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Abstract: With the climate constantly changing, plants suffer more frequently from various abiotic
and biotic stresses. However, they have evolved biosynthetic machinery to survive in stressful
environmental conditions. Flavonoids are involved in a variety of biological activities in plants,
which can protect plants from different biotic (plant-parasitic nematodes, fungi and bacteria) and
abiotic stresses (salt stress, drought stress, UV, higher and lower temperatures). Flavonoids contain
several subgroups, including anthocyanidins, flavonols, flavones, flavanols, flavanones, chalcones,
dihydrochalcones and dihydroflavonols, which are widely distributed in various plants. As the
pathway of flavonoid biosynthesis has been well studied, many researchers have applied transgenic
technologies in order to explore the molecular mechanism of genes associated with flavonoid biosyn-
thesis; as such, many transgenic plants have shown a higher stress tolerance through the regulation
of flavonoid content. In the present review, the classification, molecular structure and biological
biosynthesis of flavonoids were summarized, and the roles of flavonoids under various forms of biotic
and abiotic stress in plants were also included. In addition, the effect of applying genes associated
with flavonoid biosynthesis on the enhancement of plant tolerance under various biotic and abiotic
stresses was also discussed.

Keywords: abiotic stress; biotic stress; flavonoids; molecular mechanism; transgenic plants

1. Introduction

Flavonoid compounds, one of the main classes of plant secondary metabolites, are
commonly present in plants [1,2]. Over 9000 flavonoid derivatives have been identified
in various plants, which are further divided into different subfamilies depending on the
modification of their basic structure [3,4]. Some plant flavonoids may be used as dietary
compounds, which can improve human health and prevent many diseases [5,6]. Based on
the epidemiological, clinical and animal studies, flavonoids may exert beneficial effects on
human health when an individual is suffering from various diseases, such as cardiovascular
disease and cancer [7–9].

Phenolic compounds are a group of metabolites derived from the secondary pathways
of plants that contains flavonoids, phenolic acids, tannins, lignans, and coumarins [10,11].
Among them, flavonoid compounds are naturally distributed in fruits, seeds, flowers and
the leaves of plants, and play important roles in regulating the growth and development of
plants [12,13]. Plant flavonoids are involved in pollination, auxin transport inhibition, male
fertility, allelopathy, seed development and flower coloring [14–16]. Moreover, flavonoids
have also been reported to play protective roles against abiotic stresses through ROS

Molecules 2023, 28, 3599. https://doi.org/10.3390/molecules28083599 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28083599
https://doi.org/10.3390/molecules28083599
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-2634-1519
https://doi.org/10.3390/molecules28083599
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28083599?type=check_update&version=1


Molecules 2023, 28, 3599 2 of 26

detoxification, including UV-B radiation, low temperatures, salt, drought, and heavy metal
stress [12,17–20]. In addition, flavonoids also offer protection against biotic stresses, and are
capable of participating in plant–microbe interaction; they are also especially involved in
the symbioses of plants with rhizobia and mycorrhizal fungi, as well as in the interactions
between pathogenic microorganisms and plants [21,22]. Some flavonoids (particularly
anthocyanins) act as major flower pigments, which help plants attract pollinators [13].

Genetically modified (GM) plants are those whose genomes have been modified via
the introduction of foreign DNA derived from bacteria, fungi, viruses, or animals; this
process has been used to verify the gene function and generate GM plants [23,24]. Up to
now, two common systems have been used for gene transfer in the generation of GM plants:
the Agrobacterium-mediated system and the gene-gun-mediated system [25,26]. With the
development of transgenic technology, genetic modification has been widely used to verify
the gene functions in the flavonoid biosynthesis pathway, and the roles of flavonoids in
plant development and response to (a)biotic stresses [27–29].

Flavonoids have attracted significant attention in recent years. This review summa-
rizes the recent progress made in the research of flavonoids, including their classification,
biosynthesis and mechanisms of responding to adversity. Moreover, the application of
flavonoids in modern biotechnologies and the prospects of flavonoids in response to various
stresses are also reviewed here.

2. Flavonoids Classification

Flavonoids, a diverse group of natural substances with variable phenolic structures,
are widely distributed in plants [30]. So far, over 9000 flavonoids have been identified,
which are further classified into seven subgroups depending on the modification of their
basic structure; these subgroups include flavones, flavanones, isoflavones, flavonols or
catechins, and anthocyanins [31–34].

2.1. Flavones

Flavones, one of the important subgroups of flavonoids, contain the backbone of
2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one) (Figure 1A), and are widely dis-
tributed in leaves, flowers, and fruits of many plants, such as celery, parsley, red pepper,
chamomile, mint, and ginkgo [35–40]. Flavones possess the C2′-C3′ double bond and
C-ring, bearing a ketone at position C4′ [41]. Most flavones have an A-ring, bearing a
hydroxyl group at position C5′, with hydroxylation usually occurring at position C7′ of
the A-ring and positions C3′ and C4′ of the B-ring [42,43]. In addition, the glycosylation
of flavones mainly occurs at positions C5′ and C7′ of the B-ring, and their methylation
and acylation happens in the B-ring of the hydroxyl groups [42]. The major flavones are
apigenin, luteolin, baicalein, chrysin and their derivatives [44].

2.2. Flavonols

Flavonols, known as 3-hydroxyflavone, process a hydroxyl group at position C3′ of
the C-ring (Figure 1B) and are glycosylated to some extent [45]. Flavonols are the build-
ing blocks of proanthocyanidins, which are abundant in vegetables and fruits such as
onions, lettuce, tomatoes, apples, grapes and so on [46–53]. Glycosylation and methyla-
tion mainly contribute to the diversity of flavonol compounds [54]. O-glycoside, as the
main substituent, occurs at position 7 of the A-ring and position 3 of the C-ring, and
generates flavonol glycosides [55]; these mainly include kaempferol, quercetin, limocitrin,
and isorhamnetin [56]. Over the past 15 years, the number of flavanones identified has
significantly increased [57]. Dietary flavonols play important roles in human health due to
their anti-oxidant, cardio-protective, anti-bacterial, anti-viral and anti-cancer activities [58].



Molecules 2023, 28, 3599 3 of 26Molecules 2023, 28, x FOR PEER REVIEW 3 of 26 
 

 

 
Figure 1. Chemical structures of flavonoid compounds. (A) Flavones; (B) Flavonols; (C) Flavanones; 
(D) Isoflavonoids; (E) Neoflavonoids; (F) Flavanols; (G) Anthocyanins. 

2.2. Flavonols 
Flavonols, known as 3-hydroxyflavone, process a hydroxyl group at position C3′ of 

the C-ring (Figure 1B) and are glycosylated to some extent [45]. Flavonols are the building 
blocks of proanthocyanidins, which are abundant in vegetables and fruits such as onions, 
lettuce, tomatoes, apples, grapes and so on [46–53]. Glycosylation and methylation mainly 
contribute to the diversity of flavonol compounds [54]. O-glycoside, as the main 
substituent, occurs at position 7 of the A-ring and position 3 of the C-ring, and generates 
flavonol glycosides [55]; these mainly include kaempferol, quercetin, limocitrin, and 
isorhamnetin [56]. Over the past 15 years, the number of flavanones identified has 
significantly increased [57]. Dietary flavonols play important roles in human health due 
to their anti-oxidant, cardio-protective, anti-bacterial, anti-viral and anti-cancer activities 
[58]. 

2.3. Flavanones 
Flavanones, also called dihydroflavones, have the saturated C-ring [59]. The 

unsaturated double bond between positions C2′ and C3′ of the C-ring is the only chemical 
structural difference between flavanones and other flavonoids (Figure 1C) [60]. 
Flavanones are mainly distributed in all citrus fruits [61,62], and have hydroxyl groups at 
positions C5′ and C7′ of the A-ring and have hydroxyl/methoxy substituents at positions 
C3′ or C4′ of the B-ring [63]. O-glycoside, as the main substituent, occurs at position 7 of 
the flavanone aglycone, and produces the flavanone glycosides [64]. The substituents of 
flavanone glycosides contain glucoside, rhamnoside, rutinoside, and neohesperidoside 
[65]. The flavanones can be divided into hesperitin, naringin, naringenin, eriodictyol, 
hesperidin, pinocembrin, and likvirtin based on their structural differences [66,67]. 
Among them, naringenin and hesperetin, as the main flavanones, are mainly present in 
lemons, oranges, limes, tangerines and grapefruit [61,68,69]. 

2.4. Isoflavonoids 
Isoflavones contain a C-ring with a B-ring at position 3 (Figure 1D), which is the only 

chemical structural difference compared to other flavonoids [70]. Isoflavonoids are mainly 
distributed in leguminous plants [71], and play important roles in microbial signaling and 
nodule induction in legumes [72]. Isoflavones can be divided into two groups, genistein 
and daidzin, which exist in the chemical structures of aglycone, 7-O-glucoside, 6′-O-
acetylglucoside, and 6′-O-malondialdehyde glucoside [73,74]. Isoflavones have strong 
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2.3. Flavanones

Flavanones, also called dihydroflavones, have the saturated C-ring [59]. The unsat-
urated double bond between positions C2′ and C3′ of the C-ring is the only chemical
structural difference between flavanones and other flavonoids (Figure 1C) [60]. Flavanones
are mainly distributed in all citrus fruits [61,62], and have hydroxyl groups at positions
C5′ and C7′ of the A-ring and have hydroxyl/methoxy substituents at positions C3′ or
C4′ of the B-ring [63]. O-glycoside, as the main substituent, occurs at position 7 of the
flavanone aglycone, and produces the flavanone glycosides [64]. The substituents of fla-
vanone glycosides contain glucoside, rhamnoside, rutinoside, and neohesperidoside [65].
The flavanones can be divided into hesperitin, naringin, naringenin, eriodictyol, hesperidin,
pinocembrin, and likvirtin based on their structural differences [66,67]. Among them,
naringenin and hesperetin, as the main flavanones, are mainly present in lemons, oranges,
limes, tangerines and grapefruit [61,68,69].

2.4. Isoflavonoids

Isoflavones contain a C-ring with a B-ring at position 3 (Figure 1D), which is the only
chemical structural difference compared to other flavonoids [70]. Isoflavonoids are mainly
distributed in leguminous plants [71], and play important roles in microbial signaling and
nodule induction in legumes [72]. Isoflavones can be divided into two groups, genistein
and daidzin, which exist in the chemical structures of aglycone, 7-O-glucoside, 6′-O-
acetylglucoside, and 6′-O-malondialdehyde glucoside [73,74]. Isoflavones have strong
antioxidant properties, which can reduce the damage caused by free radicals to plant cells
and improve their resistance to UV-B radiation, salt stress and osmotic stress [75–77].

2.5. Neoflavonoids

There is a 4-phenyl coumarin backbone and no hydroxyl substitution at position C2′

in neoflavonoids (Figure 1E), which are rarely found in food plants [78]. Neoflavonoids are
mainly divided into four substructure types based on their basic skeleton structure, namely
dalbergia phenols, dalbergia quinones, dalbergia lactones, and benzoyl benzenes [79,80].
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2.6. Flavanols, Flavan-3-ols or Catechins

Flavanols, known as dihydroflavonols/catechins, are the 3-hydroxy derivatives of
flavanones (Figure 1F) [81] and are naturally occurring plant-based nutrients due to their
antioxidant properties. Flavanols are also referred to flavan-3-ols, as the hydroxyl group is
always bound to position 3 of the C-ring [82]. Unlike other flavonoids, flavanols have no
double bond between positions C2′ and C3′ of the C-ring [83–85]. Flavanols are abundant in
manly fruits, such as bananas, apples, blueberries, and pears [86–89], and are divided into
several types: catechin, gallocatechin, catechin 3-gallat, gallocatechin 3-gallate, epicatechin,
epicatechin 3-gallate, and epicatechin 3-gallate [90]. Flavanols and their metabolites play
important roles in plant responses to various stresses due to their potent antioxidant and
free radical scavenging activities [91,92].

2.7. Anthocyanins

Anthocyanins, the glycosylated polyphenolic compounds, are a group of soluble
vacuolar pigments that generate a series of orange, red, purple and blue colors in vegetative
and re-productive plant organs [93,94]. So far, over 650 anthocyanins have been identified
in various plants [95] and grouped into the following six categories: cyanidin, delphinidin,
malvidin, pelargonidin, peonidin, petunidin, and the corresponding derivatives [96,97].
Unlike other flavonoids, except flavanols, anthocyanins carry no ketone group at position 4
of the C-ring (Figure 1G). Anthocyanins are mainly found in the outer cell layer of various
fruits and vegetables, such as black currants, grapes, and berries [98–102].

3. Flavonoid Biosynthesis in Plants
3.1. Regulation of Flavonoid Biosynthesis

The biosynthesis of flavonoids occurs at the convergence of the shikimate and ac-
etate pathways, with the former producing p-coumaroyl-CoA and the latter involved
in a C2 elongation reaction [103] (Figure 2). Phenylalanine ammonia lyase (PAL) cat-
alyzes the deamination of phenylalanine into trans-cinnamic acid and ammonia; this
is the first step of the phenylpropanoid pathway [104]. Next, cinnamic acid hydroxy-
lase (C4H), a cytochrome P450-dependent hydroxylase, hydroxylates the trans-cinnamic
acid to produce p-coumaric acid [105]. The 4-coumaric acid CoA ligase (4CL) catalyzes
4-coumaric acid to generate 4-coumaroyl CoA, which is a key intermediate in the biosyn-
thesis of lignin and flavonoids [106]. Chalcone synthase (CHS) catalyzes the formation of
naringenin chalcone from one p-coumaroyl CoA and three malonyl-CoA molecules [107].
Malonyl-CoA is the essential building block of natural products such as fatty acids, polyke-
tides, and flavonoids [108]. Naringenin chalcone is converted to produce flavanones
through chalcone isomerase (CHI), which is cyclized to produce naringenin under the
catalytic action of CHI [109]. Naringenin, a general precursor of flavonoid compounds,
is catalyzed by flavone synthase I and II (FNSI and II) and isoflavone synthase (IFS)
to generate flavones and iso-flavones, respectively [110,111]. In addition, naringenin is
also catalyzed by flavanone-3-hydroxylase (F3H), flavonol 3′-hydroxylase (F3′H), and
flavonol 3′5′-hy-droxylase (F3′5′H) to produce dihy-drokaempferol, dihydroquercetin, and
dihydromyricetin, respectively [112,113]. The dihydroflavonols are further converted to
flavonols (kaempferol, quercetin, and myricetin) by flavonol synthase (FLS), which is also
converted to leucoanthocyanidins under the catalysis of the dihydroflavonol 4-reductase
(DFR) [114]. Anthocyanidins are then formed from leucoanthocyanidins by leucoantho-
cyanidin dioxygenase (LDOX), and are further catalyzed by uridine diphosphate (UDP)-
glucose flavonoid-3-O-glycosyltransferase (UFGT) [115]. Leucoanthocyanidins and antho-
cyanidins can also be converted to proanthocyanidins by leucoanthocyanidin reductase
(LAR) and anthocyanidin reductase (ANR), respectively [116–118]. Finally, anthocyanins
are stabilized via the modification of glycosylation, methylation, and acylation [119].
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3.2. Transcription Factors (TFs) Regulate Flavonoid Biosynthesis

Genes involved in flavonoid biosynthesis are classically divided into early biosynthetic
genes (EBGs; CHI, CHS, F3′H and F3H) and late biosynthetic genes (LBGs; FLS, DFR, and
ANS) [120–122]. Flavonoid biosynthesis is not only affected by plant hormones, but also
regulated by various stresses [123]. These environmental or developmental regulations
mostly rely on the regulatory effect of TFs on structural genes in the flavonoid biosynthesis
pathway (EBGs and LBGs) [124]. Based on the differences in the DNA-binding characteris-
tics, several families of TFs have been described as regulators of flavonoid biosynthesis and
metabolism in many plants; these include MYB, bHLH, WD40, bZIP, NAC, MADS box, Dof,
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and WRKY [125,126]. MYB proteins include highly conserved N-terminal MYB repeats
(1R, R2R3, 3R, and atypical) [127,128]. The flavonoid pathway genes are predominantly
regulated by the R2R3-MYB transcription factors [129]. The overexpression of NtMYB3
(an R2R3-MYB from narcissus) in transgenic tobacco inhibits flavonoid biosynthesis by
decreasing the expression level of the FLS gene [130]. In Ginkgo biloba, GBMYBF2 signif-
icantly inhibits the expression of structural genes (GBPAL, GBFLS, GBANS, and GBCHI)
and thus reduces the accumulation of flavonoids [131]. In soybean, GMMYB100 negatively
regulates flavonoid biosynthesis by inhibiting the promoter activities of CHS and CHI [132].
Under light conditions, the overexpression of PPMYB17 in pear calli can activate the expres-
sion of genes associated with flavonoid biosynthesis (PPCHS, PPCHI, PPF3H, PPFLS and
PPUFGT), especially the expression of FLS; this enhances the biosynthesis of flavonoids in
pear fruit [133]. FTMYB31 has been isolated from Fagopyrum tataricum, the overexpression
of which in tobacco enhances the expression level of CHS, F3H and FLS, and promotes
the accumulation of flavonoid biosynthesis in plants [134]. The SbMYB8 protein from
Scutellaria baicalensis can bind to the GmMYB92 BS3 sequence in the SbCHS promoter region,
which positively regulates the expression of SbCHS, and increase the flavonoid content and
antioxidant enzyme activity in transgenic tobacco [135]. The bHLH TFs play important
roles in the regulation of many secondary metabolites, including flavonoids. In citrus,
CsMYC2 is involved in the regulation of flavonoid biosynthesis through increasing the
expression of UFGT [136]. The bHLH protein CmbHLH2 can directly bind to the promoter
of CmDFR, which promotes the accumulation of flavonoids in chrysanthemum plants [137].
Interestingly, the R2R3-MYB TFs from subgroups 5, 6, and 15, bHLH from subgroup IIIf,
and WD40 can interact with each other or orchestrate with others to regulate the expression
of genes associated with flavonoid biosynthesis in many plants [138,139]. The TT2–TT8–
TTG1 complex plays important roles in the regulation of LBGs (DFR, LDOX, TT19, TT12,
AHA10, and BAN) [140]. Moreover, the MBW complex can also tissue-specifically regulate
the expression of the genes involved in flavonoid biosynthesis [141]. The MYB5–TT8–TTG1
complex can regulate the expression of genes associated with flavonoid biosynthesis, such
as DFR, LDOX, and TT12, in the endothelium, whereas the TT2–EGL3/GL3–TTG1 complex
can regulate the expression of genes associated with flavonoid biosynthesis, such as LDOX,
BAN, AHA10, and DFR, in the chalaza [142].

In addition, the bZIP, NAC, Dof, and WRKY TFs have also been reported to regulate
flavonoid biosynthesis [143]. SlHY5, a bZIP protein from tomato, is affected by Cry1A
proteins under blue light irradiation, which binds to the promoters of genes associated with
flavonoid biosynthesis, such as PAL, CHS1 and CHS2, and thereby promotes the accumula-
tion of flavonoids [144,145]. VvibZIPC22 can activate the promoters of VviCHS and VviCHI,
which increases the accumulation of flavonoids in plants [146]. The overexpression of
NtHY5 in tobacco increases the expression level of genes associated with phenylpropanoid,
which can regulate the biosynthesis of flavonoids and enhance plant tolerance to salt
stress [147]. The Arabidopsis ANAC078 increases the expression level of CHS, F3’H, DFR,
and LDO genes, thereby promoting the accumulation of flavonoids under strong light con-
ditions [148]. MdNAC52, an apple NAC TF, increases the content of flavonoids, including
anthocyanins and procyanidins, in plants by binding to the promoters of MdMYB9 and
MdMYB11, or by binding directly to the LAR; both of these mechanisms further regulate
the expression level of flavonoids [149]. The Arabidopsis AtDOF4 positively regulates the
expression of late flavonoid genes (DFR, LDOX and TT19) and the MYB transcription
factor PAP1 to promote the accumulation of flavonoids in plants [150]. In addition, the
overexpression of MdWRKY11 in apple callus promotes the expression of F3H, FLS, DFR,
ANS and UFGT, which increases the content of flavonoids and anthocyanins [151].

3.3. Non-Coding RNA Regulates Flavonoid Biosynthesis

In addition, flavonoid biosynthesis is also affected by non-coding RNA, such as
lncRNA (long non-coding RNA) and microRNA [152]. lncRNA may act as a precursor and
endogenous target mimic of miRNA in order to indirectly regulate protein-coding genes
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(PCgenes) [153]. lncRNA (MSTRG.9304 and XR_001591906) can regulate the expression
of the CHS gene in peanut seed development [154]. miPEP858a-edited and miPEP858a-
overexpressing lines can regulate flavonoid biosynthesis in Arabidopsis, which also alters the
growth and development of plants [155]. miR156 fine-tunes the anthocyanin biosynthetic
pathway in poplar via the regulation of transcription factors, structural genes and other
microRNAs [156].

4. The Roles of Flavonoid Compounds in Various Stresses

The dynamic changes in flavonoid compounds are not only regulated by plant growth
and development, but are also affected by various environmental factors; these encompass
both abiotic stresses, such as heavy metal stress, drought stress, UV, salt and low tempera-
tures, and biotic stresses, including plant-parasitic nematodes, fungi and bacteria [157–161].

4.1. Biotic Stress

Various kinds of secondary metabolites that play important defense roles, including
flavonoids, are produced when plants are infected with pathogens and pests and are
suffering from biotic stresses [162]. Plants can be destroyed by various biotic stresses, such
as bacteria, viruses, nematodes, fungi and insects [163]. Hypersensitive responses (HR) are
a major element of plant disease resistance, and include the induction of lytic enzymes, the
production of phytoalexins and the reinforcement of the cell wall [163–165]. Among these,
phytoalexins are chemicals that play important roles in mediating plant responses to pests
and pathogens [72]. Numerous studies have shown that some flavonoid compounds act as
phytoalexins against pathogenic bacteria, fungi, and nematodes [72,166].

4.1.1. The Roles of Flavonoids in the Invasion of Nematodes

Plant-parasitic nematodes can destroy the host plant by causing wounds and infecting
it with microbial diseases; this destruction leads to a massive yield loss and tremendous
economic losses throughout the world [167,168]. When plant-parasitic nematodes damage
plants, some brown spots, galls, spots, cysts, rotting or swelling is generally formed on the
roots or on the aboveground tubers [169]. Flavonoids and their derivatives, for example,
coumestrol and glyceollin, play a variety of roles in the interaction between plants and
nematodes, and are stimulated by nematode invasion [170–172]. Coumestrol, an important
phytoalexin, is an isoflavonoid-like compound that can be produced in the lima bean
when it is suffering from Pratylenchus penetrans infection [173]. Moreover, the infection
of soybean roots with the root-knot nematode (Meloidogyne incognita) leads to an increase
in the glyceollin content, which reduces the crop yield loss caused by nematodes [174].
In addition, the phytoalexin glyceollin is accumulated in the soybean root, and it has
been found that there is an increase in its glyceollin content on the 2nd, 4th and 6th
day after inoculation [72,175,176]. O-methyl-apigenin-C-deoxyhexoside-O-hexoside, a
major phytoalexin in oat, has been extracted from the oat roots and shoots infected with
nematodes; this was shown to reduce the invasion of cereal cyst nematodes significantly,
including P. neglectus and H. avenae [72,177,178]. However, the defense mechanism of
flavonoids against parasitic nematodes is still unclear.

4.1.2. The Roles of Flavonoids in the Invasion of Pathogenic Fungi

Tremendous crop yield losses occur in plants when they are invaded with several
kinds of plant pathogenic fungi [179,180]. To escape from various kinds of biotic stresses,
plants have evolved mechanisms to resist biotic stresses, and the production of phytoalexins
is an effective method for defending against the invasion of pathogenic fungi [181–183].
The flavonol aglycone rhamnetin is a fungi-toxic phytoalexin that enhances the resistance
of cucumber to a powdery mildew [72,184,185]. There is an increase in the content of
nobiletin, heptamethoxyflavone, tangeretin and sinensetin in citrus fruits when they are
infected with Phytophthora citrophthora, which is positively correlated with their antifungal
effects [186,187]. Naringenin and hesperetin have been proven to be the best antifungal
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compounds in flavonoids [188]. An increase in the content of isoflavonoids in tangelo Nova
fruits is detected when they are treated with 6-benzylaminopurine, and the fruit resistance
is enhanced by 60% when suffering from the invasion of pathogenic fungus [72,189]. In
addition, the content of several kinds of phytoalexin is increased in soybean cotyledons
when they are treated with four Aspergillus species, and the content of coumestrol and
phytoalexins glyceollin is the highest after infection with A. sojae and A. niger, respec-
tively [190].

4.1.3. Antibacterial Effects of Flavonoids

Many researches have indicated that flavonoids can be used as antibacterial agents in
plants to make them grow and develop better [191,192]. Plants can produce many kinds
of phytoalexins, which are antimicrobial secondary metabolites, under various stresses,
such as microbial attack [193,194]. Bean plants infected with Pseudomonas spp. produce
antibacterial phytoalexins in bean leaves, which may enhance the plant’s resistance to
Pseudomonas spp. [195]. It has been shown that there is an increase in coumestrol in the
infected bean leaves, which blocks the bacterial colonization of P. mars-prunorum and
P. phaseolicola [196]. There is also an increase in daidzein and coumestrol in soybean
leaves when the plants are infected with non-pathogenic bacteria (P. lachrymans) and
pathogenic bacteria (P. glycinea), indicating that coumestrol can inhibit pathogenic bacterial
colonization and improve the plant’s resistance to P. glycinea [22,72]. Moreover, kievitone
and phaseollinisoflavan also have antibacterial activity, which strongly inhibits the growth
of Achromobacter and Xanthomonas species [72,197]. Recently, an isoflavonoid was proven
to have a strong antagonistic effect on Staphylococcus aureus, which can be extracted from
the roots of Erythrina poeppigiana [198,199].

4.2. Abiotic Stress
4.2.1. UV Stress

Plants can rapidly produce reactive oxygen species (ROS) when they suffer under
high flux, long-term UV radiation and HL (high light), which cause oxidative damage to
biomolecules (DNA, proteins, RNA and membranes) [200,201]. Under UV induction and
HL, plants can produce flavonoids, mainly in their epidermal cells. As different flavonoid
compounds have different UV absorption capacities, flavonoids can play important roles
when plants suffer from UV induction and HL, being especially useful as a protective
shield [202]. Previous studies have reported that flavonols, flavones, and anthocyanins are
all involved in UV and high light stress protection in plants [203]. Under UV radiation, an
increase in flavonoids, such as via the production of luteolin 7-O-glycosides and quercetin
3-O, improves their hydroxylation levels and strengthens their antioxidant activity, which
contributes to the ROS-detoxification of the plant cell and relieves the oxidative damage
caused by UV stress [204,205]. Compared with the content of kaempferol under UV-B
radiation, there is a higher content of quercetin and a higher ratio of quercetin/kaempferol
in the leaves of some plants, which indicate that UV-B radiation could induce the sub-
stitution of the orthodihydroxy B-ring in quercetin; this would increase their adaptive
dissociation [203]. Compared with low-altitude plants, high-altitude plants are subjected
to high UV-B exposure. There are higher levels of rhamnosylisoorientin and maysin in the
leaves of high-altitude maize lines compared to those detected in the leaves of low-altitude
maize lines, which indicates that these two flavones might play important protective roles
against UV-B radiation via an adaptive response [206–208]. Moreover, UV radiation can
cause the accumulation of anthocyanin in many plants, which improves the coloration
in the fruit skin of apples and other fruits [209]. Coumaroyl and mustapoyl derivatives
are formed by the acylation of anthocyanins and phenylpropanoid acids, which may in-
crease UV absorption compared to anthocyanins alone. Therefore, coumaroyl and sinapoyl
derivatives might play important roles under UV-B radiation stress [203,210]. As flavonoids
contain phenolic hydroxyl groups, they also exhibit antioxidant activity in the development
and growth of plants [211]. The abundant flavonoids in chloroplasts are mainly dihydroxy



Molecules 2023, 28, 3599 9 of 26

B-ring-substituted flavonoids, such as lignan and quercetin, which play important roles in
the elimination of ROS [212,213]. Under excessive light stress, the H2O2 produced by chloro-
plasts can be accumulated in the vesicles, which can be further scavenged by flavonoid
compounds [17,214]. The ROS can be generated in different cell types and subcellular
regions, which can be scavenged by many kinds of flavonols [214,215].

Many genes associated with flavonoid biosynthesis could play important roles in
plants under excessive light and UV stress, including structural genes (PAL, 4CL, CHS, DFR,
CHI and F3’5’H) and transcription factors (MYB, bHLH, NAC, and bZIP) (Table 1). Under
UV stress, the accumulation of photo-protectant flavonoids (e.g., flavones, isoflavonoids,
neoflavonoids, flavanols, and anthocyanins) could absorb some harmful solar wave lengths
(e.g., UV) in order to mitigate oxidative damage to cells, LDL or DNA [216,217].

Table 1. The roles of genes involved in flavonoid biosynthesis and the response of plants to various
biotic and abiotic stresses.

Gene Name Expression Status Roles in Biosynthesis Stress Resistance in
Plants References

Structural genes

PAL High expression under
stress

Involved in the biosynthesis
of flavonoids

Played positive roles in
response to abiotic

stress
[16,72,104,124]

C4H High expression under
stress

Involved in the biosynthesis
of flavonoids

Played positive roles in
response to abiotic

stress
[105,216–218]

4CL High expression under
stress

Involved in the biosynthesis
of flavonoids

Played positive roles in
response to abiotic

stress
[106,216,217]

CHS High expression under
stress

Involved in the biosynthesis
of flavonoids

Played positive roles in
response to abiotic

stress
[108,219,220]

CHI High expression under
stress

Involved in the biosynthesis
of flavonoids

Played positive roles in
response to abiotic

stress
[109,221–223]

FNS High expression under
stress

Involved in the biosynthesis
of flavones

Played positive roles in
response to UV and salt

stress
[224]

F3H

Constitutive of high
expression in

transgenic Arabidopsis
and tobacco

Involved in the biosynthesis
of flavan-3-ol (catechin and

epicatechin)

Played positive roles in
response to salt,

drought and cold stress
[225–227]

F3’H High expression under
stress

Involved in the biosynthesis
of flavonoids

Played positive roles in
response to abiotic

stress
[112–114,120,121]

F3’5’H High expression under
stress

Involved in the biosynthesis
of flavonoids

Played positive roles in
response to abiotic

stress
[112–115,216,217]

IFS High expression under
stress

Involved in the biosynthesis
of isoflavones

Played positive roles in
response to salt osmotic

stress
[228]

FLS High expression under
stress

Involved in the biosynthesis
of flavonols (kaempferol,
quercetin, and myricetin)

Played positive roles in
response to UV stress,
salinity stress, drought
stress, cold stress and

heavy metal stress

[114,133,215,229,230]
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Table 1. Cont.

Gene Name Expression Status Roles in Biosynthesis Stress Resistance in
Plants References

DFR
Constitutive of high

expression in
transgenic Arabidopsis

Involved in the biosynthesis
of leucoanthocyanidin and

anthocyanins

Played positive roles in
response to salt, cold

and UV stress
[114,231,232]

ANS High expression under
stress

Involved in the biosynthesis
of anthocyanidin

Played positive roles in
response to abiotic

stress
[151,203,233–235]

UFGT High expression under
stress

Involved in synthesis of
stable anthocyanins

Played positive roles in
response to abiotic

stress
[120,121,151,233–235]

Transcription
factors

MYB

Constitutive of high
expression in

transgenic Arabidopsis
and Petunia

Regulated of anthocyanins
and other flavonoids

biosynthesis

Played positive roles in
response to UV, salt

and heavy metal stress
[236]

bHLH

Constitutive of high
expression in

transgenic Arabidopsis
and tobacco

Regulated of flavonols,
flavanols, anthocyanins, and

flavanones biosynthesis

Played positive roles in
response to drought,

freezing and salt stress
[237–239]

WD40
Constitutive of high

expression in
transgenic Arabidopsis

Regulated of flavonoids
biosynthesis

Played positive roles in
response to ABA and

salt osmotic stress
[240]

bZIP
Constitutive of high

expression in
transgenic tobacco

Regulated of flavonoids
biosynthesis

Played positive roles in
response to High light,

UV and salt stress
[147,216,217]

NAC

high expression;
Constitutive of high

expression in
transgenic Arabidopsis

Regulated of anthocyanins
and procyanidins

biosynthesis

Played positive roles in
response to High light

and UV stress
[143,148,149]

MADS-box High expression under
stress

Regulated of flavonoids
biosynthesis

Played positive roles in
response to cold, salt,

and drought stress
[223,233–235,241]

WRKY

High expression under
stress; Constitutive of

high expression in
transgenic apple

Regulated of anthocyanins
and other flavonoids

biosynthesis

Played positive roles in
response to cold,

drought, and UV stress
[151,242,243]

4.2.2. Cold Stress

Cold stresses are common stresses during the process of growth and development
in plants; these include chilling stress, with temperatures of 0–20 ◦C, and freezing stress,
with temperatures of <0 ◦C [244,245], both of which can seriously affect plant growth and
development and reduce crop productivity, especially for crops that are sensitive to low
temperatures [246]. Chilling stress can affect plant growth from germination to maturity,
and can also determine the distribution of plants around the world [247]. There are signifi-
cant differences among various plants regarding when and how they suffer from chilling
stress. Some plants can grow well at chilling temperatures, such as some overwintering
cereals and Arabidopsis, while other plants struggle to survive at chilling temperatures,
such as many tropical and subtropical plants (maize, rice and tobacco) [248,249]. Previous
studies have reported that plants undergo a series of physiological and cellular changes
under low-temperature conditions, including changes in calcium signal, photosynthesis,
metabolism and membrane structure [248,250]. Freezing stress is much more harmful to



Molecules 2023, 28, 3599 11 of 26

plants than low-temperature stress, and may even lead to plant death. Under natural condi-
tions, freezing damage starts from extracellular ice nucleation [251,252]. Once ice nuclei are
formed, they gradually become larger and form ice crystals, which diffuse into the apoplast.
In the apoplast, ice crystals can induce water outflow, which can lead to cell dehydration.
When ice crystals diffuse into cells, irreversible damage occurs [252,253]. Flavonoids play
an important role in coping with freezing stress. Schulz et al. [254] revealed that flavonoids
are the determining factor in the freezing resistance and cold adaptation of Arabidopsis,
which suggests that the complete loss or substantial reduction in flavonoids leads to the
damage of the freezing resistance mechanism. Previous studies have reported that several
flavonoids (flavones, flavonols, flavanols, and anthocyanins) display a strong resistance to
cold stress. In Cryptomeria japonica, cold stress can enhance the production of anthocyanins,
flavonoids and flavonols through the up-regulation of FLS, which provides a good basis for
the molecular mechanism of response to cold stress in spruce [229]. In addition, an increase
in anthocyanins in their epidermal cells can decrease the osmotic potential of cells and delay
freezing through the surface nucleate [255]. When Fagopyrum tataricum was subjected to
cold stress, the total content of anthocyanins in the epidermis and cortex cells of hypocotyl
was twice those in cotyledons, which improved their cold resistance [233]. Moreover, many
genes associated with flavonoid biosynthesis are up-regulated when suffering from cold
stress, including structure genes (CHI, CHS, C4H, ANS, UFGT, F3H, and DFR) and TFs
(MADS-box, bZIP, MYB, and bHLH), further confirming that flavonoids play a key role in
enhancing cold resistance [233–235] (Table 1).

4.2.3. Salt Stress

Salinity stress is a major threat to global food production, which can inhibit plant
growth and development through osmotic stress, cytotoxicity caused by the excessive
absorption of Na+ and Cl−, and nutritional deficiencies [256–258]. Research shows that 20%
of the world’s irrigated land suffers from excess soluble salts [259]. The limiting effect of ex-
cess soluble salts in the soil on plant growth and development is mainly mediated through
two mechanisms: osmotic stress and ion toxicity [260]. The increased ion concentration in
soil causes a low solute/osmotic potential, reduces the ability of plant roots to uptake water,
and eventually blocks plant growth and development [72]. Moreover, ion toxicity caused by
sodium accumulation damages the cell membrane and disturbs various plant physiological
processes, such as photosynthesis, respiration, transpiration and osmoregulation, which
eventually cause plant necrosis or chlorosis [72,261]. Yan et al. [224] found that NaCl treat-
ment significantly increases the content of flavonoid glycosides through the up-regulation
of GMFNSII-1 and GMFNSII-2 in Glycine max, indicating that flavonoid glycosides play a
positive role in enhancing salt tolerance. Salt stress also increases the luteolin content in
Cajanus cajan by upregulating the expression level of CcPCL1 and CcF3′H-5, which greatly
enhances the salt tolerance of plants [262]. Moreover, the content of flavonoids accumu-
lates differentially between the roots and leaves of Solenostemma argel under salt stress;
this improves the antioxidant capacity and osmoregulatory capacity of plants under salt
stress [263]. Wang et al. [264] found that high salt stress (85 mmol/L) promotes anthocyanin
biosynthesis in cultivated purple sweet potato, and that low salinity has a significant effect
on the biosynthesis of phenolic acids and flavonols in the plant. Under low salt stress,
plants can regulate genes to control the concentrations of cellular Na+ and K+ in plasma;
however, they lose this ability under high salt stress. In addition, it has also been found
that salt stress increases the content of isoflavones by regulating the expression of GMIFS1,
which improves the antioxidant capacity and osmotic stress tolerance of soybean [228].

4.2.4. Drought Stress

Drought is a major environmental stress factor that affects various physiological and
biochemical processes in plants [265,266]. To escape from environmental stresses, plants
have evolved complex mechanisms to respond to stress at the physiological and biochemical
levels, including the production of compatible osmolytes, endogenous hormonal changes,
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and molecular changes [267,268]. The plants mediate the balance between growth and
resistance to stress by modulating the architecture of the root system and stomatal closure
under moderate drought stress [269,270]. Plants can induce cellular protection against
severe drought stress, modulate the antioxidant enzyme systems to remove ROS, and
accumulate proteins to maintain cell turgor [271].

Flavonoids, including anthocyanins, flavonols, flavanols, and flavones, play a major
role in the response to drought stress. Under drought stress conditions, plants can accu-
mulate anthocyanins to protect them against excessive sunlight and prevent water loss
by reducing stomatal transpiration and density; this allows them to survive in a severe
drought environment [272]. The biosynthesis of catechin in the tea plant was shown to
be induced under drought stress, increasing the plant’s ROS scavenging capacity and
enhancing its drought stress tolerance [273]. There was an increase in cyanidin, delphinidin
3-O-glucoside, and cyanidin 3-O-glucoside in the calyx of Roselle Cultivars at physiolog-
ical maturity under 35% water-loss stress [274]. There was an increase in the flavonoid
content, total phenolic capacity and antioxidant capacity under water deficit stress in
Peppermint [275]. Moreover, Mechri et al. [276] found that the concentrations of catechin,
quercetin, luteolin 7-O-glucoside, and apigenin 7-O-glucoside in olive leaves increased after
drought treatments, indicating that these phenolic compounds regulate the olive water
status and reduce the oxidative damage caused by water deficit stress.

Numerous studies have shown that genes associated with flavonoid biosynthesis
are regulated independently by drought stress, such as PAL, CHS, CHI, F3H, DFR, ANS,
NAC, WRKY, bZIP, MYB, and bHLH (Table 1). For example, the expression level of TaCHS,
TaCHI, TaF3H, TaFNS, TaFLS, TaDFR and TaANS in wheat has been shown to rapidly
increase after drought stress, thus increasing the total contents of phenols, flavonoids, and
anthocyanins [221–223]. Transcriptome analysis has indicated that several TFs (bHLH,
NAC, MYB, and WRKY) play important roles in response to cold and drought stress during
seed germination [242]. In addition, the transcriptome analysis of Cicer arietinum treated
with drought stress was conducted, and the results showed that AP2-EREBP, bHLH, bZIP,
MYB, NAC, WRKY and MADS were involved in the drought stress response [241].

4.2.5. Heavy Metal Stress

In recent decades, the rapid development of industry and the use of pesticides have
caused heavy metal contamination in the soil [277]. Heavy metal stress has notable adverse
effects on crop productivity and growth [278,279]. Heavy metals, including lead (Pb),
cadmium (Cd), nickel (Ni), cobalt (Co), zinc (Zn), chromium (Cr), iron (Fe), arsenic (As),
and silver (Ag), are present in dispersed form in rock formations, and are considered to
be one of the potential threats to crop plant productivity [280,281]. Although all heavy
metals are non-biodegradable and immobile, heavy metals can be absorbed by plant root
systems via diffusion, endocytosis or through metal transporters [282]. Heavy metal
stress causes the inactivation of enzymes and interferes with the substitution reactions
of essential metal ions from biomolecules [279,283]. Heavy metal stress destroys the
membrane integrity and alters the basic plant metabolic reactions, such as photosynthesis,
respiration and homeostasis [284]. Moreover, heavy metal stress generates ROS, such as
superoxide radical (O−2), hydroxyl radical (OH) and hydrogen peroxide (H2O2), and the
cytotoxic compound, which leads to lipid peroxidation; this damages biomolecules and
destroys DNA strands [285].

In order to escape from environments containing heavy metals, plants have gradually
evolved mechanisms to cope with these heavy metals. The functional roles of flavonoids
in the response to heavy metal stress have received some attention [286]. For example,
studies have shown that the contents of flavonols (quercetin and kaempferol) increases in
Arabidopsis via the upregulation of FLS1 under lead stress (Pb) treatment, thus alleviating
lead toxicity [230]. Cd stress has been shown to induce the accumulation of isoflavone
compounds such as malonylolonin, medicarpin, coumestrol, formonetin, and medicarpin3-
O-b-(60-malonylglucoside) in Medicago truncatula roots after Cd stress, thus alleviating
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Cd toxicity [287]. Moreover, Cd stress has been shown to increase the accumulation of
anthocyanins via the upregulation of CHS and DFR in Azolla imbricata, thus improving their
ROS scavenging ability and enhancing the tolerance of Azolla imbricata to Cd stress [288].

5. Transgenic Technologies Used in Enhancing Stress Resistance

In agricultural biotechnology, many techniques are used to alter the genetic structure
of plants to produce genetically modified plants [289]. Transgenic technology can be used
to improve plant traits (yield and quality), as well as to solve agricultural problems (biotic
and abiotic stresses) [290,291].

5.1. Transgenic Technology Used in Enhancing UV and HL Resistance

Transgenic plants that carry structure genes and TFs for UV/HL tolerance are being
developed, mainly by using Agrobacterium methods [292]. The overexpression of the CHS
gene has been shown to enhances resistance to high levels of light in Arabidopsis leaves by
increasing the content of anthocyanins [219]. The overexpression of the MnFNSI gene from
Morus notabilis in tobacco has been shown to increase the content of flavones in leaves and
enhance their tolerance to UV-B stress [293]. The heterologous expression of Pn2-ODD1
in Arabidopsis has also awarded plants tolerance to UV-B radiation and oxidative stress by
increasing their antioxidant capacity [294]. Arabidopsis lacking ANS have been shown to be
sensitive to high light levels due to the impairment of anthocyanin photoprotection [295].
Moreover, TFs involved in the flavonoid biosynthesis have been found to play impor-
tant roles under UV stress. The overexpression of GmMYB12B2 in Arabidopsis promotes
flavonoid biosynthesis and improves the tolerance of transgenic Arabidopsis to salt and UV
stress [236]. In transgenic apple, MdWRKY72 and MdBBX20 enhance the plant resistance
to UV-B stress through the regulation of genes associated with anthocyanin biosynthesis
(MdANS, MdDFR, MdUFGT, and MdMYB1) [243]. The overexpression of ANAC078 in
Arabidopsis increases the content of anthocyanin, and enhances the tolerance of plants to
HL stress, which is opposite to the ANAC078 mutant plants [148].

5.2. Transgenic Technology Used in Enhancing Salt Resistance

Transgenic plants that carry structure genes and TFs for salt tolerance are currently
being developed. For example, the overexpression of EaCHS1 in tobacco has been shown
to increase the production of downstream flavonoids and the expression of related genes in
the phenylpropanoid pathway, and to maintain ROS homeostasis; this improves the plant’s
resistance to salinity stress during seed germination and root development [220]. The
overexpression of AtDFR in Brassica napus increases the content of anthocyanins, which
enhances its salt tolerance in comparison with wild-type plants under high-salt stress
conditions [231]. Moreover, transgenic Arabidopsis overexpressing the wheat TaDFR-I gene
augments the accumulation of anthocyanin and promotes the tolerance of plants to high
salt penetration [232]. Transgenic Arabidopsis plants overexpressing PnF3H significantly
increase the expression level of resistance genes (AtSOS3, AtP5CS1, AtHKT1, AtCAT1 and
AtAPX1), reduce the hydrogen peroxide content and enhance the salt and oxidative stress
tolerance of plants [225]. Moreover, many TFs associated with flavonoid biosynthesis,
such as WD40, MYB, bHLH, bZIP, NAC, WRKY, and MADS-box, played important roles
in response to salt stress [223,296]. Transgenic Arabidopsis overexpressing TaWD40 from
Triticum aestivum significantly improves the tolerance of plants to salt osmotic stresses [240].
The overexpression of grapevine VvbHLH1 in Arabidopsis increases the flavonoid contents
and enhances the salt tolerance of plants [237].

5.3. Transgenic Technology Used in Enhancing Drought Resistance

Transgenic plants carrying structure genes and TFs for drought tolerance have been
reported [297]. For example, transgenic tobacco overexpressing the IbC4H gene from the
purple sweet potato has been shown to significantly promote the biosynthesis of flavonoids
such as anthocyanins and flavonols, enhance the ROS scavenging capacity of plants, and



Molecules 2023, 28, 3599 14 of 26

improve their drought resistance [218]. The overexpression of Lycium chinense LcF3H in
tobacco also increases the flavan-3-ol content (including catechin and epicatechin) and
improve the antioxidant system, which strengthens the drought stress tolerance of the
plant [226]. In addition, the overexpression of EcbHLH57 from Eleusine coracana in tobacco
leads to the accumulation of more flavonoids, such as flavonols and flavanols, and enhances
the photosynthetic rate and stomatal conductance; these factors significantly improve the
tolerance of the plant to salt stress and drought stress [238]. The transgenic Arabidopsis that
overexpresses ZmWRKY40 promotes the biosynthesis of flavonoids, increases POD and
CAT activities, and reduces the ROS content, which improves the drought stress tolerance
of the plant [298].

5.4. Transgenic Technology Used in Enhancing Low Temperature Resistance

Low temperatures significantly increase the content of flavonoids via the regulation of
genes involved in flavonoid biosynthesis [299]. The overexpression of SlF3H in tobacco
plants strongly induces the expression of CHS, CHI, and FLS, and increases the contents
of anthocyanins and other flavonoids; this improves the tolerance of the plant to cold
stress [227]. Transgenic Arabidopsis that overexpress OrbHLH001 has been shown to in-
creases the accumulation of flavonoids such as flavonols, anthocyanins, and flavanones
through the regulation of CHS, CHI, F3H, and C4H, which enhance the tolerance of trans-
genic Arabidopsis to freezing and salt stress [239]. The overexpression of SlNAM1 in tobacco
plants accumulates many more anthocyanins and other flavonoids, thus improving the
cold tolerance of the plants [300].

6. Conclusions and Future Prospects

The biosynthesis of flavonoids is the most studied pathway of secondary metabolism in
plants. The defensive role of flavonoids in plants against various biotic and abiotic stresses
was reviewed in Figure 3, and their significant contributions to plant resistance were also
discussed. Flavonoids contain several subgroups, including anthocyanidins, flavonols,
flavones, flavanols, flavanones, chalcones, dihydrochalcones and dihydroflavonols, which
are widely distributed in various plants. However, the detailed functions of particular
flavonoids are still not clear, and need to be explored. The roles of specialized flavonoids in
response to various stresses are also worth evaluating. With the rapid advancements made
in sequencing technology, there have been major achievements regarding the identification
of candidate genes associated with flavonoid biosynthesis. Although many genes have
been identified, some specific genes associated with certain important flavonoids are
poorly understood, and need to be studied further. Although many researchers have
explored the functions of genes associated with flavonoid biosynthesis through transgenic
approaches, it may take a long time to verify their gene functions. It is evident that
flavonoids play important protective roles against harmful biotic and abiotic stresses, but
that the knowledge of flavonoids under various stresses is still incomplete and requires
extensive research.
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