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Abstract: The first diastereoselective synthesis of (−)-1-epi-lentiginosine from a common chiral
trans-epoxyamide derived from 2-pyridincarbaldehyde is reported. This methodology involves a
sequential oxirane ring opening and intramolecular 5-exo-tet cyclization of tosylate trans-epoxyalcohol
to afford a diastereomeric mixture of indolizinium salts in a one-pot fashion, followed by regio- and
diastereospecific pyridinium ring reduction.
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1. Introduction

Hydroxylated indolizidines, such as (+)-castanospermine, (-)-swainsonine, (+)-lentiginosine
and (-)-epi-lentiginosine, are widely found in plants and microorganisms, and they also constitute a
class of azasugars that exhibit potent and selective glycosidase inhibitory activities [1,2]. Specifically,
lentiginosine is known not only to be a significant inhibitor of amyloglycosidases but also to have
excellent anti-HIV, anti-tumor and immunomodulatory activities (Figure 1) [1,3–6]. Therefore,
several syntheses using a chiral pool [7–27] or enantio- or diastereoselective [28–34] approaches to
lentiginosine have been reported.
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1. Introduction 
Hydroxylated indolizidines, such as (+)-castanospermine, (‒)-swainsonine, (+)-len-

tiginosine and (−)-epi-lentiginosine, are widely found in plants and microorganisms, and 
they also constitute a class of azasugars that exhibit potent and selective glycosidase in-
hibitory activities [1,2]. Specifically, lentiginosine is known not only to be a significant 
inhibitor of amyloglycosidases but also to have excellent anti-HIV, anti-tumor and im-
munomodulatory activities (Figure 1) [1,3–6]. Therefore, several syntheses using a chiral 
pool [7–27] or enantio- or diastereoselective [28–34] approaches to lentiginosine have been 
reported. 
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Figure 1. Some hydroxylated indolizidine alkaloids showed potent and selective glycosidase in-
hibitory activities.

Although there are few reports of the use of pyridine derivatives in the synthesis
of lentiginosine, this heterocycle has proved to be a valuable starting material for the
synthesis of this indolizidine. For example, Zhou reported the use of ethyl 3-(pyridine-2-
yl)acrylate N-oxide obtained from picolinaldehyde via the Wittig reaction. Subsequently, the
asymmetric dihydroxylation of heteroaromatic acrylate affords the key intermediate for the
synthesis of (+)-lentiginosine at an overall yield of 16% [31]. Fruit et al. reported a synthesis
of (−)-lentiginosine and its epimers starting from 2-bromopyridine condensed with an
enantiomerically pure (R)-2,3-O-isopropylidene glyceraldehyde prepared from D-mannitol.
The key step involved quaternization of a completely unprotected pyridinium-polyol
unit using the Mitsunobu methodology, followed by PtO2-catalyzed diastereoselective
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hydrogenation of the pyridinium ring to give the desired dihydroxyindolizidine [35].
Finally, Brandi et al. reported the synthesis of (±)-lentiginosine starting from 1-(2-Pyridyl)-
2-propen-1-ol. In this methodology, the main steps were a domino process involving the
electrophilic addition of bromine to the propen-1-ol derivative and the cyclization of the
bromonium ion to give the corresponding indolizinium salt followed by a diastereoselective
reduction, resulting in a diastereomeric mixture of tetrahydro derivatives. Nucleophilic
substitution (via elimination and addition) finally yields (±)-lentiginosine [36].

On the other hand, we showed, in a previous report, that chiral N-phenylglycinol-
derived 2,4-disubstituted oxazolidines are excellent chiral auxiliaries for the asymmetric
condensation of amide-stabilized sulfonium ylides with aldehydes to access at trans-glycidic
amides in high diastereoselectivity [37]. Following this work, and in order to highlight our
diastereoselective epoxidation methodology, we develop the total synthesis of lentiginosine
using trans-glycidic amide as starting material derived from chiral oxazolidine sulfur ylide
and 2-pyridincarbaldehyde (Scheme 1).
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2. Results

Our retrosynthetic analysis is outlined in Scheme 2. We envisioned that lentiginosine could
be accessed via a diastereoselective reduction of indolizinium salt I which can be generated
by intramolecular cyclization reaction of diol II. The intermediate II could be obtained via a
reductive removal of the chiral auxiliary of the glycidic amide III and the opening of the oxirane
function. III can be prepared from commercially available 2-pyridine carbaldehyde and the
chiral oxazolidine sulfur ylide derived from (R)-(−)-2-phenylglycinol (Scheme 2).
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reported reaction strategy [37]. Compound 2(a+b) was obtained in a high chemical and
stereochemical yield (85% yield, 95:5 d.r.). The major diastereoisomer 2a was separated and
we assumed the configuration of the new stereogenic centers as (2R, 3S) according to our
previous report (Scheme 3).
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Scheme 3. Diastereoselective synthesis of trans-2,3-epoxyamide 2(a+b) derived from 2-
picolinaldehyde. Reagents and conditions: (i) butyraldehyde, DCM, 0 ◦C to rt, 30 min then bro-
moacetyl bromide, K2CO3 (95% yield; 85:15 dr); (ii) DCM, dimethyl sulfide, rt, 1 h (quantitative); (iii)
2-pyridinecarbaldehyde, KOH, THF:H2O, 0 ◦C to rt, 13 h (85% yield, 95:5 dr).

With the major diastereoisomer, 2a in hand and continuing with our retrosynthetic
plan, the next step consisted of the reductive removal of the chiral auxiliary. Unfortunately,
all attempts to obtain the desired epoxyalcohol were unsuccessful (LiBH4, super-hydride®,
Red-Al® were tested), and the oxirane intermediate 2a was completely degraded.

In this way, and as mentioned earlier, Brandi et al. [36] reported a racemic synthesis
of lentiginosine via cyclization of the bromohydrin intermediate derived from 1-(pyridin-
2-yl)prop-2-en-1-ol, for which epoxyamide 2a was treated with HBr to access the corre-
sponding halohydrin. Pleasingly, the corresponding bromohydrin 3 was obtained when
intermediate 2a was dissolved in DCM, and HBr (three drops of aqueous 45% solution)
was added at room temperature. This product was detected by NMR spectroscopy as a
mixture of bromohydrin rotamers since signals coalesced at a higher temperature (two
doublets around 4.99 and 4.73 ppm with J = 5.5 Hz) (see Supporting Information).

Crystallized compound 3 enabled the unambiguous determination of the absolute
stereochemistry of the new stereogenic centers as (2S,3S) and confirmed that a regio-
and diastereospecific oxirane opening reaction occurs (Scheme 2) [38]. To improve the
reaction yield, screening experiments were performed. The best result was obtained when
epoxyamide 2a was treated with HBr in CHCl3 at room temperature (entry 2, Table 1).
Compound 3 was obtained in 98% yield after chromatographic column purification.

Table 1. Optimization of the reaction conditions.

Molecules 2023, 28, x FOR PEER REVIEW 4 of 9 
 

 

Table 1. Optimization of the reaction conditions. 

 

Entry Solvent Time Yield [%] 

1 THF 3.5 h 95 

2 CHCl3 1 h 98 

3 Toluene 3 h 95 

4 CCl4 40 min 80 

5 MeOH 72 h NR 

6 CH3CN 20 h 80 

Then, reductive removal of the chiral auxiliary was performed. Bromohydrin 3 was 

reacted with LiBH4 under ultrasonic activation conditions. Not only the chiral auxiliary 

was removed but 73% of the corresponding epoxyalcohol 4 was also obtained, via an in-

tramolecular nucleophilic substitution, obtained as a specific diastereoisomer (Scheme 4). 

 

Scheme 4. Reductive removal of the chiral auxiliary. 

Tosylation of epoxy alcohol 4 afforded the desired compound 5 in 94% yield after 

purification by column chromatography. Immediately, compound 5 was treated with hy-

drogen halide to promote the formation of the halohydrin. All attempts resulted in the 

formation of the corresponding diastereomeric mixture of indolizinium salts 6(a+b), ob-

tained by a domino process involving a regiospecific oxirane opening and an intramolec-

ular nucleophilic cyclization reaction favoring the formation of the cis isomer (JH1,H2 = 4.7 

Hz) as a result of the more favorable nucleophilic attack on the oxirane ring on the back-

side. The use of HBr gave the corresponding indolizinium salts 6(a+b) in 80:20 dr. The best 

diastereoselectivity was obtained with the use of HCl, which gave the desired diastereo-

meric mixture of indolizinium salts 7(a+b) in dr = 90:10 (the diastereomeric ratio was meas-

ured directly from the NMR spectra of the crude reaction). Finally, the use of HI resulted 

in decreased diastereoselectivity (Scheme 5). 

 

Scheme 5. Sequential obtention of the inseparable diastereomeric mixture of indolizinium salts. 

In order to extend the scope of this domino reaction and to take into account that this 

reaction occurs in an acidic medium, we decided to investigate this reaction with other 

nucleophiles catalyzed with Lewis acid. After testing with various Lewis acids (Cu(OTf)2, 

Entry Solvent Time Yield [%]

1 THF 3.5 h 95
2 CHCl3 1 h 98
3 Toluene 3 h 95
4 CCl4 40 min 80
5 MeOH 72 h NR
6 CH3CN 20 h 80

Then, reductive removal of the chiral auxiliary was performed. Bromohydrin 3 was
reacted with LiBH4 under ultrasonic activation conditions. Not only the chiral auxiliary
was removed but 73% of the corresponding epoxyalcohol 4 was also obtained, via an
intramolecular nucleophilic substitution, as a specific diastereoisomer (Scheme 4).
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In order to extend the scope of this domino reaction and to take into account that this 
reaction occurs in an acidic medium, we decided to investigate this reaction with other 
nucleophiles catalyzed with Lewis acid. After testing with various Lewis acids (Cu(OTf)2, 

Scheme 4. Reductive removal of the chiral auxiliary.

Tosylation of epoxy alcohol 4 afforded the desired compound 5 in 94% yield after pu-
rification by column chromatography. Immediately, compound 5 was treated with hydrogen
halide to promote the formation of the halohydrin. All attempts resulted in the formation
of the corresponding diastereomeric mixture of indolizinium salts 6(a+b), obtained by a
domino process involving a regiospecific oxirane opening and an intramolecular nucle-
ophilic cyclization reaction favoring the formation of the cis isomer (JH1,H2 = 4.7 Hz) as a
result of the more favorable nucleophilic attack on the oxirane ring on the backside. The use
of HBr gave the corresponding indolizinium salts 6(a+b) in 80:20 dr. The best diastereose-
lectivity was obtained with the use of HCl, which gave the desired diastereomeric mixture
of indolizinium salts 7(a+b) in dr = 90:10 (the diastereomeric ratio was measured directly
from the NMR spectra of the crude reaction). Finally, the use of HI resulted in decreased
diastereoselectivity (Scheme 5).
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In order to extend the scope of this domino reaction and to take into account that this reac-
tion occurs in an acidic medium, we decided to investigate this reaction with other nucleophiles
catalyzed with Lewis acid. After testing with various Lewis acids (Cu(OTf)2, BF3•OEt2, etc.),
this reaction occurred in the presence of Ytterbium(III)triflate (10 mol%) [39] with a nucleophile
(benzylic alcohol or H2O) in high chemical and stereochemical yields (the diastereomeric ratio
was measured directly from the NMR spectra of the crude reaction) (Scheme 6).
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Using the major diastereoisomer 11a, we attempted to complete the total synthesis of 
(+)-lentiginosine. Although the catalytic hydrogenation cleanly affords indolizidine 12a 
[38], the absolute configuration of which was determined via X-ray diffraction analysis, 
the substitution of a chlorine atom by OH was unsuccessful (Scheme 8). 
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Unfortunately, all attempts to separate the diastereomeric indolizinium salts were
unsuccessful. Therefore, we turned our attention to the pyridinium ring reduction with-
out purification, first using the corresponding inseparable diastereomeric chlorohydrin
salt 7(a+b).

Catalytic hydrogenation of 7(a+b) in the presence of Pd/C afforded a complex mixture
and recovery of the starting material despite longer reaction times and different catalysts
being explored. Pleasingly, the use of NaBH4 leads to the tetrahydro derivatives 11(a+b).
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This mixture was separated by column chromatography, and each diastereoisomer was
crystallized, which allowed for the determination of its absolute stereochemistry via X-ray
crystallography [38]. Based on the results obtained, we propose that the hydride addition
occurs in a diastereospecific manner from the less hindered face of the bicyclic indolizinium
salt (Scheme 7).
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Scheme 7. Diastereospecific reduction of indolizinium salt with NaBH4.

Using the major diastereoisomer 11a, we attempted to complete the total synthesis
of (+)-lentiginosine. Although the catalytic hydrogenation cleanly affords indolizidine
12a [38], the absolute configuration of which was determined via X-ray diffraction analysis,
the substitution of a chlorine atom by OH was unsuccessful (Scheme 8).
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Therefore, the total synthesis of (−)-epi-1-lentiginosine was carried out starting from
a mixture of indolizinium salts 10(a+b), which was subjected to acidic hydrogenation
conditions to afford the desired (−)-1-epi-lentiginosine in 87% yield after chromatographic
purification (Scheme 9).
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3. Materials and Methods
3.1. General Information

All reagents and solvents were purchased from commercial sources. The 1H and
13C spectra were determined with a Bruker Avance III Spectrometer (CDCl3 or CD3OD
solvents) operating at 500 and 125 MHz, respectively. The chemical shifts were reported
in parts per million (ppm), downfield from SiMe4 (δ 0.0) and relative to the signal of
chloroform-d (δ 7.26, singlet). Multiplicities were afforded as: s (singlet); d (doublet); t
(triplet); q (quartet); dd (doublets of doublet); ddd (doublet of doublets of doublets); or m
(multiplets). The number of protons for a given resonance is indicated by nH. Coupling
constants were reported as a J value in Hz. Thin layer chromatography (TLC) was used to
monitor the reaction on Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Optical
rotations were determined at room temperature with a Perkin-Elmer 341 polarimeter,
using a 1 dm cell with a total volume of 1 mL, and are referenced to the D-line of sodium.
Mass spectra were recorded with a JEOL Station JMS-700 instrument at a voltage of 70 eV.
X-ray diffraction analysis was performed on a diffractometer STOE Stadivari using Ag-Kα
radiation (λ = 0.56083 Å, AXO micro-source) and equipped with a Dectris Pilatus-100 K
detector. Intensities were collected at 295 K, and structures were refined using the current
release of SHELXL (2018/3). The products were purified by column chromatography on
silica gel 60 (63–200 nm).

3.2. General Procedures

Synthesis of (2S,3S)-2-bromo-3-hydroxy-1-((2R,4R)-4-phenyl-2-propyloxazolidin-3-yl)-3-(pyridin-
2-yl)propan-1-one, 3.

trans-epoxyamide 2a (0.1 g, 1.0 equiv, 0.29 mmol) was dissolved in 1 mL of chloroform
at 25 ◦C; then, 3 drops of HBr (48%) were added, and the reaction mixture was stirred for
40 min. Then, NaHCO3 was added, and the resulting reaction mixture was filtered. Finally,
the solvents were evaporated. Product 3 was crystallized in a mixture of petroleum ether:
DCM (70:30). Bromohydrin 3 (CCDC: 2181510) was obtained in 98% yield (all spectroscopic
details are described in ESI).

Synthesis of ((2S,3S)-3-(pyridin-2-yl)oxiran-2-yl)methanol, 4.
To a solution of bromohydrin 3 (110 mg, 0.26 mmol) in anhydrous THF (0.08 M) under

ultrasonic activation at 5 ◦C, a solution of LiBH4 (2 M, THF, 5 equiv.) was added in portions.
After 2 h, 1 mL of H2O2 (30%) was added slowly to the reaction mixture followed by
addition of NaOH (3 N) solution. The mixture was stirred overnight at room temperature.
The crude reaction was then filtered, and then the organic layer was dried over anhydrous
Na2SO4. After evaporation of the solvent from the filtrate, the residue was subjected to
purification by flash column chromatography (SiO2, CH2Cl2/MeOH). Epoxyalcohol 4 was
obtained in 73% yield (all spectroscopic details are described in ESI).

Synthesis of ((2S,3S)-3-(pyridin-2-yl)oxiran-2-yl)methyl 4-methylbenzenesulfonate, 5.
Compound 4 was dissolved in DCM, and the resulting solution was cooled to 0 ◦C;

then, Et3N (0.405 mmol, 0.058 mL) and DMAP (0.0026 g, 0.021 mmol) were added. The
resulting mixture was stirred for 10 min; then, p-TsCl (0.062 g, 0.325 mmol) was added
in portions and the mixture was stirred for 1 h. Finally, the reaction was quenched by
adding a brine solution, and the organic phase was separated and dried over anhydrous
Na2SO4, filtered and the solvent was evaporated yielding the desired tosylated epoxyalco-
hol 5, which was obtained in 94% yield after purification by chromatography (silica gel,
AcOEt/petroleum ether) (spectroscopic details are described in ESI).

General procedure for a one-pot regiospecific oxirane opening and intramolecular nucleophilic
cyclization reaction

With hydrohalic acids
Compound 5 (0.053 g, 0.173 mmol) was dissolved in CHCl3 (1 mL) at room tempera-

ture, and then the corresponding hydrohalic acid was injected through a needle into the
solution and stirring for 3 h. Finally, the reaction was quenched by adding NaHCO3 until
pH = 7. Then, the mixture was filtered, and the solvent was evaporated to obtain the corre-
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sponding inseparable diastereomeric mixture of indolizinium salt, which was used without
purification for the next reaction: [CCDC: 2181511 (11a), 2181512 (11b)] (spectroscopic
details are described in ESI).

With H2O or BnOH as nucleophile
To a solution of compound 5 (0.079 g, 0.26 mmol) and the corresponding nucle-

ophile (0.029 mL, 0.228 mmol) in 1,4-dioxane (1 mL), ytterbium trifluoromethanesulfonate
(0.016 g, 0.1 equiv.) was added under inert atmosphere. The suspension was stirred for
24 h. Finally, the solvent was evaporated and the desired indolizinium salt was precipitated
in AcOEt/petroleum ether given the corresponding inseparable diastereomeric mixture of
indolizinium salt.

Diastereospecific reduction of indolizinium salts
To a stirred solution of the corresponding indolizinium salt (0.084 mmol, 29 mg) in

methanol (3 mL) at 0 ◦C, NaBH4 (10 mg, 0.26 mmol) was added slowly. After, the mixture
was stirred for 10 min and then a saturated aqueous solution of NaSO4 was added. Next,
the resulting mixture was filtered through a celite pad. The solution was evaporated, and
the residue was purified by flash chromatography to afford the desired hexahydroindolizin-
2-ol (spectroscopic details are described in ESI).

Synthesis of (−)-1-epi-lentiginosine.
To a methanolic solution of the diastereomeric indolizidinium salt 10(a+b), concentrated

HCl (1 drop) was added, and the resulting mixture was hydrogenated at room temperature
in the presence of 10% PtO2. The reaction was stirred overnight. Then, NaOH (3 M) solution
was added, and the resulting crude reaction was extracted with dichloromethane, dried
over anhydrous Na2SO4, filtered, concentrated and finally subjected to purification by flash
column chromatography (SiO2, CH2Cl2/MeOH). The desired (−)-1-epi-lentiginosine was
obtained with 87% yield (spectroscopic details are described in ESI).

4. Conclusions

In conclusion, a novel protocol for the diastereoselective synthesis of substituted in-
dolizidinium salts from a common chiral trans-epoxiamide is reported. In addition, the
first diastereoselective synthesis of (−)-1-epi-lentiginosine in only five steps, and a 49.7%
overall yield starting from trans-epoxyamide 2a is reported. This new, versatile and diastere-
oselective access to chiral indolizidine compounds opens the route to the pharmacological
investigation of these promising bicyclic cores as well as the design of analogs.
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mdpi.com/article/10.3390/molecules28093719/s1, characterization data, and 1H-NMR and 13C-NMR
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compounds: 3, 11a, 11b and 12a. References [40,41] are cited in Supplementary Materials.
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