cs2CO3 at room
temperature for 24 h. Although the reactivity was initially tested using M as a catalyst
substituted with TMS or TBS in one side, and a phenyl group or -C6F5 moiety in the other
side (M1–M3), the yield of the final product was less than 14% in all cases, prompting a
switch to catalyst I. When they tested I with BF4

− as a counterion under the same condi-
tions, a yield of 34% and an enantiomeric excess of 97% were achieved. Conversely, when
Cl− was used as a counterion, the yield dropped to 31%, and enantiomeric excess dropped
to 81%, demonstrating the significance of the anion in catalytic activity. With the optimized
conditions, the importance of the ynal substituent was investigated. The substitutions
included a range of diversely substituted aromatic rings, aliphatic chains, and different
types of cycles. Longer reaction times of over 24 h were necessary to obtain yields of up
to 86% and enantiomeric excesses exceeding 92%. These compounds have attracted the
attention of several pharmaceutical industries due to their skeletal structures that bear
similarity to that of α-lapachone [97,98], a compound with anti-vascular activity [99]. This
discovery could open new avenues for further research into the synthesis of these types of
compounds, especially regarding their potential pharmacological activities.
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Adapted from reference [96].

A novel approach to synthesize secoiridoids derived from oleuropein and eleno-
lide, compounds present in olive oil with important biological activities such as anti-
hypertensive, anti-inflammatory, anti-oxidant, and anti-cancer effects [100,101], was de-
veloped using ynals by Liu and co-workers. In this study, ynal 62 was reacted with an
α, β-unsaturated ester 63 in the presence of catalyst A without the need for a base (as
the basicity of the Cl− anion was sufficient for the reaction to occur) to produce product
64 (Scheme 28) [102]. This innovative method could lead to the synthesis of a variety of
Secoiridoid derivatives with potential biological activities.
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Regarding ketone reactivity towards the formation of dihydropyranones, the only
report in recent years was published by Wang and co-workers. They developed a unique
method for synthesizing dihydropyranones by relying on the Wolff rearrangement [103],
which involves the conversion of α-diazoketones to ketenes. The reaction was carried out
by reacting an α-diazoketone 65 with a 3-alkylenyloxyindole 66 in the presence of blue
LEDs, M2, K3PO4, and THF, which served as the activator, catalyst, base, and solvent,
respectively, with the aim to improve the yield and enantiomeric excess of products 67
(Scheme 29) [104]. The temperature was also found to be a crucial factor in optimizing the
yield and enantiomeric excess. The investigation resulted in the synthesis of over twenty
chiral dihydropyranones 67 showing that the reaction had a good tolerance to functional
groups and an ample substrate scope. Furthermore, in order to gain insights into the
reaction mechanism and intermediates involved in the process, density functional theory
calculations have been evaluated [105].
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5. Carboxylic Acid and Derivatives as Reagents for Dihydropyranones

In addition to the carbonyl group, NHCs have also been demonstrated to activate
carboxylic acids and their derivatives. For instance, Que and co-workers developed a
reaction using α, β-unsaturated carboxylic acid 68 and 1,3-dicarbonyl compounds 2 to
produce chiral dihydropyranones 69 (Scheme 30) [106]. The reaction employed NHC
catalyst I, HATU as the carboxylic acid activator, DABCO as a base, LiCl as a Lewis acid,
and toluene as a solvent under an N2 atmosphere. Notably, aliphatic substitutions at
the carboxylic acid did not undergo reaction, whereas substitutions at the 1,3-dicarbonyl
compound allowed for various substituents, with ethyl ester derivatives demonstrating
the best outcomes. The yields were high, reaching 93%, while the enantiomeric excess was
excellent at 94%.
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In a subsequent study, Zhang and co-workers studied the reaction between α, β-
unsaturated acid 70 and 1,3-dicarbonyl compounds 2 under an N2 atmosphere using
Cs2CO3, HATU, CH2Cl2, catalyst N, and a 4Å molecular sieve. The latter was used to
remove water as a driving force of the reaction (Scheme 31) [107]. Thus, they were able to
obtain dihydropyranones 71 in moderate to good yields. The authors also explored the
scope of the reaction, revealing that the aromatic ring of the carboxylic acid tolerated various
halogens at position C5, while N-substitutions showed good tolerance towards methyl,
allyl, and benzyl groups. Furthermore, the authors demonstrated that good yields of the
product were possible if the dicarbonyl substrate was not sterically hindered. Interestingly,
the yield of desired product 71 improved when the carboxylic acid was added in excess
but decreased when it was scaled up to gram quantities.
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In contrast to conventional intermolecular reactions, Attaba and Smith recently re-
ported a methodology for the synthesis of two chiral dihydropyranones, 74 and 75, through
an intramolecular cycloaddition of enone and carboxylic acid groups in compounds 72
and 73 (Scheme 32) [108]. The reaction consisted of three steps and utilized catalyst A,
CH2Cl2, diisopropylethylamine (iPr2NEt), and 2,4,6-trichlorobenzyl chloride (2,4,6-TCBC),
with a reaction time of 2.5 h. The 74 and 75 dihydropyranones were obtained in moder-
ate to good yields (72 and 50%, respectively) with an excellent diastereomeric ratio and
enantiomeric excess. Previous routes for the synthesis of 74 and its derivatives required
similar conditions and the presence of a thiourea catalyst [109]. While the yields obtained
in these two studies are comparable, the enantiomeric excess achieved with NHCs was
higher. On the other hand, analogs of 75 have been the objective of synthetic approaches to
the production of calyxin derivatives [110], a group of adducts resulting from the alkylation
of diarylheptanoids with a chalcone or flavanone fraction, which have demonstrated broad
bioactivity [111].
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In 2018, a novel study aimed at synthesizing lactams through NHC catalysis was pub-
lished, but the reaction conditions were later modified to produce 4,5,6-trisubstituted dihy-
dropyranones 77. The reaction involved a substituted aromatic ester 76 and 1,3-dicarbonyl
compounds 2 (Scheme 33) [112]. The authors found that adding hydroxybenzotriazole
(HOBt) was crucial to improve the performance and enantiomeric ratio of the protocol.
Substitutions with bromide on the aromatic ring maintained the yield, while substitutions
on the dicarbonyl substrate using methyl and methoxy moieties showed higher yields than
those using phenyl groups. Additionally, the authors found that substitutions with ethyl
esters on the 1,3-dicarbonyl compound also produced higher yields. Overall, the modified
reaction conditions were effective at producing 4,5,6-trisubstituted dihydropyranones 77
with high yields and enantiomeric excesses.
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On the other hand, Zheng and co-workers developed another intramolecular reaction
using α, β-unsaturated phenolic esters 78 (Scheme 34) [113]. They evaluated the reactivity
of different Lewis bases and acids. The study revealed the significant role of potassium
in cooperative catalysis with NHC, leading to good yields regardless of the substitutions.
This approach presents a simple, fast, and efficient way of obtaining polycyclic structures
with a dihydropyranone core 79.
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In another report, Gao and co-workers developed a method to generate various types
of products from the homoenolate intermediate, including trisubstituted dihydropyranones,
by using the ability of potassium 2-oxo-3-enoates to replace α, β-unsaturated aldehydes in
NHC-catalyzed reactions [114]. The reaction involved potassium 2-oxo-3-enoates 80 with
1,3-dicarbonyl compounds 2 to produce chiral dihydropyranones 81 by using the catalyst
O (Scheme 35). The protocol provided a maximum yield of 96% and an enantiomeric excess
of 96% when the substitution at 81 was with a thienyl group and the substitution at the
dicarbonyl compound was with methyl groups. However, the yield significantly decreased
when using ethyl and esters at 2.
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In 2019, Zhu and co-workers developed a method to confer electrophilic properties to
the β-position of an acyl chloride 82, enabling its reaction with 1,3-dicarbonyl compounds
2 in the presence of an oxidizing agent, Cs2CO3, P as a catalyst and a mixture of CH2Cl2
and toluene to produce dihydropyranones 83 (Scheme 36) [115]. The reaction scope was
studied with different substituents at the dicarbonyl compound, including methyl, ethoxy,
and phenyl groups. Although the yield of the isolated product did not exceed 90%, the
enantiomeric excess ranged from 95% to 83%.
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In another report focusing on acyl halides, researchers aimed to generate a reactive α,
β-unsaturated acylazolium intermediate from acyl fluorides to facilitate various cyclization
reactions. In one such reaction, a [3+3] cyclization between an α, β-unsaturated acyl fluoride
84 and 1,3-dicarbonyl compounds 2 was performed using B as a catalyst (Scheme 37) [116].
To optimize the reaction conditions, a computational study was conducted to determine
the thermodynamic and kinetic feasibility of fluoride trapping by the HMSD generated
from the KHMSD (base) and avoid the inactivation of the catalyst by HF. Based on this
principle, additions of LiCl and 4Å molecular sieves were made to improve the yield, and
subsequently, substitutions on the substrates were tested, resulting in yields up of to 88%
of the products 85.

Molecules 2023, 28, x FOR PEER REVIEW 25 of 33 
 

 

scope was studied with different substituents at the dicarbonyl compound, including me-
thyl, ethoxy, and phenyl groups. Although the yield of the isolated product did not exceed 
90%, the enantiomeric excess ranged from 95% to 83%. 

 
Scheme 36. Synthesis of dihydropyranones from acyl chlorides and dicarbonyl compounds. 
Adapted from reference [115]. 

In another report focusing on acyl halides, researchers aimed to generate a reactive 
α, β-unsaturated acylazolium intermediate from acyl fluorides to facilitate various cycliza-
tion reactions. In one such reaction, a [3+3] cyclization between an α, β-unsaturated acyl 
fluoride 84 and 1,3-dicarbonyl compounds 2 was performed using B as a catalyst (Scheme 
37) [116]. To optimize the reaction conditions, a computational study was conducted to 
determine the thermodynamic and kinetic feasibility of fluoride trapping by the HMSD 
generated from the KHMSD (base) and avoid the inactivation of the catalyst by HF. Based 
on this principle, additions of LiCl and 4Å molecular sieves were made to improve the 
yield, and subsequently, substitutions on the substrates were tested, resulting in yields up 
of to 88% of the products 85. 

 
Scheme 37. Synthesis of dihydropyranones from acyl fluorides and dicarbonyl compounds. 
Adapted from reference [116]. 

Finally, an alternative method for the generation of the α, β-unsaturated acylazolium 
intermediate was published by Enders and co-workers. They reported the use of α, β-

+

82

P (20 mol%)
Cs2CO3 (250 mol%)

OA (2.5 eq.)
4Å MS,

DCM:Toluene 4:1, 
rt, 48 h

Selected Examples

83%
(95%)

2 83

86%
(91%)

61%
(83%)

87%
(91%)

88%
(88%)

85%
(95%)

R3

O

R2

O
Cl

O

R1

O

R3 O

R2

O

R1

(ee %)

O

O

Ph

O

Ph

O

EtO O

Ph

O

Ph

O

EtO O

Ph

O

O

Ph O

Ph

O

Ph

O

O

O

Ph

O

EtO O

O

Ph

+

84

B (20 mol%)
KHMDS (20 mol%)

LiCl (50 mol%)
4Å MS,

Toluene, 0 °C

Selected Examples

85%
(80%)

2 85

78%
(84%)

88%
(86%)

52%
(70%)

84%
(82%)

R3

O

R2

O
F

O

R1

O

R3 O

R2

O

R1

(ee %)

O

O

O

Ph

O

O

O

Cy

O

O

O

O

Ph O

Ph

O

Ph

O

EtO O

O

Ph

MeO

Scheme 37. Synthesis of dihydropyranones from acyl fluorides and dicarbonyl compounds. Adapted
from reference [116].

Finally, an alternative method for the generation of the α, β-unsaturated acylazolium
intermediate was published by Enders and co-workers. They reported the use of α, β-
unsaturated N-acyltriazole 86. This species was able to react with 1,3-dicarbonyl com-
pounds 2 to yield trisubstituted dihydropyranones 87 when Q was used as a catalyst
(Scheme 38) [117]. However, when the triazole group was replaced by the imidazole or
tetrazole group, no reaction or only traces of the product were obtained. In this study,
various catalysts, bases, and solvents were explored to optimize the reaction conditions,
and the substrate scope was evaluated. The β-position of the acyl triazolium afforded good
yields when electron-donating and electron-withdrawing substituents were introduced at
the para and ortho positions of the phenyl ring. However, the enantioselectivity decreased
when the dicarbonyl compound was substituted with electron-withdrawing groups.
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6. Perspectives and Conclusions

The catalytic process using NHC to synthesize 3,4-dihydropyran-2-ones has proven to
be exceptionally versatile. The interaction between various functional groups and a wide
range of NHCs has enabled the formation of key intermediate species, resulting in the
synthesis of simple and fused skeletons and groups. Many of these compounds have the
potential for application in biological activity studies due to their relevance in that field.
Regarding the chemical structure of the organocatalysts reviewed, it is worth noting that the
majority of them were based on triazole rings (A–C and G–Q), while only a few were based
on imidazole rings (D–F). The reason for this could be attributed to the electronic properties
of triazole-based NHCs, which are generally more nucleophilic than their imidazole-based
counterparts [118]. This enhanced nucleophilicity enables triazole-based NHCs to more
readily activate α, β-unsaturated and saturated aldehydes, ynals, ketones, carboxylic acids,
and derivative compounds compared to imidazole-based NHCs. Thus, it is reasonable to
expect that triazole-based NHCs would lead to more active catalytic systems in the forma-
tion of dihydropyranones. However, we invite further research to explore the potential of
imidazole-based NHCs as organocatalysts in the reactions presented here, as this is a rela-
tively unexplored area. It is also worth highlighting that organocatalysts A, B, and K were
the most frequently used in these reactions, possibly due to their commercial availability
and, also, the rigidity imposed by their chiral fused rings. This rigidity allows for effective
chiral induction from the catalysts to the substrates, resulting in high enantioselectivities
(ee > 99%) in several cases. In this sense, the exceptional yields and enantiomeric excesses
achieved in various studies underscore the potent catalytic capabilities of NHCs in this type
of reaction. Despite the outstanding performance, the process’s development faces certain
challenges, such as improving catalyst loading, as only one report has shown loadings
lower than 1 mol% [57]. Nevertheless, it has been demonstrated that low catalyst loadings
can be achieved with other types of organocatalysts that are different to NHCs [119–123].
On the other hand, the high catalyst loadings observed with NHCs can be attributed to
their ability to function not only as effective nucleophiles for activating substrates and
initiating catalytic cycles, but also to their potential to activate other substrates present in
the reaction medium as Bronsted acids when they are in the form of an NHC precursor
(i.e., imidazolium or triazolium salts) [45,124,125]. Therefore, NHCs may play a dual role
in some reactions, necessitating the use of high catalyst loadings to ensure optimal activity.
On the other hand, the recyclability of the catalyst remains a concern. However, it has been
demonstrated that catalytically active species can be observed even after the end of the
process [126]. This clearly shows that this species could be used in subsequent processes,
especially those of a chiral nature since these are usually expensive. In this sense, an
interesting approach that would overcome this drawback would be the heterogenization of
these organocatalysts through the tailor-made design and synthesis of, for example, silica-
or polymer-supported chiral NHC catalysts.

On the other hand, the formation of NHCs is usually carried out in the presence of
a base (at high loadings), so implementing free NHC electrogeneration could be a viable
alternative to this problem. While most research has demonstrated a wide scope in their
reactions, these molecules are not usually studied for their biological activity. Conducting
in silico approximations, along with synthetic development, could improve the probability
of success. In addition, based on this review, we propose that easily available and more
stable reagents such as carboxylic acids and derivatives, which have been scarcely explored,
have significant potential as reagents for NHC organocatalysis. Then, we invite a further
exploration of their use. Moreover, determining specific rotation values for the chiral
dihydropyranones obtained is highly relevant, as reported by Liu and co-workers [102].
Further research and development may potentially overcome these obstacles and pave the
way for the more efficient and sustainable production of 3,4-dihydropyran-2-ones using
NHCs as catalysts.
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