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Abstract: Understanding the processes that occur during the redox transformations of complexes
coordinated by redox-active apical ligands is important for the design of electrochemically active
compounds with functional properties. In this work, a detailed analysis of the interaction energy
and electronic structure was performed for cluster complexes trans-[Re6S8bipy4Cl2]n (n = 2–, 4–,
6–, 8–), which can be obtained by stepwise electrochemical reduction of a neutral cluster trans-
[Re6S8bipy4Cl2] in DMSO solution. It was shown that the formation of open-shell paramagnetic ions
with S = 1, 2 and 1 is the most energetically favorable for n = 2–, 4– and 6–, respectively.
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1. Introduction

The design of electrochemically active complexes of transition metals has been a
frontier area of inorganic chemistry in recent decades. Interest in the preparation of
such complexes is caused by their potential for use as materials for electrocatalysis and
photocatalysis, optical applications, and the preparation of redox-active coordination
polymers and compounds with cooperative magnetic effects [1–4]. The study of soluble
molecular redox-active compounds as electronic reservoirs and charge carriers in chemical
current sources has also become an important area of research [5]. Existing approaches to
the design of redox-active compounds in most cases include the preparation of mononuclear
or polynuclear transition metal complexes with redox-active (non-innocent) ligands [6–9].
This strategy makes it possible to obtain complexes capable of multi stage oxidation and
reduction in a wide range of applications. In these processes, many effects arise that are
interesting for research from a fundamental point of view. Such effects, in particular, are
the mutual influence of the metal cation and the ligand on the electronic structure and the
spectroscopic properties and stability of the oxidized and reduced forms of the complexes.

In the past few years, a great amount of attention has been attracted to redox-active
transition metal cluster compounds and, in particular, octahedral clusters of {M6Q8}
type [10–15]. These complexes are based on an octahedral core consisting of six metal
cations linked to each other by covalent bonds. The metal core is coordinated by a set of
eight “inner” ligands lying on the faces of the octahedron, and six apical ligands, one for
each metal atom. As a result, the general formula for these cluster complexes can be written
as [{M6Q8}L6]n, where Q and L denote inner and apical ligands, respectively. The presence
of covalent bonds in the cluster core leads to a unique electronic structure where the atomic
orbitals of the metal atoms and inner ligands overlap and form a set of frontier orbitals,
which are delocalized over all atoms of the cluster core [10]. Therefore, the cluster core can
be considered a single metal ion coordinated by a set of apical ligands.

Cluster cores {M6Q8} are capable of oxidation, which is associated with a decrease in the
number of electrons localized in bonding metal-centered molecular orbitals (cluster skeletal
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electrons, CSE). The effects of coordination of various N-donor [16–19], P-donor [20–22], and
O-donor [23–26] apical ligands on the potentials of these oxidative transitions have been
studied in detail. On the other hand, attempts to reduce the {M6Q8} cluster cores to 25 CSE led
to irreversible processes associated with the destruction of the cluster core due to the strongly
antibonding character of the lowest metal-centered unoccupied orbitals. However, as in the
case of single metal ions, the coordination of redox-active (non-innocent) apical ligands to
the cluster cores often makes it possible to obtain compounds capable of reversible reduction
due to the presence of low-lying ligand-centered π* molecular orbitals. For example, {Mo3S4}
clusters decorated with redox active diimine ligands demonstrate multistage reduction pro-
cesses [27–29]. It was also shown that the coordination of pyridine derivatives to {Re6Q8}
cluster cores often led to the obtaining of compounds exhibiting multielectron reduction pro-
cesses in cyclic voltammograms [16,19]. All these clusters can act as multi electron reservoirs,
which may allow them to be used in catalytic and magnetochemical applications.

In recent years, we have synthesized and investigated a series of new redox-active
octahedral rhenium cluster complexes coordinated by redox-active N-donor ligands. Par-
ticularly, molecular clusters with the general formula trans-[Re6Q8L4X2] (Q = S or Se, X =
Cl−, Br− or CN−) were obtained for L = 4,4′-bipyridine, 4-phenylpyridine, trans-1,2-Bis(4-
pyridyl)ethylene, and 1,3-Bis(4-pyridyl)propane [30–33]. Electrochemical investigation of
the compounds trans-[Re6Q8bipy4X2] (Q = S or Se; X = Cl or Br; bipy = 4,4′-bipyridine)
(Figure 1) showed that the complexes are capable of accepting up to eight electrons per
ligand-centered molecular orbitals, each localized to two bipy molecules in the trans-
position [30]. In this case, the chemical preparation of the reduced forms was difficult
due to the low solubility of the compounds and the low potentials required. However,
since the reduction of free 4,4′-bipyridine leads to the production of radical anions, the
reduction of compounds trans-[Re6Q8bipy4X2] can potentially lead to the formation of
paramagnetic radical anions with up to four unpaired electrons. The possibility of obtaining
such polyradicals can stimulate further research in this area; therefore, the aim of this article
was to determine the preferable electron configuration of [Re6S8bipy4Cl2]n clusters, with
n = 0, 2–, 4–, 6–, 8–, by DFT calculations and to trace changes in the electronic structure
during reduction.
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Figure 1. The structure of the trans-[Re6S8bipy4Cl2] cluster. The hydrogen atoms of bipyridine
ligands are removed for clarity.

2. Computational Details

The geometry optimization and frequency calculations of the [Re6S8bipy4Cl2]n clusters
in n = 0, 2–, 4–, 6–, 8– oxidation states were performed in the ADF2017 [34,35] program
suite with generalized gradient approximation (GGA) dispersion corrected S12g [36] den-
sity functional, all-electron STO’s TZP [37] basis set, and zero-order regular approxima-
tion (ZORA) [38] to take into account scalar relativistic effects. Since dimethyl sulfoxide
(DMSO) was previously used for electrochemical investigations of the [Re6S8bipy4Cl2]0

cluster [30], it was used as the solvent for calculations. The conductor-like screening model
(COSMO) [39] was used to take into account the DMSO environment. The spin-restricted
(S = 0) approximation was used for the cluster in all oxidation states. The spin-unrestricted
approximation was additionally used for 2– (S = 1), 4– (S = 1 and S = 2), and 6– (S = 1)
oxidation states. Since the [Re6S8bipy4Cl2]n clusters are characterized by eight pyridine
heterocycles that could be difficult to optimize in internal coordinates, the Cartesian coordi-
nate space was used for geometry optimization. The optimization process started with the
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Ci symmetry as it was found in the crystal structure of the neutral [Re6S8bipy4Cl2]0 cluster.
However, some of the structures optimized at Ci symmetry have imaginary frequencies
(typically with S = 0 spin state). In such a case, the symmetry was lowered to C1. Thus, it
was possible to achieve structures without imaginary frequencies. Note that most of the
structures optimized at C1 symmetry (n = 2–, S = 0; n = 6–, S = 0; n = 6–, S = 1 and n = 8–,
S = 0) are still close to the Ci symmetry, with the root mean square (RMS) deviation from
Ci not exceeding 0.04 Å. The only exception is the [Re6S8bipy4Cl2]4– S = 0 cluster with a
structure closer to C2 (still quite far RMS 0.07 Å). The geometry optimization calculations
performed at the S12g/TZP level of theory typically gives good structural parameters
for transition metal compounds in a reasonable amount of time [40–43]. The optimized
coordinates of the [Re6S8Cl2bipy4]n cluster in all oxidation and spin states are summarized
in Tables S1–S9.

Since GGA functionals typically underestimate the gap between occupied and unoccu-
pied levels, single-point calculations with the S12h [35] dispersion-corrected hybrid density
functional, all-electron TZ2P basis set, COSMO model for the DMSO environment, and
scalar relativistic ZORA were performed on optimized geometries. The calculation and
analysis of the electron localization function (ELF) [44,45] were performed in the dgrid-
4.6 [46] program with a 0.05 a.u. mesh step. The atomic charges were calculated by the
definition of the quantum theory of atoms in molecules (QTAIM) [47]. In the QTAIM, the
atomic basin is defined as all points of the space in which the gradient line finishes in
the atomic attractor (the local maximum of electron density located at the position of the
atom nucleus). To obtain the atomic charges within QTAIM, the electron density must be
integrated over the volume of the corresponding basin. The QTAIM charges were calcu-
lated with the built-in ADF tools with default settings. Since the integration is performed
numerically over real space, an error could arise for heavy atoms, which have a strong
nonlinearity of the electron density near the nucleus. The deviations of the total number of
electrons after integration from the necessary value do not exceed 0.0008 e, indicating good
integration grid accuracy.

The energy decomposition analysis (EDA) [48] calculations were performed in ADF2020 [49]
to analyze the interaction energy (Eint) between Re6S8Cl2 and [bipy4]n fragments at the same
theoretical level as single-point calculations. In all EDA calculations, the Re6S8Cl2 cluster
fragment was taken as neutral and spin-restricted, while the charge and the spin state of the
[bipy4]n fragment were taken in accordance with the respective properties of the whole cluster
[Re6S8Cl2bipy4]n.

3. Results and Discussion

It was shown that the reduction of the [Re6S8bipy4Cl2]n cluster occurs in four waves in
cyclic voltammetry (CV) experiments, and each wave corresponds to the transfer of approx-
imately two electrons [30]. Therefore, the cluster was calculated with n = 0, 2–, 4–, 6– and 8–.
The unoccupied frontier molecular orbitals (Figure 2) of the neutral [Re6S8bipy4Cl2]0 cluster
are almost degenerate (ELUMO+1 − LUMO = 0.021 eV and ELUMO+3 − LUMO+2 = 0.005 eV at
S12h/TZ2P//S12g/TZP level of theory). Thus, the reduced states may have an open-shell
electronic structure. The comparison of the relative energies (Table 1) shows that the most
stable spin states are 1, 2, and 1 for the cluster in 2–, 4–, and 6– oxidation states, respectively.
The cluster in (n = 0; S = 0), (n = 2–; S = 1), (n = 4–; S = 2), (n = 6–; S = 1), and (n = 8–; S = 0)
oxidation and spin states will be used for subsequent study.
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Figure 2. The diagram of the energy levels and isosurfaces of the MOs for the [Re6S8bipy4Cl2]0 cluster.

Table 1. Average interatomic distances (Å) and relative energies (eV) for [Re6S8bipy4Cl2]n clusters in
different oxidation (n) and spin (S) states.

n 0 2– 4– 6– 8–

S 0 0 1 0 1 2 0 1 0

<d(Re-Re)> 2.61 2.61 2.61 2.62 2.62 2.61 2.62 2.62 2.62

<d(Re-Cl)> 2.44 2.46 2.46 2.48 2.49 2.48 2.51 2.51 2.55

<d(Re-S)> 2.42 2.42 2.42 2.42 2.42 2.42 2.42 2.42 2.43

<d(Re-Nin)> 2.21 2.17 2.17 2.14 2.14 2.15 2.12 2.12 2.11

∆E(S12g/TZP) 0.00 −6.24 −6.32 −11.95 −12.07 −12.16 −16.93 −16.99 −21.22

∆E(S12h/TZ2P//S12g/TZP) 0.00 −5.25 −5.54 −10.45 −11.12 −11.76 −15.51 −15.87 −20.42

Four redox transitions in CV allow the comparison of the experimental half-wave
potential (E 1

2 ) values [30] with relative energies (∆E) of the cluster in different oxidation
states (Figure 3). The experimental and calculated points can be fitted by a straight line
with 0.993 and 0.995 R2 values for S12g/TZP and S12h/TZ2P//S12g/TZP levels of theory,
respectively. Such R2 values indicate that the electronic structure changes occurring in the



Molecules 2023, 28, 3658 5 of 11

cluster during electrochemical reduction can be reproduced with a good accuracy at both
theoretical levels.
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The formation of the four lowest unoccupied molecular orbitals of the neutral [Re6S8bipy4Cl2]0

cluster can be traced starting from the LUMO orbital of individual bipy ligands, through the model
fragment of four bipy ligands to the complete cluster (Figure 4). As can be seen, the LUMO of
the two bipy molecules in trans-positions solely forms the LUMO, LUMO + 1, LUMO + 2, and
LUMO + 3 of the bipy4 fragment. These MOs are composed of bipy’s LUMO with an almost
equal contribution, making them very close in energy (∆E = 0.01 eV). It is clear that the pairing
of bipy’s LUMO in trans-positions is explained by the number of possible combinations. Four
LUMOs of bipy in trans-positions can form the four MOs (two bonding and two antibonding)
(Figure 4), while four LUMOs of bipy in cis-positions can form eight MOs (four bonding and four
antibonding) (Figure S1), which did not correlate with the number of original states (four LUMO
of bipy). The addition of the Re6S8Cl2 cluster fragment to the bipy4 fragment slightly changes the
order of the four lowest unoccupied MOs. However, the four lowest unoccupied orbitals of the
[Re6S8bipy4Cl2]0 cluster are still composed mainly of the orbitals of the bipy4 fragment.
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Figure 4. Schematic representation of the four lowest unoccupied orbitals formation starting from the
LUMO of the bipy, through the LUMO, LUMO + 1, LUMO + 2, and LUMO + 3 orbitals of the bipy4

fragment, to the LUMO, LUMO + 1, LUMO + 2, and LUMO + 3 orbitals of the [Re6S8bipy4Cl2]0 cluster.

The interatomic distances in the cluster core (d(Re–Re) and d(Re–S)) of the [Re6S8bipy4Cl2]n

clusters are almost constant during the reduction process (Table 1). The distances between
rhenium atoms and the atoms of the terminal ligands are more sensitive to the reduction. The
unoccupied orbitals of the neutral [Re6S8bipy4Cl2]0 cluster, which is populated during reduction
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(LUMO, LUMO + 1, LUMO + 2 and LUMO + 3), are primary localized on the bipy ligands.
However, the Re–Cl distances become 0.9 Å longer for eight-electron reduction, indicating
significant bond weakening (Table 1). In contrast, the Re–Nin bonds display a large shortening
from 2.21 Å to 2.12 Å during reduction of the cluster, which correlates with the contribution of
the bonding Re–Nin interaction in the four lowest unoccupied MOs (Figure 4).

Based on the calculated energies (Table 1) and the molecular orbitals (Figure 5) of
the cluster with the different charges, the following process of reduction can be proposed.
The pair of molecular orbitals delocalized over bipy ligands in trans position are occupied
by a single electron each during the first two-electron reduction wave, and the resulting
[Re6S8bipy4Cl2]2− cluster has two unpaired electrons. The second two-electron reduction
wave leads to the occupation of the two additional MOs by a single electron each, with the
formation of the [Re6S8bipy4Cl2]4− cluster with four unpaired electrons. In this case, all
four of the bipy4-centered orbitals become populated by a single electron each. During
the consequent reduction wave, two orbitals already populated by the single electron are
occupied by two additional electrons, reducing the number of unpaired electrons to two in
the [Re6S8bipy4Cl2]6− cluster. The final wave causes all four orbitals to become populated
by two electrons each in the [Re6S8bipy4Cl2]8− cluster. Thus, the four bipy4-centered
orbital can roughly be considered as a separate electronic shell that populates according to
Hund’s rule. Finally, the eight-electron reduction by the four two-electron reduction waves
is shown in Scheme 1.
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Scheme 1. Changes in the charges and spin states during eight-electron reduction of the
[Re6S8bipy4Cl2]0 cluster.

Since the MOs in the [Re6S8bipy4Cl2]0 cluster are delocalized over a large number of
atoms, changes in bonding during the reductions are difficult to trace by the MO analysis.
ELF analysis was used to reveal changes in bonding, as it was shown to give good results for
other cluster compounds [50]. The ELF basin pattern in the {Re6} cluster core is quite stable
during the eight-electron reduction (Table 2). In all oxidation states, there are 12 disynaptic
V(Re,Re) basins with an average population of 0.53–0.54 e and eight trisynaptic V(Re3)
basins with an average population of 0.16 e. The V(Re,Re) and V(Re3) basins indicate the
two-center and three-center covalent interactions, respectively. At some oxidation states,
there are also polysynaptic V(Re6) and V(Re5) basins, but the populations of such basins
are negligible. The most pronounced changes are found for V(Re,Nin) basins (Figure S2),
in which populations grow from 2.59 e in the neutral cluster to 3.45 e in the octa-charged
anionic cluster. Note that the charges on the Nin and Re atoms did not change substantially
(Table S10). The population of V(Nin,C) basins decreases from 2.42 to 2.01 e during reduction
due to the antibonding nature of LUMO, LUMO+1, LUMO+2, and LUMO+3 relative to
the Nin–C interactions. Thus, four V(Re,Nin) basins in total took ~3.5 additional electrons
due to the redistribution of electron density from V(Nin,C) basins, during eight-electron
reduction. As was previously shown [51], the population of the basins could reflect the
strength of interactions between fragments. Thus, the interaction energy between the
Re6S8Cl2 cluster fragment and the [bipy4]n ligand fragment in different oxidation states (n
= 0, 2–, 4–, 6– and 8–) was calculated and compared with the population of the V(Re,Nin)
basins. The linear dependency between the interaction energy (Eint) of the fragments and
the V(Re,Nin) basin population was obtained (Figure 6) with good accuracy (R2 = 0.98). The
fitting line crosses the x axis at a non-zero value, indicating that a population of ~1.0 e must
be present on the V(Re,Nin) basins to compensate the repulsion between the fragments. A
similar result was previously obtained for a heterometallic cubane-type cluster [51].

Table 2. The average populations of the selected ELF basins for [Re6S8bipy4Cl2]n clusters in different
oxidation states (n) and spin states (S).

n = 0
S = 0

n = 2–
S = 1

n = 4–
S = 2

n = 6–
S = 1

n = 8–
S = 0

V(Re,Re) 0.54 0.53 0.54 0.53 0.54

V(Re3) 0.16 0.16 0.16 0.16 0.16

V(Re6) 0.01 0.03 - - -

V(Re5) - - 0.01 0.01 -

V(Re,Nin) 2.59 2.80 3.05 3.21 3.45

V(Nout) 2.76 2.85 2.99 3.12 3.32

V(Nin,C) 2.42 2.31 2.18 2.11 2.01

V(Re,Cl) 1.11 1.14 1.14 1.16 1.15
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between Re6S8Cl2 and [bipy4]n fragments in the [Re6S8Cl2bipy4]n (n = 0, 2–, 4–, 6– and 8–) clusters.

4. Conclusions

Octahedral cluster complexes of rhenium with electrochemically inactive ligands are
incapable of reversible reduction due to the instability of the cluster core when filling metal-
centered antibonding unoccupied orbitals. The ability to reversible reduction associated
with the filling of π* orbitals of coordinated 4,4′-bipyridine molecules is the key feature of
the trans-[{Re6S8}bipy4Cl2] cluster complex. The aim of this study was to determine which
charge states of the reduced trans-[{Re6S8}bipy4Cl2]n– are energetically most preferable
and how the electronic structure of the cluster changes during reduction. Analysis of the
formation energies has shown that the intermediate oxidation states (n = 2–, 4–, 6–) of the
cluster are more stable in the open-shell configuration, indicating the paramagnetic nature
of the reduced species. Such behavior can be explained by the nature of the four lowest
unoccupied orbitals of the neutral cluster. Since the four lowest orbitals are delocalized
mainly on bipy ligands in trans-positions, their energies are very close to each other; thus,
the orbitals are almost degenerate and filled according to Hund’s rule. A notable decrease
in the Re–N distances upon reduction indicates the enhancement of the bonding between
the cluster core and bipy ligands upon reduction, which was confirmed by EDA. The
opposite effect was found for Re–Cl bonds. The reduction of these clusters has practically
no effect on the bond lengths inside the {Re6S8} cluster core, which indicates the absence
of its destabilization when electrons are localized on apical redox-active ligands. It was
also shown that the interaction energy between the cluster core and bipy ligands correlates
linearly with the population of the V(Re, Nin) ELF basin. The behavior, when the basin
population correlates with some bond related properties, is intuitive but does not have
much confirmation in the literature [51–53]. Finally, since other members of the [Re6Q8L4X2]
(Q=S or Se; X=Cl or Br; L = 4,4′-bipyridine, 4-phenylpyridine) cluster family have a similar
electronic structure to [Re6S8bipy4Cl2], tendencies made in the current work can most likely
also be applied to these compounds.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28093658/s1, Optimized coordinates of the [Re6S8Cl2bipy4]n clus-
ters (Tables S1–S9), The bonding and antibonding hypothetical MOs in bipy4 fragment (Figure S1), ELF
slice plane for Re6S8bipy4Cl2 cluster (Figure S2) and The average QTAIM charges for [Re6S8bipy4Cl2]n

(n = 0, 2–, 4–, 6–, 8–) cluster (Table S10).
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