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Abstract: The computational simulations for electronic properties of cadmium (Cd) coordinated
L-alanine NDI ligand (H2-L-ala NDI) based complex are the focus of this research. For the first time,
the Cd-NDI complex (monomer) has been produced using water as the solvent; this is a new approach
to synthesizing the Cd-NDI complex that has not been reported yet. Along with crystallography
and Hirsch field analysis, CAM-B3LYP/LANL2DZ and B3LYP/LANL2MB basis sets were used,
and in-depth characterisation of the Cd-NDI complex by following DFT and TD-DFT hypothetical
simulations. Hyperpolarizabilities, frontier molecular orbitals (FMOs), the density of states (DOS),
dipole moment (µ), electron density distribution map (EDDM), transition density matrix (TDM),
molecular electrostatic potential (MEP), electron-hole analysis (EHA), and electrical conductivity
(σ) have all been studied regarding the Cd-NDI complex. The vibrational frequencies and types
of interaction are studied using infrared (IR) and non-covalent interaction (NCI) analysis with iso-
surface. In comparison to the Cd-NDI complex with 2.61, 2.42 eV Eg (using CAM-B3LYP/LANL2DZ
and B3LYP/LANL2MB basis sets, respectively) and 376 nm λmax, (in case of B3LYP/LANL2MB λmax

is higher), H2-L-ala NDI have 3.387 eV Eg and 375 nm λmax, metal-ligand coordination in complex
dramatically altered charge transfer properties, such as narrowing band gap (Eg). Based on the
electronic properties analysis of Cd-NDI complex, it is predicted that the Cd-NDI complex will have a
spectacular (nonlinear optical) NLO response. The Cd-NDI complex is discovered to be advantageous
for the creation of future nanoscale devices due to the harmony between the Cd metal and H2-L-ala
NDI, in addition to their influences on NLO characteristics.

Keywords: Cd(II) coordination complex; L-alanine terminal-substituted naphthalene diimide;
28 NDI-based functional ligand; single crystal structural analysis; DFT theoretical study; electronic
29 properties

1. Introduction

In 1961, Franklin and his colleagues shifted their research focus to the electrical prop-
erties field after notable advancements in the ruby laser and second harmonic generation
(SHG). This led to the emergence of an interdisciplinary field that is both unique and highly
competitive [1,2]. The potential applications of electrical materials, as in photonics, light
emitters, optical switching, electro-opto modulations, and holographic imaging, have made
them increasingly popular [3]. In the 1930s, electro-opto processes were generally ignored
for thirty years while they were being proposed. Presently, optical switching, luminous
materials gyroscopes [4], biosensor scanners [5], frequency mixing and SHG, are examples
of recent high-tech deployments [6]. Importantly, the calculation of a large amount of data
originating from many sources necessitates the use of powerful and capable computers.
Electro-opto technology offers a variety of methods for increasing data handling capabili-
ties [7,8]. To meet the growing computing needs, researchers have developed a range of
current organic and inorganic electro-opto active materials [9,10].
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Transition-metal complexes based on these materials have taken a prominent posi-
tion due to their improved electrical and structural properties, as well as polarizability
coefficient [11,12]. Due to desirable properties such as ease of synthesis, transparency,
strength, and increased thermal stability, π-conjugated metal-organic compounds along
amidic group-based electro-opto materials with significant first or second hyperpolarizabil-
ities had piqued researchers’ interest [13,14]. To obtain ultrarapid high hyperpolarizability
response, a wide range of conventional techniques have been used, including donor–
acceptor bridge system [15,16], diradical character [17], octupolar molecules [18], and
excess electron model.

By optimizing the molecular design, it is possible to increase the potential applications
of π-conjugated materials in exciting fields such as microelectronics, structural properties,
electrochemistry, and optoelectronics [19–23]. However, to the best of our knowledge, the
effect of metal coordination has yet to be accounted for. As a result, the purpose of this
study is to examine the effects of Cd coordination with H2-L-ala NDI on optoelectronic prop-
erties. For a long time, we have been focusing on functional-supramolecular coordination
chemistry for a wide range of applications. Recent research has looked into coordination
complexes between NDI (naphthalene diimides) and PDI (perylene diimides) [24,25]. As
part of a study inspired by the systematic exploration of the electronic properties of Cd-
NDI complex, a crystallographic study was conducted. Moreover, Cd-NDI complex and
H2-L-ala NDI were simulated using the CAM-B3LYP/LANL2DZ and B3LYP/LANL2MB
basis sets, aiming to achieve high NLO response.

2. Results and Discussion
2.1. Crystal Structure of Complex

H2-L-ala NDI can create catenane motifs, even though the ligands can also acquire an
unusual conformation that precludes the formation of cyclic motifs. L-phenyl alanine (bulky
amino acids) is not capable of catenane production, although they do have a proclivity
for rotaxanes [26,27]. For complexation, Li et al. used γ-aminobutyric acid naphthalene
diimide derivative (H2GABA-NDI). This ligand is lengthier and consequently more flexible
than H2-L-ala NDI. The H2GABA-flexibility NDIs makes it easier for it to release its terminal
or carboxylic acid protons, making coordinated bonding with any metal easier. However,
because the amino group is located at longer distance, the ligands are stiffer and far less
flexible. Albeit, when their length decreases, their metal coordinated complexes become
tighter in the packing scenario.

Interestingly, the H2-L-ala NDI may create a self-interdependent catenane motif when
coupled to Cd metal (monomer). The single-crystal X-ray diffraction method was used
to study the yellow-colored crystal of the Cd-NDI complex (CCDC number 2171360).
P21212 space group with distorted octahedral coordination geometry was discovered in the
coordination environment of the Cd-NDI complex (Figure 1a and Table 1).

The carboxylate and hydroxyl group of H2-L-ala NDI endorse the wings-like confor-
mation by acting Cd2+ ions as a bridge (through C=O and O-H oxygen atoms) between
them, which gives rise to 1D chain (Figure 1b). Here, Cd2+ is coordinated by six oxygen
atoms that belong to carboxylate and hydroxyl group of H2-L-ala NDI. The NDI carboxylic
acid oxygens (O1, O3, O8, and O9). The O-H group of both H2-L-ala NDI (of different
layers) are bonded through hydrogen bond (2.584 Å) that elongate on x-axis are responsible
for 2D coordination geometry (Figure 1c, Table 2). Two-dimensional geometry makes a
complex more stable than 1D (stated, higher electrical/thermal stability, larger specific
surface area, and lower sheet agglomeration are the stated advantages of a 2D chain over
1D 41). The bond lengths of Cd–O7, Cd–O4, and Cd–O2, are 2.276 Å, 2.512 Å, and 2.171 Å,
respectively. Nevertheless, van der Waals forces and weak π-π stacking interaction (6.22 Å)
are responsible for the 3D structure of the complex.
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Figure 1. The ORTEP picture of Cd-NDI complex showing the coordination environments of Cd (II) 
(a). One-dimensional crystal structure of Cd-NDI complex (b). Two-dimensional crystal structure 
of Cd-NDI complex (c). Three-dimensional crystal structure of Cd-NDI complex (d). 

Table 1. Crystal data and structure refinement for Cd-NDI complex. 

Identification Code Cd-NDI Complex 
Empirical formula C40H28.65CdN4O17.32 

Formula weight 954.83 
T (K) 296.15 

Crystal system Orthorhombic 
Space group P21212 

a (Å) 24.891(2) 
b (Å) 7.3061(7) 
c (Å) 11.7772(11) 
α (°) 90 
β (°) 90 
γ (°) 90 

V (Å3) 2141.7(3) 
Z 2 

ρcald (g/cm3) 1.481 
µ (Mo Kα) (mm−1) 0.588 

F(000) 966.0 
Crystal size/mm3 0.25 × 0.23 × 0.2 

Radiation Mo Kα (λ = 0.71073) 
2Θ range for data collection/° 3.458 to 50.76 

Index ranges −29 ≤ h ≤ 30, −8 ≤ k ≤ 8, −14 ≤ l ≤ 14 
Reflections collected 21,339 

Unique data (Rint) 3935 (0.0251) 
Rsigma 0.0206  

Data/restraints/parameters 3935/6/290 
GOF 1.061 

R1 /wR2 [I > 2(Iσ)] 0.0442/0.1273 
R1 /wR2 [all data] 0.0464/0.1298 

maximum/minimum (e/Å−3) 2.19/−0.41 
Flack parameter −0.003(8) 

Figure 1. The ORTEP picture of Cd-NDI complex showing the coordination environments of Cd (II)
(a). One-dimensional crystal structure of Cd-NDI complex (b). Two-dimensional crystal structure of
Cd-NDI complex (c). Three-dimensional crystal structure of Cd-NDI complex (d).

Table 1. Crystal data and structure refinement for Cd-NDI complex.

Identification Code Cd-NDI Complex

Empirical formula C40H28.65CdN4O17.32
Formula weight 954.83

T (K) 296.15
Crystal system Orthorhombic

Space group P21212
a (Å) 24.891(2)
b (Å) 7.3061(7)
c (Å) 11.7772(11)
α (◦) 90
β (◦) 90

γ (◦) 90
V (Å3) 2141.7(3)

Z 2
ρcald (g/cm3) 1.481

µ (Mo Kα) (mm−1) 0.588

F(000) 966.0
Crystal size/mm3 0.25 × 0.23 × 0.2

Radiation Mo Kα (λ = 0.71073)
2Θ range for data collection/◦ 3.458 to 50.76

Index ranges −29 ≤ h ≤ 30, −8 ≤ k ≤ 8, −14 ≤ l ≤ 14
Reflections collected 21,339
Unique data (Rint) 3935 (0.0251)

Rsigma 0.0206
Data/restraints/parameters 3935/6/290

GOF 1.061
R1 /wR2 [I > 2(Iσ)] 0.0442/0.1273
R1 /wR2 [all data] 0.0464/0.1298

maximum/minimum (e/Å−3) 2.19/−0.41
Flack parameter −0.003(8)
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Table 2. Hydrogen Bonds for Cd-NDI complex.

D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/◦

O1 H1 O4 1 0.82 1.80 2.584(6) 158.2 1

1 Belongs to first O4, as there are two O4 oxygens in structure.

Moreover, H2-L-ala NDI has inherent chirality that also generates chirality in the
Cd-NDI complex through hydrogen bonds (Figure 2a). This chirality enables the complex
to form a helical structure, as shown in Figure 2b.
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Figure 2. Helical structure of Cd-NDI complex through HB (a). Top view of Cd-NDI P-helix (b).

The thermogravimetric graphs of the Cd-NDI complex that have revealed thermal
stability are shown in Figure S3. Under Ar gas, the Cd-NDI complex was subjected to
thermogravimetric analyses (TGA) and differential scanning calorimetry (DSC). In the in-
stance of the Cd-NDI complex, the elimination of H2O, CO2, NO2, and coordinated solvent
caused a weight loss of around 40% from ambient temperature to 400 ◦C. The decrease of
weight at 530 ◦C was due to the loss of organic linkers and weakening of the framework,
while the Skelton was fairly resilient between 400 and 530 ◦C. A stiff π-conjugated system
of NDI with a carboxylate group, bond energy, interpenetrated arrangement, or a strong
π-stacking network, could all contribute to thermal stability.

2.2. Hirschfield Surface Analysis

Hirschfield surface analysis was performed to study the weak interactions in the
complex, such as hydrogen bond, π-π interaction, molecular packing in crystal, and van
der Waals interactions. In this study, the donor/acceptor moieties are denoted by the blue
convex, and red concave regions, respectively, that are studied with shape index in Figure 3a.
The Hirschfield analysis stands out for having a new crystal-structure, which increases
the possibility of learning more about the crystal. Using HSs made it possible to evaluate
several crystal properties quantitatively, including area (SH), volume (VH), sphericity (Ω),
and globularity (G). The certainty of a uniform surface with form index values in 1.000
to 1.000 range is revealed by the value of curvedness, which ranges from 4.000 to 0.400.
This number shows a positive divergence from the standard mean position (Figure 3b).
The dnorm and cool contact detachment provide a comprehensive relationship between the
distances of any superficial point to the surrounding internal (di) and exterior (de) atoms
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along the van der Waals distance. The complex HSs are shown in Figure 3c,d along with
their dnorm, di, and de values. The dnorm map in Figure 3e is depicted with distinct hues
ranging from 2.489 (blue) to 0.804 (red). As seen by the red area in Figure 3d, the hydrogen
bonding between O-H is the most important interaction and is what causes the lower
values of di and de in comparison to the van der Waals radii. While the white area shows
an identical distance, the blue zone shows a higher distance than the van der Waals radii.
The computation of the high and low electron density zones was made possible through
map analysis. The colors blue and red represent the electrostatic potentials surrounding the
atoms, with blue denoting favorable potentials and red denoting unfavorable potentials.
The oxygen atom’s electronegative zone and the C-H bonds’ electropositive region were
both visible within the molecule.
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2.3. Optimized Geometries

Using CAM-B3LYP/LANL2DZ (Figure 4a) and B3LYP/LANL2MB (Figure 4b) basis
sets, Cd-NDI complex and NDI ligand (Figure 4c) geometries were optimized (Figure 4).
By acting as a bridge between NDI core, the carboxylate and hydroxyl group of H2-L-ala
NDI support the wings-like conformation of the complex in both optimized geometries
(Figure 4a,b). Six oxygen atoms from the carboxylate and hydroxyl groups of H2-L-ala NDI
are used to coordinate Cd2+ in this instance (two were eliminated for clarity during crystal
structure formation).

2.4. Photophysical Properties

Figure S4a illustrates the UV absorption spectra of Cd-NDI complex and H2-L-ala NDI
in DMF. In the case of the Cd-NDI complex, the intensity of the absorption peaks with
maxima at 325 (minor peak was seen), 330, 355, and 375 nm was observed (Figure S4a). In
the case of H2-L-ala NDI, three peaks with small intensities were identified (with only one
peak showing a slight change, Figure S4a). In any case, Cd-NDI complex shows two distinct
absorption bands: the first, at 300–350 nm, is a high-energy band that is exempted owing
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to the π−π* transition; the second, about 300–400 nm, is a low-energy band associated to
intramolecular charge transfer (ICT).
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When studying electronic excitations and charge transfer, itis vital to look at UV-visible
spectra. In the pure phase, the absorption spectra of Cd-NDI complex and H2-L-ala NDI
is also estimated using the CAM-B3LYP/LANL2DZ and B3LYP/LANL2MB basis sets.
As shown in Figure S4b–d, the absorption spectra of Cd-NDI complex and H2-L-ala NDI
show that in the pure phase, Cd-NDI complex has a higher wavelength than H2-L-ala
NDI (d). Using CAM-B3LYP/LANL2DZ basis set, λmax of the complex is lower than
using B3LYP/LANL2MB set. Regardless, the use of pure phase shifting toward higher
wavelengths was discovered to be attributable to the stabilisation of π-electrons [28]. In
any case, the shift in peak position (from experimental to computational) could be related
to the transition from the liquid to the pure phase of the medium.

As we know there is a strong relationship between λmax and band gap (Eg), electronic
excitation is possible with a lower Eg; since it is energetically advantageous to remove
electrons from low-energy HOMO, or add electrons to high-energy LUMO, resulting in
the production of activated complexes (as narrow Eg is frequently connected to low kinetic
stability). These coordinated complexes can be classified as n-type semiconductors due
to their lower Eg and have been termed “new members of the NLO family” [29]. In both
experimental and pure phase studies, the λmax value of the Cd-NDI complex is 375 and
475, respectively (Figure S4). However, the use of pure phase redshifted the λmax of the
Cd-NDI complex. Due to the stabilisation of delocalized π-electrons, the λmax of Cd-NDI
complex and H2-L-ala NDI (experimentally) is 375 and 374 nm, respectively. Regardless,
the photophysical features exhibited by the Cd-NDI complex have been linked to a λmax
due to the complex’s extended conjugation.

2.5. Frontier Molecular Orbitals (FMOs)

The analysis of molecule FMOs is a crucial step in determining charge mobility [30]. Itis
also useful for explaining charge transfer and distribution patterns in coordination systems.
The absorption features and electronic characteristics of molecular systems significantly
depend on the lowest unoccupied (LUMO) and highest occupied (HOMO) energies [31].
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LUMO only has high energy charges, whereas HOMO has a condensed population elec-
tronic charge, analogous to the conduction and valence bands in band theory [32]. For both
the Cd-NDI complex and the H2-L-ala NDI, the HOMO and LUMO energies, as well as their
Eg, are studied, and their values are illustrated in Figure 6. Using CAM-B3LYP/LANL2DZ
and B3LYP/LANL2MB, the HOMO of the Cd-NDI complex is −9.11 and −8.78 eV and
the LUMO is −6.5 eV, −6.36 eV, respectively. While the HOMO of the H2-L-ala NDI is
−15.178 and the LUMO is −11.791 eV, respectively. The Eg governs charge mobility in
practice. Lower Eg permits the charge to be excited and transmitted across the π-conjugated
system more efficiently. Electrical conductivity and Eg are inextricably related. When
compared to H2-L-ala NDI (3.387), Eg of Cd-NDI complex systems is narrow and lies at
2.62 eV (CAM-B3LYP/LANL2DZ) and 2.42 eV (B3LYP/LANL2MB). Increased conduction
capability is confirmed by a narrow Eg in the Cd-NDI complex. Cd-NDI complex is consid-
ered polarizable and efficient charge transfer complex is due to its low Eg value. Figures 5
and 6 depict the values of HOMOs, LUMOs, and Eg values.
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B3LYP/LANL2DZ and (c) H2-L-ala NDI through CAM-B3LYP/LANL2DZ, respectively.  

Figure 5. Eg, IP, EA, hardness (η), electronegativity (X), chemical potential (µ), global softness
(σ), and electrophilicity (ω) of Cd-NDI complex (a) through B3LYP/LANL2MB, (b) through CAM-
B3LYP/LANL2DZ and (c) H2-L-ala NDI through CAM-B3LYP/LANL2DZ, respectively.

Stability is an important aspect in any complex, along with electrical conduction.
As a result, the stability of the Cd-NDI complex was calculated. Chemical potential (µ)
amplitudes, which have been computed, are frequently used to explain complex stability.
As we all know, the moiety with the highest chemical potential (µ) is more stable than the
moiety with the lowest chemical potential. The chemical potential (µ) values of the Cd-NDI
complex are −7.57 µ (CAM-B3LYP/LANL2DZ) and −7.80 µ (B3LYP/LANL2MB). While
ligands have −13.4849 µ, respectively, that concluded complex is more stable than ligand
(Figure 5).

2.6. Density of States (DOS)

DOS is a method to analyze charge transport occupancy of states using an analytical
technique. Additionally, the Mulliken charge distribution has backed up the FMO findings
and how the fragmentation of molecules enhances the HOMO and LUMO molecular
orbitals, according to DOS study [33]. DOS approximations can also be used to calculate
HOMO and LUMO energies. DOS plots have been shown to help comprehend the role of
complexes and their fragments in chemical band gap research. Figure 7a,c depicts the DOS
graphs of both complex and ligand that were obtained using CAM-B3LYP/LANL2DZ and
B3LYP/LANL2MB basis sets. Moreover, the total contributions of donors and acceptors
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are given in Table S10. Using CAM-B3LYP/LANL2DZ in the formation of LUMO in the
Cd-NDI complex (Figure 6a) and H2-L-ala NDI (Figure 6c), HOMO is acquired primarily
by the acceptor atoms and insignificantly by the donor atoms, whereas in the formation of
LUMO in the H2-L-ala NDI, donor plays a vital role, whereas acceptor plays a vital role in
the Cd-NDI complex. Additionally, the d orbital is the main contributor to the conduction
band in the range of 0.0 eV to 10.0 eV due to s, p, d, orbitals overlap of N, O, and Cd atoms.
Moreover, while using B3LYP/LANL2MB set, almost the same trend has been observed
(somewhere donor atoms take the charge). Acceptor is playing a vital role in the formation
of FMOs that lead to help in the electronic study (Figure 7b).
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2.7. Dipole Moment (µ)

In crystallinity and molecular packing, the dipole moment (µ) plays a vital role. Dipole
moment is calculated using the CAM-B3LYP/LANL2DZ and B3LYP/LANL2MB basis sets
for the Cd-NDI complex and the H2-L-ala NDI. The Cd-NDI complex acquired a higher
dipole moment (5.36 D (CAM-B3LYP/LANL2DZ) and 7.86 D (B3LYP/LANL2MB)) than
the H2-L-ala NDI (1.14 D), according to the findings. Due to the symmetry in its structure,
H2-L-ala NDI has a lower µ 1.14 D. The Cd-NDI complex, which combines a Cd atom with
two H2-L-ala NDI wings to promote self-assembly and multilayer manufacturing, had the
highest value of µ (5.36 D and 7.86 D). As a result, considerable NLO characteristics are
possible. Similarly, the large change in µ implies that complex has arranged itself to prevent
charge recombination.

2.8. Transition Density Matrix (TDM)

TDM is a matrix that stores information about quantum geometry and charge transi-
tion sites of the excited state of coordinated molecules [34,35]. In TDM plots, the number
of atoms is depicted on the x-axis and y-axis (left side) while the coefficient of transition
or electron density is displayed on the right side of the y-axis. TDM study of the Cd-NDI
complex and H2-L-ala NDI has been performed using the CAM-B3LYP/LANL2DZ and
B3LYP/LANL2MB functionals. Hydrogen atoms have been disregarded due to their minor
contributions to transitions. Figure 8 depicts TDM for both the Cd-NDI complex (a) and
the H2-L-ala NDI (b) using CAM-B3LYP/LANL2DZ set. While Figure 8b displays TDM
of Cd-NDI complex using B3LYP/LANL2MB functional. H2-L-ala NDI is made up of
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only one component, whereas the Cd-NDI complex is divided into two parts: surface
and coordination.
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Charge coherency and distribution can be achieved in the Cd-NDI complex through
valuable off-diagonal and diagonal charge transfer. Electronic distribution is concentrated
on coordinating sections of the Cd-NDI complex. In TDM, the bright areas indicate the
atom number where the transition population was found. Charge transfer improved
in the Cd-NDI complex in both cases (CAM-B3LYP/LANL2DZ and B3LYP/LANL2MB
functionals). As we can see, more bright areas and diagonal lines can be found in the case
of CAM-B3LYP/LANL2DZ set as compared to B3LYP/LANL2MB set. When compared to
H2-L-ala NDI, the Cd-NDI complex exhibits excellent charge separation capability, as TDM
in Figure 8c has no clear diagonal line and less bright areas, as a result, the complex can be
employed as unintentional candidates for future NLO materials with improved properties.

2.9. Molecular Electrostatic Potential Map (MEP) Analysis

Based on the distribution of the Milliken charge across the whole molecule, MEP analy-
sis captures information on atom reactivity and the presence of reactive sites for nucleophilic
and electrophilic interaction [17]. MEP is also important for anticipating the relationship
across molecular interaction, molecular structure, and molecule photophysical character-
istics (electronic transitions) [36]. MEP simulations at optimal CAM-B3LYP/LANL2DZ
(Figure 9a) and B3LYP/LANL2MB (Figure 9b) functional are used to determine the elec-
trophilic and nucleophilic areas of the Cd-NDI complex and H2-L-ala NDI (Figure 9c).
The nucleophilic, electron-rich, and negative MEP zone is shown in red in MEP diagrams.
On comparing the red color to the natural population, the green hue signifies the neutral
zone, and the blue hue suggests the electrophilic, electron-deficient, and positive MEP
zone [30]. The red color (negative potential) is concentrated on the C=O and O-H regions of
the Cd-NDI complex surface, making it more nucleophilic, as shown in the MEP diagram
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(Figure 9a,b). The imide moiety’s methyl groups (-CH3) and the hydrogen atoms in naph-
thalene exhibit a blue hue (positive potential) and act as an electrophile. From MEP we can
also discuss the natural population (especially for Cd-NDI complex). The upward atoms are
positively charged, while the downward mentioned are negatively charged (Figure 10a,b)
CAM-B3LYP/LANL2DZ and B3LYP/LANL2MB, respectively, for Cd-NDI complex and (c)
for H2-L-ala NDI. Moreover, MEP and natural population analysis are also helpful to study
the charge transfer properties. Figure 10 reveals that the upward peaks denote the positive
charged species while downward peaks indicate negative charged atoms that suggest the
electrophile and nucleophile in MEP diagram (Figure 9), respectively.
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2.10. Electron Density Distribution Matrix (EDDM)

To better understand the charge transfer capacity, EDDM evaluations were carried
out, in which the excited state’s molecular orbitals were subtracted from the ground state.
At the CAM-B3LYP/LANL2DZ and B3LYP/LANL2MB functional basis sets [37], EDDM
of Cd-NDI complex and H2-L-ala NDI are computed. The rearrangement of electrons
in the Cd-NDI complex and H2-L-ala NDI is depicted in EDDM plots. The net charge
density of the Cd-NDI complex and H2-L-ala NDI is shown in Figure 11a–c. In EDDM
diagrams, the sea-green hue represents a positive charge density value (also represented
as upper peaks in Figure 10 in natural population analysis and blue color in Figure 9 in
MEP analysis), whereas the purple color represents a negative charge density value and
lower electron density following excitation (also signified as downward peaks in Figure 10
in natural population analysis and red color in Figure 9 in MEP analysis). The charge
distribution pattern in the Cd-NDI complex is analogous through H2-L-ala NDI (since
charge distribution is predominantly focused here), in that charge density is distributed
uniformly across the system. If we compare EDDM study through CAM-B3LYP/LANL2DZ
and B3LYP/LANL2MB, it can be seen that the charge is distributed over NDI core in the
case of CAM-B3LYP/LANL2DZ (Figure 11c) while the charge is distributed almost over
the whole monomer in the case of B3LYP/LANL2MB (Figure 11b).
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2.11. Non-Covalent Interaction (NCI) Analysis

The non-covalent interactions of a molecule can be determined using the NCI eval-
uation. The molecular areas with weak interactions and those with strong directional
attractions associated with localised atom–atom links can be distinguished using the NCI
plot [38]. The scatter graphs between the reduced electron density (r), density gradient,
orientated by the sign of λ2, are shown in Figure 12a–c [39]. This NCI study was performed
using CAM-B3LYP/LANL2DZ and B3LYP/LANL2MB basis set for Cd-NDI complex and
ligand. NCI analysis appears to be a better option for improving the information on
molecular stability in small or large molecules by combining data on van der Waals forces,
hydrogen bonding, and steric hindrance inside a system [39]. Multiwfn software was used
to create the scatter graphs.

The (λ2) values can be utilised to determine the nature of an interaction: if (λ2) ρ > 0, the
interaction is repulsive; if (λ2) ρ < 0, the interaction is attractive, as shown by the color-filled
3D iso-surface of the Cd-NDI complex (Figure 13a and H2-L-ala NDI Figure 13c). The NCI
graphs of the Cd-NDI complex (Figure 12a) and H2-L-ala NDI (Figure 12b) demonstrate that
there are significant attractive forces between the complex molecules, which is beneficial
for forming favorable NLO materials. The H-bond (attractive) is shown by the blue tone
(H2O forms a hydrogen bond with Cd metal, leading to chirality; see crystallography
section), the van der Waals interactions are represented by the green hue, and the steric
effect (due to H2-L-ala NDI CH3) is represented by the red region (repulsive). If we compare
CAM-B3LYP/LANL2DZ and B3LYP/LANL2MB sets, we can conclude that more blue tone
is NCI graph in Figure 12b as compared to Figure 12a. Hence, more blue patches can be
seen between Cd and NDI moiety (Figure 13b as compared to Figure 13a).

2.12. Infrared (IR) Analysis

The features of the infrared (IR) spectra of the Cd-NDI complex and H2-L-ala NDI
(Figure S5a experimental) are investigated computationally (Figure S5b–d) to examine how
they vary in coordination. Since the peak of about 3300 cm−1 has vanished in the Cd-NDI
complex spectrum, it is responsible for Cd coordination with H2-L-ala NDI. Moreover, if
we compare CAM-B3LYP/LANL2DZ and B3LYP/LANL2MB sets, we can see that peaks
are shifted at higher frequency (cm−1) for B3LYP/LANL2MB in Figure S5b.
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2.13. Cyclic Voltammetry (CV)

To prepare the working electrode, a mixture was created by combining 80 wt% active
material, which consisted of Cd-NDI complex, with 10 wt% conductivity agent (acetylene
black, Super P), and 10 wt% polyvinylidene difluoride (PVDF) as a binder, using a mortar
and pestle. A small amount of ethanol was then added to the mixture to create a slurry,
which was pasted onto a nickel foam (1 cm × 1 cm). The electrodes were then dried at
80 ◦C for 12 h and pressed at 15 MPa before being created. A three-electrode cell was
used to analyze the electrochemical behavior of the working electrodes, with Ag/AgCl
(EAg/AgCl = 0.222–0.059 log AgCl) and platinum wires being used as reference and counter
electrodes. The electrodes were subjected to perform CV in 0.5 M DMF 0.38 g TBAPF6
electrolytes. Figure 14 shows the CV curves of Cd-NDI complex at 5–15 mVs−1 (redox
peaks are visible at 5 mVs−1). Noticeable peaks ranging from−2.5–1.0 V (vs Ag/AgCl) [40]
were observed in the electrochemical performance of the electrode, indicating Faradic
redox reactions. The integral area of the redox peak was significantly greater than the
rectangular portion of the curve, suggesting that the Faradaic pseudocapacitance primarily
contributes to the capacitive property of electrode material. Moreover, Cd-NDI complex
revealed clear oxidation peaks at 0.24 V, 0.3 V and 0.48 V for 5 mVs−1, 10 mVs−1 and
15 mVs−1

, respectively. While the reduction peaks appeared at −1.5 V, −1.8 V and −2.2 V
for 5 mVs−1, 10 mVs−1 and 15 mVs−1

, respectively. Hence, the CV peaks of the Cd-NDI
complex exhibited remarkable electrochemical reversibility that is in good agreement for
electronic properties.
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2.13.1. Electrical Conductivity (σ)

Eg beside CV is the most essential aspect to consider when determining the electrical
conductivity (σ) of coordinated complexes for NLO properties. Due to their narrow Eg,
Cd-NDI complex becomes more conductor- or semiconductor-like after complex formation.
As a result, it is expected that the σ is greater than the ligand and can be calculated using
Equation (1) [41].

σ α exp(−Eg/2kT) (1)

Here, Eg signifies the band gap, k represents the Boltzmann constant, and T signifies
the temperature in kelvin. Since the equation is exponentially connected to Eg, it is predicted
that the complex with lower Eg will have a higher value [42]. In comparison to H2-L-ala
NDI 3.387 eV, the Cd-NDI complex has a lower value (2.62 eV and 2.42 eV for CAM-
B3LYP/LANL2DZ and B3LYP/LANL2MB sets, respectively), resulting in a considerable
increase in electrical conductivities of Cd-NDI complex. Strong coordination interaction
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and efficient charge transfer have increased σ. As a result, our produced Cd-NDI complex
could act as a charge transfer material.

2.13.2. Electronic Transition of NDI and PDI Ligands

Approximately all computed electronic transitions are from σ to σ* but some are from
lone pair to lone pair*. These transitions are also calculated using CAM-B3LYP/LANL2DZ
and B3LYP/LANL2MB sets. Cd-NDI complex has 376 nm (390 λmax, CAM-B3LYP/LANL2DZ
and 820 λmax, B3LYP/LANL2MB) H2-L-ala NDI have 375 nm (330 CAM-B3LYP/LANL2DZ)
λmax (Figure S4). All the transition data are given in supporting Tables S11 and S12. It is
also stated that the peaks (region) between 560–540 nm show both intramolecular charge
transfer (ICT) and local excited PDI (LE) characteristics [43,44]. Another finding is the ICT
from HOMO to LUMO with the π-π* character for transitions between 445 and 382 nm
directed from the donor O and N to the perylene core. While the LE to MLCT charge transfer
belongs to 480–485 λmax. The λmax below 480 nm belongs to MLCT to ICT. Therefore, it
can be seen that Cd-NDI complex has more transitions with less energy as compared to
NDI ligand.

By assessing the electrical excitation of a Cd-NDI complex, one can determine its tran-
sition properties. The electron-hole hypothesis is based on the molecular-orbital theory. The
contributions of the hole and electron orbitals in the singlet-excited state can be determined
using this electron-hole theory, as well as the electron transfer process. According to the
information in Tables 3 and 4, Figures 15 and 16 depict the electron and hole orbitals of the
Cd-NDI complex for the first five excited states using two different basis set. The findings
show that HOMO is present in amino acid (in both sets) and that LUMO is still present
in perylene moiety (also in both sets). The λmax of the Cd-NDI complex is 322.9 nm and
1036.6 nm.

Table 3. Electron-hole analysis of Cd-NDI complex (1–5 excited states) through CAM-B3LYP/LANL2DZ.

Excited State 1 2 3 4 5

E(eV) 1.196 eV 1.340 eV 1.386 eV 1.428 eV 1.526 eV
λmax (nm) 322 319 317 315 305

D(Å) 12.651 7.416 5.090 20.768 10.744
F 0.0394 0.5093 0.4130 0.0075 0.0006
S 0.17161 0.39821 0.41036 0.01619 0.31276

Transition mode CT CT CT CT CT

Table 4. Electron-hole analysis of Cd-NDI complex (1–5 excited states) through B3LYP/LANL2MB.

Excited State 1 2 3 4 5

E(eV) 3.84 3.882 eV 3.906 eV 3.934 eV 3.946 eV
λmax (nm) 1036.6 925.2 894.3 868.2 853.8

D(Å) 4.251 1.111 1.119 6.158 1.686
F 0.0004 0.0007 0.0015 0.0045 0.0001
S 0.19131 0.53443 0.53190 0.25832 0.39650

Transition mode CT CT CT CT CT

Greater overlap integral (S) values between electron-hole orbitals produce faster
charge transfer durations than greater overlap distances (D) between electron-hole orbitals
do. According to the electron-hole orbital distance, D is greater for the first five excited
states 12.651 Å, 7.416 Å, 5.090 Å, 20.768 Å, and 10.744 Å, respectively, which denotes
a lengthy charge transfer length (B3LYP/LANL2MB). However, D is 4.251, 1.111, 1.119,
6.158, and 1.686 by using CAM-B3LYP/LANL2DZ set. It can be seen while using CAM-
B3LYP/LANL2DZ set D values are lower than B3LYP/LANL2MB set.
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For the first five excited states, the orbitals overlap integral (S) is lower (0.17161,
0.39821, 0.41036, 0.01619, and 0.31276; and 0.19131, 0.53443, 0.53190, 0.25832, and 0.39650),
indicating a quick charge transfer rate in both sets because the hole and the electron
orbitals are distinct. Moreover, several excited states are given in Figures 15 and 16 (for
B3LYP/LANL2MB and B3LYP/LANL2DZ basis set, respectively) that illustrate that at
λmax 1036 (1st state) two transitions occurred, one from ground state HOMO-0 to LUMO+0
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and 2nd from HOMO-1 to LUMO+0. While on λmax 853 (5th state), two transitions also
occurred, HOMO-3 to LUMO+1 and HOMO-4 to LUMO+1. While for the 2nd state at
λmax 925 HOMO-0 to LUMO+1 and HOMO-1 to LUMO+1 transitions occurred. For 3rd
state at λmax 894 HOMO-1 to LUMO+0 HOMO-0 to LUMO+0 transitions occurred. For
4th state, at 868 λmax HOMO-2 to LUMO+0 transition was taking place. Moreover, at λmax
322 (1st state) one transition occurred from HOMO-0 to LUMO+1, while on λmax 305 (5th
state) one transition also occurred HOMO-15 to LUMO+0, while for 2nd state at λmax 319
HOMO-4 to LUMO+1 and HOMO-2 to LUMO+1 transitions occurred. For 3rd state at λmax
317 HOMO-2 to LUMO+1 and HOMO-4 to LUMO+0 transitions occurred. For 4th state, at
315 λmax HOMO-13 to LUMO+0 transition was taking place.

2.14. NLO Properties
2.14.1. Linear Isotropic and Anisotropic Polarizabilities

As photons travel significantly faster than electrons, optical computers might process
data at speeds that are orders of magnitude greater than those of current electronic-based
computers if electronic devices were replaced with photonic devices in integrated optics.
The above statement triggers us to compute NLO properties for Cd-NDI complex and
H2-L-ala NDI.

Table S10 shows the computed NLO-parameters for the Cd-NDI complex and H2-L-ala
NDI. The information was gathered using computational sets CAM-B3LYP/LANL2DZ
and B3LYP/LANL2MB sets. The Cd-NDI complex and H2-L-ala NDI have frequency-
independent linear isotropic polarizability (αiso) values 573.870 (a.u.) against CAM-
B3LYP/LANL2DZ set, 620.175 (a.u.) against B3LYP/LANL2MB set, and 438 (a.u.) against
CAM-B3LYP/LANL2DZ, respectively. While the Cd-NDI complex and H2-L-ala NDI have
frequency-independent linear anisotropic polarizability (αaniso) values 404 (a.u.) against
CAM-B3LYP/LANL2DZ set, 1190 (a.u.) against B3LYP/LANL2MB set, and 358 (a.u.)
against CAM-B3LYP/LANL2DZ, respectively (Figure 17a). The Cd-NDI complex and
H2-L-ala NDI (Figure 17b) have frequency-dependent linear isotropic polarizability (αiso)
values 705 (a.u.) against CAM-B3LYP/LANL2DZ set, 464 (a.u.) against B3LYP/LANL2MB
set, and 504 (a.u.) against CAM-B3LYP/LANL2DZ, respectively. While the Cd-NDI
complex and H2-L-ala NDI (Figure 17b) have frequency-dependent linear anisotropic po-
larizability (αaniso) values 686 (a.u.) against CAM-B3LYP/LANL2DZ set, 760 (a.u.) against
B3LYP/LANL2MB set, and 486 (a.u.) against CAM-B3LYP/LANL2DZ, respectively.

2.14.2. The First Hyperpolarizability

At a frequencyω = 500.1 nm and frequency independent, the CAM-B3LYP/LANL2DZ
and B3LYP/LANL2DMB sets are used to investigate the reliability of the Cd-NDI complex
and H2-ES-ala NDI (shown in Figure 17c). First hyperpolarizability βo, electro-optical Pockels
(β (− ω; ω; 0)an, averages second harmonic generation (β (−2ω, − ω, −ω)an were also
calculated using both sets. The static first hyperpolarizability βo values of Cd-NDI complex
and H2-L-ala NDI were found to be 74.5238 and 233,172.0 a.u., respectively. The βo value of the
complex was found to be significantly higher than that of its ligand were 745,23 (a.u.), 233,172
(a.u.), and 158,19 (a.u.) using CAM-B3LYP/LANL2DZ and B3LYP/LANL2DMB, respectively.
Cd-NDI complex and H2-L-ala NDI have electro-optical Pockels (β (−ω; ω; 0)) values of
60,220.4 (using CAM-B3LYP/LANL2DZ set), 511,562.00 (a.u.) using B3LYP/LANL2MB set,
91,556 (a.u.) using CAM-B3LYP/LANL2DZ set, respectively. Cd-NDI complex has average
second harmonic generation (β (−2ω: −ω, −ω) of 7966.94, 78,963.80 (a.u.), for both sets,
respectively, and H2-L-ala NDI have 20,000 (a.u.) [45].
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Figure 17. (a) Comparisons of linear isotropic (αiso) and anisotropic (αaniso) of frequency independent;
(b) frequency dependent (frequency 500.1 nm) (αiso) and anisotropic (αaniso); (c) static first hyperpo-
larizability βo, electro-optical Pockels (β (−ω;ω; 0)an, averages second harmonic generation (β (−2ω,
−ω, −ω)an; (d) static second hyperpolarizability γo, Kerr effect γ (−ω;ω,0, 0)an, second average hy-
perpolarizability γ (−2ω;ω,ω, 0)an of Cd-NDI complex calculated through CAM-B3LYP/LANL2DZ
(b) through B3LYP/LANL2MB, and (c) H2-L-ala NDI through CAM-B3LYP/LANL2DZ, respectively.
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2.14.3. The Second Hyperpolarizability

Computational sets such as CAM-B3LYP/LanL2DZ and B3LYP/LANL2DMB were
utilised to explore the second hyperpolarizability of Cd-NDI complex and H2-L-ala NDI.
The static second hyperpolarizability values for Cd-NDI complex are 252,195,00 and
167,823,000 (a.u.) using CAM-B3LYP/LanL2DZ and B3LYP/LANL2DMB, respectively.
Whereas the values for H2-L-ala NDI are 1240760 (a.u.) using CAM-B3LYP/LanL2DZ. For
Cd-NDI complex and H2-L-ala NDI, the γ (−ω;ω, 0, 0) value corresponds to the Kerr ef-
fect, which was achieved at 489,038,000,000 (CAM-B3LYP/LanL2DZ) and 565,516,000 (a.u.)
(B3LYP/LANL2DMB), 549,295,00 (a.u.) (CAM-B3LYP/LanL2DZ), respectively. The second
average hyperpolarizability γ(−2ω; ω, ω, 0) for the Cd-NDI complex is 127,2450,000,
and 363,564,000 (a.u.) against CAM-B3LYP/LanL2DZ and B3LYP/LANL2DMB, respec-
tively. While H2-L-ala NDI has 169,930,00 using CAM-B3LYP/LanL2DZ set (shown in
Figure 17d) [46–51].

The present work is also compared with already reported work (see Supplemen-
tary Materials Table S13). From the above table, it can be seen that averages second
harmonic generation or β(−2ω; ω, ω)a values of Cd-NDI complex are 68 esu by using
CAM-B3LYP/LANL2DZ set that is much higher than Os complex (43 esu that is experimen-
tally calculated). However, the averages second harmonic generation or β(−2ω; ω, ω)a
values of Cd-NDI complex are 682 esu by using B3LYP/LANL2MB set that is much higher
than Ni and Cu Schiff bases (235 and 237 esu, experimentally calculated). Furthermore,
Cd-NDI complex represents much higher NLO properties than computed properties of
not the same, but some similar, complexes (Table S13). Cd-NDI complex is also compared
with NDI ligand along with urea (Figure 18) and potassium dihydrogen phosphate (KDP,
(Figure 19)) [52]. The results indicate that Cd-NDI complex has much higher NLO proper-
ties than urea and KDP. Many researchers have already calculated urea and KDP NLO but
we also calculated using CAM-B3LYP/LANL2DZ set to avoid any confusion.
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Figure 18. Linear isotropic (αiso) and anisotropic (αaniso) of frequency independent; frequency
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electro-optical Pockels (β (−ω;ω; 0)an, averages second harmonic generation (β (−2ω, − ω, −ω)an;
static second hyperpolarizability γo, Kerr effect γ (−ω;ω, 0, 0)an, second average hyperpolarizability
γ (−2ω;ω,ω, 0)an of urea through CAM-B3LYP/LANL2DZ.
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Metal-ligand complex has the benefit over organic systems due to their increased flexi-
bility at the design state, as well as their strong reactions, short response times, integration
into composites, and ease of production. Metal-ligand or ligand-metal charge transfer
bands can be found in the UV-visible spectrum of the complex (Figure S4).

The inclusion of surplus electrons can significantly improve the NLO performance of
a coordinated complex, according to the literature. Surplus electrons occupy high-energy
HOMO levels, resulting in a decrease in Eg and an increase in βo. There is a significant
change in the βo of the Cd-NDI complex. Based on the analysis of NLO properties,
it is predicted that the Cd-NDI complex will have a spectacular NLO response. The
second hyperpolarizability is enhanced by several factors, including flexibility, a long
π-delocalization length in π-conjugated, donor and acceptor functional group presence,
chain orientation conformation, packing density, and dimensionality.

3. Experimental
3.1. Materials and Instrumentation

All chemicals that were used in experiments were from a commercial source and
were not treated in any way before being utilised. Moreover, Sigma-Aldrich provided
naphthalene-1,4,5,8-tetracarboxylic dianhydride (NTDA), L-alanine, Cd(NO2)3.4H2O, and
acetic acid. The characterisation of the synthesised material has been designated as an
attendant technique. On a Nicolet Nexus FT-IR spectrometer, FT-IR spectra were collected
in the 4000–400 cm−1 range using KBr pellets. The Persee TU-1950 spectrophotometer was
chosen to obtain the UV spectra. For differential scanning calorimetry (DSC) under nitrogen
gas at a heating rate of 20 ◦C/min, a Q100 TA DSC series thermal analyzer was approved.
Using a Japan Rigaku D/max γA X-ray diffractometer and graphite-monochromatized Mo
Kα radiation (λ = 0.71073Å), powder X-ray diffraction (PXRD) investigations of materials
were performed. Supporting information S1 includes a spectrum. All data on crystal
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structures were collected in the Australian Synchrotron on the MX1 or MX2 beamlines
while assassinating at 17.4 keV and using BluIce control software.

3.2. Single-Crystal Analysis
Crystal Structure Refinement Details of Cd-NDI Complex

At room temperature, hydrocarbon oil was employed to mount the crystal. Graphite
monochromator Mo Kα rays with wavelength λ = 0.71073 Å were used to obtain single
crystal data of the Cd-NDI complex. After collecting the data, the OLEX2 programme
was utilised to solve and refine the complicated structure using the absorption correc-
tion approach. The complex’s assembly was discovered utilising a direct method with
OLEX2 and enhanced using the SHELEX XL software. All atoms except hydrogen were
refined anisotropically and the hydrogen atoms were refined using OLEX2′s default pa-
rameters [53]. Tables S1–S9 show the bond angles, bond lengths, and hydrogen bonding, as
well as refinement parameters for a single crystal of the Cd-NDI complex.

3.3. Computational Details

Crystal explorer was used for investigating Hirsch field surface analysis. Moreover,
all computations for the Cd-NDI complex and H2-L-ala NDI were performed using the
Gaussian 09 simulation program [54]. The CAM-B3LYP/LANL2DZ and B3LYP/LANL2MB
basis sets were used to optimize the geometries of the Cd-NDI complex and H2-L-ala NDI.
Frequency estimations on the coordinates of optimized geometry were also performed to
validate the type of computed geometries. From optimized structures, frontier molecular
orbitals (FMOs), molecular geometry, and molecular electrostatic potential (MEP) were
derived. Time-dependent density functional theory (TD-DFT) and their respective basis
sets with CAM-B3LYP functional was used to perform UV-Vis spectral simulations of
the Cd-NDI complex and H2-L-ala NDI. To prove the thermodynamic stability of Cd-
NDI complex and H2-L-ala NDI surfaces, vertical energies (EVI) are approximated [55].
Multiwfn 3.7 tool [56] was used to measure electron densities, whereas PyMOlyze 1.1
program 32 was used to display DOS data. Electron density difference map (EDDM), dipole
moment (µ), and infrared (IR) analyses all employ the same functional. The most common
sign of a molecule’s NLO response is hyperpolarizabilities. The αiso and αaniso (linear
static polarizability), βtatic (first hyperpolarizability), and γo (2nd hyperpolarizability) are
computed using the CAM-B3LYP/LANL2DZ and B3LYP/LANL2MB basis sets.

3.4. Syntheses of Ligand

To the 80–100 mL Acetic acid, L-alanine (2.095 g, 23.5 mmol) and Naphthalene-1,4,5,8-
tetracarboxylic dianhydride (NTDA) (3 g, 11.2 mmol) were mixed and kept under reflux for
35 h. After chilling at room temperature, the resultant whitish-brown liquid was reduced
to 10–15 mL using the rotary evaporator. Excess deionized water was used to wash the
product until ordinary pH was attained, and the product was filtered and dried [35].

3.5. Complex Formation

Additionally, 12 mg, 0.05 mmol of H2-L-ala NDI were dissolved in water (5 mL);
similarly, 12 mg, 0.05 mmol of Cd (NO3)2.4H2O were dissolved in 5 mL of water. Next,
both solutions were mixed (by stirring for two hours) in a glass vial and pH was adjusted
at 6 by using HNO3 (1 M) to remove the precipitation (see synthetic Scheme 1 below). The
vial was kept for evaporation and needle-like yellowish-red color crystal (ESI Figure S1)
was obtained after several days. PXRD spectrum is given in ESI Figure S2. Yield 8.5 mg,
(25.5%). IR (Film): υ/cm−1 3450, 2950, 1550, 1460, 1351, 1261, 1085, 1045, 885, 833, 785,
750, 654. TGA: On-set, 25 ◦C, weight loss = 40% (calculated 40% for loss of H2O, CO2,
and NO2).
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4. Conclusions

The current research is based on a thorough synthesis and analysis of a novel Cd-NDI
complex. A simple evaporation process was used to synthesize the Cd-NDI complex. More
notably, this is the first time any NDI complex (monomer, crystal) has been produced using
water as the solvent. Furthermore, the complex is chiral. Additionally, we used the CAM-
B3LYP/LANL2DZ and B3LYP/LANL2MB functionals to investigate NLO characteristics.
This study concludes that NLO values are higher against CAM-B3LYP/LANL2DZ basis set.
FMOs, DOS, EDDM, TDM, and MEP analyses were used to investigate charge distribution.
The thermodynamic stability of complexes has been investigated using EVI. In comparison
to H2-L-ala NDI, the simulated results of the Cd-NDI complex are in the range of an
efficient NLO material. The newly synthesised Cd-NDI complex has a greater dipole
moment (5.36 and 7.86 D) than the H2-L-ala NDI (1.14 D). Similarly, the Eg of the Cd-NDI
complex is 2.62 and 2.42 eV, which is significantly narrower than the Eg of the H2-L-ala NDI
(3.387 eV). To investigate the sorts of vibrations involved, and the nature of the contact,
infrared (IR) and NCI analyses were used. Strong metal-ligand coordination and efficient
charge transfer resulted in higher electrical conductivities of the Cd-NDI complex. All the
computationally estimated parameters support the use of the Cd-NDI complex in integrated
NLO devices and point to new avenues for developing highly efficient NLO materials.
Furthermore, complications have indicated more virtuous and upstanding consequences.
To summarise, this current study provides new insight into the Cd-NDI complex’s tuneable
NLO properties. In addition, materials with NLO capabilities could be employed in optical
communication, optical computing, optical switching, optical communication, and optical
image processing in the future.



Molecules 2023, 28, 3709 23 of 26

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28093709/s1, Figure S1: Image of Cd-NDI complex
crystal.; Figure S2: PXRD of Cd-NDI complex crystal; Figure S3: TGA of Cd-NDI complex crystal;
Table S1: Fractional Atomic Coor-dinates (×104) and Equivalent Isotropic Displacement Parameters
(Å2×103) for Cd-NDI complex. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ
tensor.; Table S2: Anisotropic Displacement Parameters (Å2×103) for Cd-NDI complex; Table S3:
Bond Lengths for Cd-NDI complex; Table S4: Bond Angles for Cd-NDI complex; Table S5: Hydrogen
Bonds for Cd-NDI complex; Table S6: Torsion Angles for Cd-NDI complex; Table S7: Hydrogen
Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for Cd-NDI com-
plex; Table S8: Atomic Occupancy for Cd-NDI complex; Table S9: Solvent masks information for
Cd-NDI complex; Table S10: All DOS infor-mation; Table S11: Electronic transition of Cd-NDI com-
plex through CAM-CAM-B3LYP/LANL2DZ. Table S12: Electronic transition of Cd-NDI complex
through B3LYP/LANL2MB; Table S13: Comparison on NLO properties of present work with al-
ready reported work; Figure S4: UV-visible absorption graphs of (a) experi-mental Cd-NDI complex,
(b) computational of Cd-NDI complex through CAM-B3LYP/LANL2DZ (c) computational of Cd-
NDI complex through B3LYP/LANL2MB and (d) computational of H2-L-ala NDI through CAM-
CAM-B3LYP/LANL2DZ, respectively; Figure S5: IR spectra of (a) experimental Cd-NDI complex,
(b) computational of Cd-NDI complex through CAM-CAM-B3LYP/LANL2DZ (c)) computational of
Cd-NDI complex through B3LYP/LANL2MB and (d) computational of H2-L-ala NDI through CAM-
CAM-B3LYP/LANL2DZ, respectively; References [57–61] are cited in the Supplementary Materials.
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