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Abstract: CdS:Al thin films were fabricated on a glass substrate using the CBD method. The effect
of aluminum incorporation on the structural, morphological, vibrational, and optical properties of
CdS thin layers was investigated by X-ray diffraction (XRD), Raman spectroscopy (RS), atomic force
microscopy (AFM), scanning electron microscopy (SEM), and UV-visible (UV-vis) and photolumines-
cence (PL) spectroscopies. XRD analysis of deposited thin films confirmed a hexagonal structure with
a preferred (002) orientation in all samples. The crystallite size and surface morphology of the films
are modified with aluminum content. Raman spectra exhibit fundamental longitudinal optical (LO)
vibrational modes and their overtones. Optical properties were studied for each thin film. Here, it
was observed that the optical properties of thin films are affected by the incorporation of aluminum
into the CdS structure.

Keywords: thin film; CBD method; structural properties; optical properties

1. Introduction

The development of semiconducting nanomaterials doped with metal ions has re-
ceived much interest from different research groups because their properties differ from
those of bulk materials [1–4]. Among II–VI semiconductor nanomaterials, cadmium sulfide
(CdS), an n-type semiconductor, is of interest in photovoltaic solar cells due to its bulk
direct energy gap (Eg) of 2.42 eV at room temperature (RT) [1,5–8]. In addition, CdS is a
promising and interesting material for nanodevice applications due to its physicochemical
properties [3,9,10]. Previous works reported that various synthesis methods have been
used to grow CdS thin films [2–5,9–13], where chemical bath deposition (CBD) is widely
employed for its scalability, low cost, and easy manufacturing process. This technique has
been used for several years and is based on the deposition of metal chalcogenide semicon-
ductor thin films on a solid substrate from a chemical reaction occurring in an aqueous
solution [14–17]. This precursor solution contains a source of metallic cations, one or more
complexing agents, and a source of anions. This chemical reaction is controlled in such a
way that the rate of formation of semiconductors in the solution is slow enough to allow the
growth of a thin film over the substrate, avoiding precipitation [16,18]. Additionally, CBD
does not require high vacuum systems and/or high temperatures, unlike other methods
such as RF-sputtering deposition [19] or deposition by evaporation [20]. In addition to
being environmentally friendly [2,21], the CBD method exhibits good reproducibility for
the mass production of thin films on an industrial scale [22].
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It is very important to note that previous reports on CdS deposition with the CBD
method use ammonia in a chemical bath as the complexing agent and hydroxide source [23].
Therefore, it is necessary to avoid the use of ammonia if we want to use this manufacturing
method on an industrial scale since it is very harmful to the environment and human health.
In this sense, it has been reported that the physical properties of CdS films manufactured by
CBD are strongly dependent on the complexing agent used in their fabrication [24,25]. For
this reason, other authors show that good-quality CdS thin films can be fabricated by CBD
without ammonia; for example, using other complexing agents such as sodium citrate [5,7]
and nitrilotriacetic acid [26].

On the other hand, the manufacturing of doped CdS films using CBD with atoms
of group III, such as Al [1,5–8,11,13,27,28], In [29], and Ga [30], allows us to modify their
properties with respect to the undoped CdS film. This is because group III metals rapidly
diffuse impurities in the structure of this semiconductor, causing important changes in
the physical properties (structural, morphological, optical, and electrical) of CdS [31].
For example, both increases and decreases in the CdS bandgap have been reported with
Al doping, which is related to the reagents used in the chemical synthesis, the surface
morphology of the films, and the deposition times [8,11,13,32]. However, the substitutional
and/or interstitial replacement of Cd2+ ions in the lattice by Al3+ ions depends on the
dopant concentration in the solution; therefore, the modification of the crystallite size, lattice
strain, and interplanar distance is related to the dopant content in the CdS film [7,32]. In this
sense, the range of optical, structural, and morphological magnitudes that can be obtained
in CdS makes it optimal for their applications in optoelectronic devices [11,13,23,33,34].
Furthermore, it is important to note that ammonia is one of the main reagents used in
the synthesis of thin films using the chemical bath deposition method; however, it is
unfavorable from a green chemistry perspective, as the synthesis processes are toxic and the
energetic reactions exhibit high consumption. Additionally, due to highly toxic reactions,
exposures are limited as much as possible and use the least amount of toxic material
possible. Low-temperature synthesis is required to form thin films, which could result in
significant energy savings, particularly when considering a scalable method of synthesis.

Currently, Al is interesting as an effective dopant that increases the concentration of
carriers in CdS, thus decreasing its electrical resistivity [7,32] and modifying its charge
neutrality level on a Schottky-contact CdS/Ag [5]. Likewise, Al is an interesting dopant
due to its lower ionic radius than other dopants and its low cost, which make it ideal for
the generation of window-type materials [16] and rectifying contacts [5,35]. In this sense,
this type of film and the method of synthesis using ammonia-free systems are of great
interest to manufacturers of optoelectronic devices based on this semiconductor [9,36].
Therefore, here, we study the incorporation of aluminum atoms as dopants (with a molar
ratio in the solution R = [Al3+]/[Cd2+], R = 0.30, 0.40, 0.50) in CdS thin films grown by the
CBD method in an ammonia-free system. However, we used some previously reported
cadmium sulfide figures from Ref. [1] to complement and support the discussion of the
manuscript and the study. In addition, the effects of doping on the properties of CdS thin
films are investigated in detail using different characterization techniques. The structural
characterization was carried out using X-ray diffraction (XRD) and Raman spectroscopy
(RS), along with morphological characterization by atomic force microscopy (AFM). In
addition, AFM was used to determine the film thickness and surface roughness. The
optical properties of all deposited thin films were studied using ultraviolet-visible (UV-Vis)
absorption and photoluminescence (PL) spectroscopy.

2. Results and Discussion
2.1. Morphological and Crystalline Characterization

Figure S1 and Figure 1a–c display the XRD patterns of the studied CdS:Al thin films
grown using the chemical bath deposition (CBD) method. The measurements were carried
out to determine the crystalline phase and structure in the thin films. For all samples, the
diffractograms exhibit a characteristic main peak of around 2θ = 26.60◦ ± 0.02◦, correspond-
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ing to a hexagonal wurtzite structure (PDF card no. 80-0006 [5] and no. 41-1049 [2]). The
intense XRD peak corresponds to the preferential orientation of the growth of the plane
(002), which indicates that the films were grown along the c crystallographic axis. In addi-
tion, there was no presence of aluminum phases or any binary phase, indicating that Al3+

ions do not change the crystalline structure of the CdS. For all samples, the crystallite size
(Dhkl) was determined from the line-broadening β (full width at half-maximum, FWHM) of
the (002) diffraction peak and using Scherrer’s formula, Dhkl =

κλ
βcosθ [37]. Here, κ is a shape

factor which is usually taken as 0.9 for spherical grains, λ is the X-ray wavelength (see
Section 3.3.1), and θ is Bragg’s angle between the X-ray and the scattering plane. Therefore,
the (002) plane has been fitted by a Gaussian function to obtain the 2θ and β values of
the thin films (see Figure 1a–c). In this sense, the average crystallite sizes of all thin films
have been estimated to be in the 11–14 nm range with Al content in CdS. Additionally,
the lattice strain, ε, of the films was calculated using ε = βcosθ

4 . The results are reported in
Table 1 and Figure S2. Therefore, the size ratio of the ionic radii of Al3+ (0.53 Å) and Cd2+

(0.95 Å) leads to a decrease in the average size of the crystallite, D, which is related to an
increase in the strain, ε, of the thin films [26] (see Table 1). Thus, an increase in lattice strain
in doped films could have an effect on their optical properties, which can be related to the
substitutional replacement of cadmium (Cd2+) ions in the lattice with aluminum (Al3+)
ions [1]. Comparing the results with those previously reported by Khallaf et al. [32], and re-
cently by Willars-Rodríguez et al. [11], it was observed that the incorporation of aluminum
(Al3+) ions in cadmium sulfide (CdS) thin films presents a decrease in the maximum X-ray
intensity attributed to the preferential c orientation.
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Table 1. Crystallite size, thickness, strain, refraction index, and energy gap values of the thin films.

Thin Film
R = [Al]/[Cd]

Crystallite Size
D ± 1 (nm)

Thickness
(nm)

Strain
ε ± 0.8 (× 10−4)

Refraction Index
N

Optical Energy Bandgap
Eg

opt (eV)

K-M 1st Derivative

0.30 12 173 31.3 2.0(7) 2.5(6) 2.6(4)
0.40 11 213 40.5 1.7(8) 2.5(8) 2.6(7)
0.50 14 193 29.7 1.4(4) 2.5(5) 2.6(5)

Figure 1d–f presents 2D AFM images of the thin films at the nanoscale level. AFM
analysis also allows us to better study and understand the films; therefore, the morphology
of the film was observed as well as the surface roughness. The RMS surface roughnesses
for R = 0.30, 0.40, and 0.50 films were 41.2 nm, 25.2 nm, and 22.6 nm, respectively. In this
sense, it is observed that a higher Al content of the films decreases their surface roughness,
which is an important feature when metals are deposited on the semiconductor surface
because it is related to the serial resistance of the metal contact and other parameters of
the metal–semiconductor junction [5,35]. Furthermore, from the observed results, it can be
concluded that the size of the crystallites decreased in the cadmium sulfide thin films with
respect to the aluminum (Al3+) ions incorporated as dopants.

Regarding this, SEM images are presented in Figure 2a–d. For the undoped thin film
(R = 0.00), its surface morphology is homogeneous and does not have grains on its surface.
On the other hand, for the CdS:Al spherical surface, grains are observed and it is found
that the number of grains increases along with the Al content, where the aggregates clump
together to form grains of greater dimensions. In the case of the R = 0.30 film, a smaller
amount of surface grains is observed, which is related to its optical characteristics, as will
be shown in the next section. The average sizes of the grains on the surface of the glass
substrate are estimated to be between 200 and 400 nm, respectively. However, for undoped
thin films, these large grains are not observed, as was reported previously [1,11,32,38].
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2.2. Spectroscopy Studies

Vibrational spectroscopy is a non-destructive characterization technique that provides
information about the structure of the films. The Raman spectra are sensitive to the
crystal quality, structural defects, and disorder of the synthesized samples. Here, Raman
spectroscopy was carried out to study the influence of Al doping on the CdS structure.
Therefore, Raman spectra were recorded using a 532 nm wavelength laser. With a hexagonal
wurtzite structure, CdS belongs to the C4

6v (P63mc) space group, and according to the group
theory, single-crystalline CdS has nine sets of optical phonon modes (three longitudinal-
optical (LO) and six transverse-optical (TO) modes) and three acoustic phonon modes (one
longitudinal-acoustic (LA) and two transverse-acoustic (TA) modes) at the Γ-point of the
Brillouin zone, classified as A1 + 2B1 + E1 + 2E2 modes, where A1, E1, E2 are Raman active
and B1 is Raman inactive [39,40]. However, due to both ionic–covalent forces in CdS, the
A1 and E1 polar phonon modes split into longitudinal-optical (LO) and transverse-optical
(TO) phonon vibrations. Moreover, the non-polar phonon mode, E2, could be assigned to
the E2 (high) and E2 (low) vibrational modes, respectively.

The Raman spectra of the thin films show good crystallinity and are reported in
Figure 3. Figure 3a–d show the characteristic peak centered at ~303 cm–1 corresponding
to the longitudinal-optical (A1 (1LO)) phonon and their overtones around 600 cm–1 (A1
(2LO), Figure 3b–d). The peak at around 303 cm–1 is shifted by 1 cm–1 compared to the CdS
reported in Ref. [1]. This shift could confirm the doping of aluminum in CdS. Additionally,
it is observed that the intensity of the A1 (2LO) multiphonon Raman scattering increases
with respect to the A1 (1LO) phonon, which decreases with the aluminum content. Here,
the vibration modes correspond to the hexagonal cadmium sulfide (CdS) structure and
agree with previous reports [2,31,41]. Furthermore, the intensity of the A1 (1LO) peak
decreases due to the incorporation of aluminum in the CdS structure, increasing the FWHM
and changing the crystallinity of the films. Additionally, we can see that it is possible to
identify multiphonon processes under backscattered Raman conditions [1]. Thus, the A1
(2LO) overtone was fitted using a GaussAmp function (see Table 2 and Figure 3b–d). In
this way, it was possible to observe the fundamental A1 (1LO) and its overtones, along
with its A1 (2LO) Raman scattering replica. Previous reports [31,42] showed band groups
for CdS under resonance and non-resonance Raman conditions, as can be seen in Figure 3,
confirming that it is possible to determine some vibration modes by means of a data fit. In
addition, multiphonon Raman scattering could be favored by improving the crystalline
quality of the films. Furthermore, using the ratio I2LO/I1LO, the strength of the exciton–
phonon (EP) coupling could be estimated [43]. Here, the ratios are 1.18 (R = 0.30), 4.84
(R = 0.40), and 4.59 (R = 0.50), respectively. For CdS films, I2LO/I1LO will be estimated
from the Raman spectrum, which is very close to R = 0.30. It should also be noted that the
strength of the EP coupling increases remarkably with the aluminum content from R = 0.35,
as observed in the Raman spectra reported by Herrera-Molina et al. [1]. The enhancement
of crystallinity with Al doping allows the exciton and phonon to propagate in a wider
range and for a longer time, further strengthening the EP couplings [40,43]. The results
obtained agree with the reported XRD, AFM, and SEM analyses (see Figures 1 and 2).

Table 2. Vibration modes found in the Raman spectra of fabricated thin films by the CBD method.

Raman Shift, vexp (cm– 1) Symmetry
Ref. [1] Ref. [36] Ref. [37] R = 0.30 0.40 0.50

304 301 306–308 302.8 303.7 302.8 A1 (1LO)

473.7 470 - 485.5 477 458

A1 (2LO)
multiphonon Raman scattering

564 - 556–560 561.8 571.1 563
- - - 599.2 - 602.7

620.3 640 - 630.5 640 618
685.7 670 - 688.3 - 635.5

- indicating that the vibrational mode was not reported or detected in the measurement.
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Figure 3. (a) Raman spectra of CdS:Al thin films. (b–d) Fundamental 2LO overtone fitted using a
GaussAmp function.

Transmittance and reflectance measurements were performed (Figure 4) for all thin
films grown at different [Al3+]/[Cd2+] ratios (R = 0.30, 0.40, and 0.50) to determine the
capacity of the thin films as windows in solar cell applications. It is observed that in the
region from 500 to 1000 nm, the sample R = 0.30 exhibits a high transmittance that exceeds
80% and shows a sharp reflectance peak at about 500 nm. On the other hand, for R = 0.40,
there is a minimum reflectance at the same wavelength as the maximum transmittance,
indicating the good optical quality of this thin film and therefore its potential use in
optoelectronic devices. In this sense, these films have good crystallization and structural
homogeneity, which minimizes photon scattering caused by defects in the structure [1,4].
This reflection peak is related to the lower amount of surface grains compared to the other
doped films in addition to the sharpness of its XRD peak. The higher crystallinity of the
sample, together with its smoother surface, leads to a well-defined reflectance peak. Thus,
its good optical quality is related to its surface morphology and crystallographic parameters.
In addition, the higher transmittance could be explained by the increase in grain size, which
could lead to less scattering between the grain boundaries [11]. Therefore, the use of these
thin films as window layers in a solar cell can increase the efficiency of the cell and thus
increase the generation of electron–hole pairs in the absorber layer.

On the other hand, the thickness, the refractive index (n), and the optical energy
bandgap (Eg

opt) of the films were estimated and reported in Table 1. The thickness of the
films and their refraction indexes were estimated using the software Filmeasure (Version 8.7,
Filmetrics, San Diego, USA), which fits the transmittance and reflectance spectra to a
layer model, considering the samples to be constituted of an air/CdS/glass system. An
increase in the thickness of the CdS:Al films is observed as the Al content increases due
to the presence of grains on their surfaces with sizes of around 200 nm and lower surface
roughness, as is shown in Figure 1d–f. However, Figure 2a shows that for the undoped
film, the surface is smooth with a grain diameter of approximately 80 nm. In the case of the
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refraction index (n), a decrease in the value from the maximum at R = 0.30 is observed. As
the Al-doping increases, it approaches the value reported in Ref. [1] for undoped CdS films.
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crystal structure (see Table 1 and Figure S2). Here, we related the Eg
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the values of D and ε, as reported in Table 1. Furthermore, previous reports [1,26,27,46]
confirm that a decrease in the crystallite size increases the strain in the films, and therefore
leads to an increase in their Eg

opt. Here, we found both an increase in the Eg
opt and ε for

doped films.
Figure 5 shows the photoluminescence (PL) spectra of thin films excited at 250 nm.

Here, emission peaks in the blue and visible regions were observed with more than one
emission peak in these regions attributed to the grain boundaries of the crystalline nature
of the doped cadmium sulfide thin films. These emission peaks remain stable with respect
to their wavelength but present a change in intensity when increasing the content of
aluminum. The photoluminescence spectrum for each thin film exhibits an observable
peak at around 533 nm (2.33 eV), which could be assigned to the band-to-band transition
and is related to the Eg

opt of the CdS structure, which agrees well with the absorbance
measurements (not shown). The peak observed at around 492 nm (2.53 nm) was previously
assigned to the interstitial and vacancy defects in the CdS crystal structure [2]. Furthermore,
the emission peak at 492 nm has a low intensity in relation to the emission peak at 533 nm
for the undoped film. Additionally, its intensity increases with the Al content (see Figure 5a,
blue and red arrows). In addition, this intensity variation of the emission peaks is associated
with structural changes such as the increase in grain size (see the AFM and SEM images).

On the other hand, the blue emission peaks are assigned to the donor–acceptor pair,
and the broad yellow-red band centered at 606 nm (2.05 eV) is not observed for the undoped
film reported by Herrera-Molina et al. [1]. However, for all thin films with Al content, the
broad yellow-red band features more than one superimposed emission peak attributed
to aluminum, implying that Al incorporation into the CdS structure clearly affects PL’s
properties in the films. Moreover, the peak at 606 nm can be attributed to recombination
through localized states on the surface and/or radiative and non-radiative processes
(green peaks) induced by the aluminum content as reported by Herrera-Molina et al. [1],
Kulkarni et al. [41], and Ahmad-Bitar [47], respectively. Figure 5b shows a schematic energy
level diagram observed in the PL spectra of Figure 5a for the deposited thin films, where the
band-to-band transition and defect energy levels are present, which could be responsible
for the photoemission.
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due to Al content (blue and red arrows). (b) Schematic energy level diagram showing some of the
principal defect levels in CdS:Al thin films.

3. Materials and Methods
3.1. Materials

All chemicals were used without further purification. Thin films were fabricated
employing the following reagents: cadmium chloride (20 mL of 0.05 M CdCl2 * 2.5 H2O,
98%, Sigma-Aldrich, St. Louis, MO, USA), sodium citrate (20 mL of 0.5 M C6H5O7Na3, 99%,
Sigma-Aldrich), potassium hydroxide (5 mL of 0.5 M KOH, 88 %, J. T. Baker), Thiourea
(10 mL of 0.5 M CS(NH2)2, 99%, Sigma-Aldrich), and 5 mL of pH 10 borate buffer (Sigma
Aldrich). In situ doping of CdS films was performed by adding aluminum chloride
(AlCl3 * 6H2O, 99%, Sigma-Aldrich) to the mixture with different molar ratios in the
solution, R = [Al3+]/[Cd2+] = 0.30, 0.40, and 0.50, where the initial concentration of Cd
remained constant.

Note of Toxicity. Cadmium is a highly toxic metal suspected of being carcinogenic, as
reported in the chemical safety sheet of the reagent used in the synthesis. Therefore, the
synthesis of the films was carried out with the corresponding laboratory safety parameters
for the handling of highly complex and toxic reagents.

3.2. Sample Preparation

Sample preparation has been previously reported in Ref. [7] and is described below:
Thin films of aluminum-doped cadmium sulfide (CdS:Al) were fabricated onto glass
substrates using the chemical bath deposition (CBD) method from an alkaline aqueous
solution. First, all glass substrates were cleaned in deionized water and 2-propanol using
an ultrasound bath for 30 min. After that, the glass substrates were dried with nitrogen
(N2) gas. In situ doping of CdS films was performed by adding aluminum chloride to the
mixture with a constant initial content of cadmium. The total volume of the deposition
solution was made equal to 100 mL by the addition of de-ionized water and then the glass
substrates were vertically fixed inside the beaker during the reaction in a chemical bath.
In this way, Al-doped CdS thin films were grown at a temperature of 70 ◦C for 120 min.
The thin films were air-dried under laboratory conditions. Subsequently, all samples were
annealed at 300 ◦C for 2 h to remove organic impurities from them. The required amounts
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of reagents are described in Section 3.1. The schematic procedure used for the synthesis of
the thin films is illustrated in Figure 6.
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3.3. Characterization Techniques
3.3.1. X-ray Diffraction (XRD) and AFM Studies

The crystal structure and morphology of the synthesized thin films were characterized
using an X-ray diffractometer from PANnalytical with Bragg–Brentano geometry (X´pert Pro
diffractometer, 45 kV/40 mA, using Cu-Kα1/α2 radiation (λ = 0.1540598 nm/0.1544426 nm))
and NaioAFM Nanosurf in contact mode. The XRD patterns were recorded at room
temperature over the angular range of 2θ = 20–70◦ with a step size of 0.02◦. Additionally,
SEM micrographs were obtained using a Hitachi scanning electron microscope SU3500 at
20 kV and a chamber pressure of 80 Pa.

3.3.2. Spectroscopy Studies

A DXR micro-Raman spectrometer was used for a backscattering geometry of the
sample from ThermoFisher Scientific with a diode laser of 532 nm (2.33 eV). Ultraviolet-
visible (UV-vis) absorption measurements of the thin films were recorded using a single
monochromator V-770 UV-vis-NIR spectrophotometer from Jasco in the wavelength range
of 200–800 nm. Room temperature photoluminescence (RT-PL) measurements were per-
formed with a Perkin Elmer Spectrofluorometer LS55 (Xenon source).

4. Conclusions

The influence of the metallic ion Al3+ in the structural, morphological, vibrational,
and optical properties of CdS thin films was studied. All the films show a hexagonal CdS
structure, and no other phases were observed. Structural parameters such as crystallite size
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and strain have been determined. The crystallite size decreased and the strain increased
due to the incorporation of Al3+ ions that replace the Cd2+ ions in the structure. AFM
and SEM results show large grains with a diameter between 200 and 400 nm in doped
films. Raman scattering confirms that the h-CdS structure of the films and the intensity
of the LO modes change with Al content. Furthermore, Al doping in CdS could favor
the multiphonon Raman scattering as well as the exciton–phonon (EP) coupling strength
by improving the crystalline quality of the films. Measurements of the optical properties
indicate that the deposited thin films have a direct energy gap with Eg

opt values ranging
from 2.3 to 2.7 eV. This characteristic is related to the increase in the lattice strain of the
films with higher Al content. This Al content also affects the PL properties of the films. The
present work shows that Al-doped CdS thin films have potential uses in optoelectronic
devices such as solar cells and UV photodetectors due to their good crystallinity and high
optical transmittance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28083626/s1. Figure S1: XRD pattern of thin films
grown at different [Al]/[Cd] ratios; Figure S2: Crystallite size and energy gap versus [A]/[Cd] ratio
for the thin films.
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