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Abstract: [3 + 2] Cycloaddition reactions with the participation of Z-C-(3-pyridyl)-N-methylnitrone
and series of E-2-R-nitroethenes were both experimentally and theoretically explored in the frame-
work of Molecular Electron Density Theory. It was found that all considered processes are realized
under mild conditions and in full regio- and stereocontrol. The ELF analysis additionally showed
that the studied reaction proceeds by a two-stage, one-step mechanism.
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1. Introduction

Nicotine (1-methyl-2-(3-pyridyl)-pyrrolydine) is a heterocyclic type alkaloid. This
compound is a colorless, odorless, and oily liquid in terms of physicochemical properties,
which easily undergoes oxidation, and as a result of which it browns over time [1]. It is
characterized by a sharp, scorching smell. Nicotine is a bioactive substance that affects
acetylcholine receptors (nAChR), and it is involved in many functions of the central nervous
system (OUN). Such action has a huge impact on the human body because it increases the
synthesis of endogenous neurotransmitters, which enhances the feeling of pleasure and
affects the improvement of memory and executive functions [2–4]. It is worth mentioning
that many bioactive analogs of nicotine are known (Scheme 1).
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At present, the question of the preparation of new analogs of nicotine is the subject of
research of many scientific groups. Our current work is a part of this trend. We decided to
examine the course of the [3 + 2] cycloaddition (32CA) reaction with the participation of
Z-C-(3-pyridyl)-N-methylnitrone (1) and the series of E-2-R-nitroethenes (2a–c) substituted
with methyl and trihalomethyl groups. In our opinion, this approach presents a chance for
an easy, effective, and selective preparation of target compounds, which should exhibit the
real nature of nicotinoids. It should be underlined that the presence of the nitro group in
the adducts widens the range of potential directions of further functionalization [5–7].

2. Results

[3 + 2] cycloaddition reaction with the participation of Z-C-(3-pyridyl)-N-methylnitrone
(1) and E-2-R-nitroethenes (2a–c) can theoretically lead to a mixture of four regio- and
stereoisomeric cycloadducts (Scheme 2). In the first stage of our research, we decided
to identify the real reaction course. For these considerations, we started with the model
reaction involving E-1-nitroprop-1-ene (2a). It was found that in the benzene solution,
the analyzed reaction easily proceeds at r.t using a 1:2 molar ratio of reagents 1 and 2.
The reaction progress was monitored using TLC and HPLC techniques. In this way, we
established that the conversion of nitrone ended after 24 h. The post-reaction mixture
was evaporated to dryness. The analysis of the residue only showed the presence of one
reaction product, which was isolated by simple crystallization from ethanol. Its constitution
was examined on the basis of the data of the spectral analysis. The HPLC–MS studies
confirmed that the compounds had the proper molecular weights and, in all cases, expected
protonated pseudo-molecular ions [M + H]+ were observed as only intensive signals in MS
spectra. Notably, the compound possessing the Cl heteroatom had a very specific isotopic
pattern, which was identical to that theoretically calculated under the consideration of
the numbers of those atoms in the molecule (m/z: 325.9866 (100.0%), 327.9836 (95.9%),
329.9807 (30.6%), 326.9900 (10.8%), 328.9870 (10.4%), 330.9841 (3.3%), 331.9777 (3.3%),
326.9836 (1.1%), 328.9807 (1.1%)). The combination of the observed pseudo-molecular ion
of proper value m/z and isotopic pattern unambiguously proved the molecular formulae
of the new compound. On the recorded MS spectra, there was no fragmentation and the
structures of studied compounds, which, therefore, were proved by NMR.
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In particular, on the 1HNMR spectrum, three types of signals were detected. These
signals are connected with the existence of (a) methyl group (2.74 ppm), (b) azolidine ring
protons (4.19–5.54 ppm), and (c) pyridine ring protons (7.33–8.65 ppm). Most important for
the determination of the chemical structure are azolidine ring protons, which create the
AMX spin system. In particular, in a relatively weaker field, the doublet connected with the
H3 proton was detected. Signals from H4 and H5 protons (doublet of doublets and doublet
respectively) exist in a slightly stronger field. The chemical shift and multiplicity of the
H4 signal confirms, without any doubt, that the nitro group is located on the C4 carbon
atom of the heterocyclic ring. Then, values of H3–H4 and H4–H5 coupling constants clearly
indicate the stereochemistry of the analyzed structure. In particular, the J = 4.51 Hz confirms
the trans-relation of protons H4 and H5, whereas J = 8.07 Hz confirms the cis-relation of
protons H3 and H4.

For the full characterization of the isolated compound, we also registered its 13CNMR
spectrum (see Supplementary Material). On this spectrum, respective signals connected
with all expected carbon atoms were detected. In conclusion, for the isolated adduct, the con-
stitution of 3,4-cis-4,5-trans-2-methyl-3-(3-pyridyl)-4-nitro-5-trichloromethylisoxazolidine
(4a) should be assigned. In a similar way, we examined 32CAs with the participation of
E-3,3,3-tribromo-1-nitroprop-1-ene (2b) and E-1-nitroprop-1-ene (2c). It was found that the
selectivity of the mentioned reactions is identical to the case of 32CA 1 + 2a. In both cases,
respective 3,4-cis-4,5-trans-2-methyl-3-(3-pyridyl)-4-nitro-5-trihalomethylisoxazolidine was
detected in the postreaction mixture as a single product. Therefore, the described pro-
cess can be treated, in some respects, as a general methodology for the preparation of
oxygen-containing nitronicotinoids.

In the second stage of our research, we decided to shed a light on the molecular
mechanism of the formation of detected cycloadducts. It is important because the latest
discoveries in the research of the cycloaddition reaction mechanism fully undermined the
definition of the “concerted” 32CA mechanism [8,9] with the “pericyclic” reorganization
of electron density within the transition state. At this moment, it is evident that within
the course of the cycloaddition process, many stages with different types of electron
flux are possible [10,11]. The full description of the electron reorganization requires a
detailed Molecular Electron Density Theory (MEDT) study based on Electron Localization
Function (ELF) techniques. In this study, we carried out our investigation in relation to
the 1 + 2a→ 4a model process. A similar analysis was successfully performed for several
different types of bimolecular processes [12–14].

The topological analysis of the ELF allows a simple connection between the electron
density distribution and the chemical structure [15]. Therefore, in order to characterize
the electronic structure of the 1-nitropropene 2c, its halogenated derivatives 2a and 2b,
and the nitrone 2, a topological analysis of the ELF was conducted. ELF basins and the
most relevant valence basins are shown in Figure 1, where monosynaptic basins, labeled
V(A), are related to nonbonding regions, whereas disynaptic basins V(A,B) denote bonding
regions between atoms A and B.

Topological analysis of the ELF of nitrone 1 shows the presence of one disynaptic
basin V(C,N), integrating 3.78 e, and one disynaptic basin V(N,O), only integrating 1.44 e,
representing bonding regions of C=N and N-O bonds, respectively. The two monosynaptic
basins V(O) and V’(O), integrating a total of 5.92 e, represent the nonbonding electron
density of O1. At 1-nitropropenes 2a–c, two disynaptic basins V(C,C) and V’(C,C), gathering
a total population of 3.55 e, are observed.

The ELF topology of nitrone 1 indicates a highly polarized, underpopulated, N-O bond
with electron density concentrated at the oxygen. The lack of pseudoradical or carbenoid
centers suggests a zwitterionic-type of reactivity of the used three-atom-component (TAC).
Furthermore, 1-Nitropropenes 2a–c show no change of electron density at the ethylene
C=C double bond, independently of halogenation of the methyl group.

Then, the charge distribution of these molecules was analyzed by Natural Population
Analysis (NPA) [16,17]. NPA of the nitrone 1 shows negatively charged oxygen and carbon
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of the methyl group, by −0.54 and −0.36 e, respectively. The nitrogen of the nitrone
group has a slight positive charge of 0.11 e, and the carbon atom is almost neutral. In
the 1-nitropropene series 2a–c, a reversal of polarity at the ethylene double bond can be
observed in response to the halogenation of the methyl group. The nitro group substituted
carbon of 2c exhibits a negative charge of −0.12 e, while the other vinylic carbon is charged
by −0.10 e. The charge distribution at 2a and 2b is reversed, showing a charge of −0.22
and −0.23 e, respectively, at the carbon closer to the trihalogenated methyl group, with the
other one having a charge of only −0.06 and −0.07 e, respectively.
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2.1. Analysis of the Conceptual DFT Reactivity Descriptors

To provide a quantitative view of reactivity in terms of classical concepts, such as nu-
cleophilicity and electrophilicity, the Conceptual Density Functional Theory (CDFT) [16–18]
indices were calculated. The global reactivity indices have been proven to be a powerful
tool to describe the reactivity in many studies of polar reactions [19–23] The calculated
values for 1-nitropropene 2c, its halogenated derivatives 2a and 2b, and nitrone 1 are
gathered in Table 1.

Table 1. The global reactivity descriptors calculated at the B3LYP/6-31G(d) level of theory. The
electronic chemical potential µ, chemical hardness η, electrophilicity ω, and nucleophilicity N of
studied reagents.

µ η ω N

3,3,3-trichloro-1-nitropropene 2a −5.74 5.35 3.07 0.69
3,3,3-tribromo-1-nitropropene 2b −5.50 5.03 3.00 1.09

1-nitropropene 2c −5.00 5.59 2.23 1.32
N-methyl-C-3-pyridylnitrone 1 −3.65 4.33 1.53 3.29

The electronic chemical potential µ of 1-nitropropenes 2a–c exhibits a much lower
value than the nitrone 1, from −5.00 eV to −5.74 eV and −3.65 eV, respectively, indicating
that, in a polar process, the electron density transfer will take place from the nitrone 1 to
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1-nitropropenes. Polar reactions, where the electron density flows from the TAC to ethylene,
can be described as the forward electron density flux (FEDF) [24,25]; in other words, where
the TAC acts as the nucleophile.

The chemical hardness η indicates the resistance of the molecule to exchange electron
density with the environment. The 1-nitropropenes 2a–c show relatively high hardness in
the range of 5.03–5.59 eV, whereas the nitrone 1 presents a lower value of 4.33 eV.

The electrophilicity ω and nucleophilicity N of 1 are 1.53 and 3.29 eV, respectively,
placing it among strong electrophiles and strong nucleophiles [26]. On the other hand, all
of the considered 1-nitropopenes are classified as marginal nucleophiles and moderate
electrophiles, except 2a, being a marginal electrophile. The halogenation of 1-nitropropene
at the methyl group drastically increases the electrophilicity in H (2.33 eV) < Br (3.00 eV) <
Cl (3.07 eV) series and decreases nucleophilicity in a reverse order.

The Parr functions [27], as have been shown in many studies [28], are one of the most
accurate tools for predicting the local reactivity of molecules in polar reactions. In order to
try and predict the most favorable interaction in the studied systems, the Parr functions
were analyzed.

The local nucleophilic Pk
− Parr function in the nitrone 1 exhibits the highest value,

0.52, on the oxygen atom (Figure 2). On the other hand, the most electrophilic center is
located at the beta-position of the nitrovinyl moiety. Therefore, the local interactions favor
the formation of 4-nitroisoxazolidines. This correlates with the experimentally observed
regioselectivity. It should be noted at this point that the cis/trans diastereoselectivity is
determined by stabilizing secondary orbital interactions (SOI) between pz orbitals at the
aryl ring and at the nitrogroup. This favors the formation of 3,4-cis configuration in the
final adduct. An identical effect was recently detected in the case of many examples of the
32CAs between aryl-substituted TACs and conjugated nitroalkenes [29–32].
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2.2. BET Mechanistic Investigations

In order to determine full characterization of the molecular mechanism of [3 + 2]
cycloaddition reaction of C-3-pyridino-N-methyl nitrone 1 with halogenated 1-nitroprop-
2-enes, a bonding evolution theory (BET) study of the bonding changes along the exper-
imentally favorable reaction path involving 3,3,3-trichloro derivative 2b was performed.
Detailed BET data of the relevant points of the reaction are given in Table S1 of the Supple-
mentary Information. These points were chosen because of a change in electronic structure
compared to the previous point; a basin disappears or is created.

The BET study of 344 points along the reaction path revealed twelve phases, during
which the following observations could be made (Scheme 3, Figure 3):

1. From phase I to phase IV, the topological changes leading to the creation of the
pseudoradical center [33] on C10 are taking place. In structures P1 and P2, the V(N13)
and V’(N13) monosynaptic basins respectively vanish, increasing the population in
the V(C4,N13) disynaptic basin. Then, the V’(C4,C5) disynaptic basin of the double
bond merges with V(C4,C5), increasing its integration in P3. At the same time, the
N2-O1 bond becomes depopulated, transferring 0.12 e to the V(C3,N2) disynaptic
basin. These changes contribute most to the energetic cost, 11.0 kcal·mol−1, which is
only 1.1 kcal·mol−1 lower than the TS (coincidentally being the P7 structure);

2. At the start of phase V, the pseudoradical center at C4 is created from the electron
density of the C4-C5 bond, with an initial population of 0.44 e, after which the V(C4,C5)
disynaptic basin is further depopulated, increasing the V(C4) monosynaptic basins
integration;

3. Then, the V(N2) monosynaptic basin representing nonbonding electron density is
created at P5 with an initial population of 0.90 e originating from the V(C3,N2) basin.
The V(N2) starts with only 39% of its final population, to which the V(C3,N2) disy-
naptic basin contributes further in the leading phases, becoming an underpopulated
double bond;

4. At P6, the V(C5) monosynaptic basin is created from the population of disynaptic
basin V(C4,C5), only integrating 0.07 e for a duration of a short phase VII, after which
it disappears. At P8, a new bond is created, at an O-C distance of 1.658 Å, by the
donation of nonbonding electron density of O1. The new V(O1,C5) disynaptic basin
starts with a population of 0.76 e, ultimately increasing to 1.29 e at the cost of the
nonbonding electron density of O1 and the V(N2,O1) disynaptic basins integration.
The N2-O1 single bond becomes strongly underpopulated with its final integration
of 0.94 e;

5. Phase X starts with the creation of a pseudoradical center at C3 with a population of
0.12 e originating from the disynaptic basin V(C3,N2). Then, at P10, the C3-C4 single
bond is created by the coupling of C3 and C4 pseudoradical centers, integrating 0.31
and 0.93 e, respectively, just before the event.

6. The formation of the second C3-C4 single bond begins while the first O1-C5 single
bond has reached 81% of its final population. Therefore, the mechanism of 32CA of
nitrone 1 and nitroalkene 2a proceeds by a two-stage one-step mechanism [34].

7. Both bond formations follow previously presented models [35,36], but show reverse
regioselectivity to the one deduced from the Parr function.
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3. Materials and Methods
3.1. Materials

Z-C-(3-pyridyl)-N-methylnitrone (1) was prepared via condensation of a 3-pyridyl
aldehyde with the methylhydroxylamine in an etanolic solution according to the already
known procedure [37]. Conjugated nitroalkenes were prepared from respective nitroalco-
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hols via respective nitroalkyl esters according to protocols described in the literature [38–40].
Commercially available (Sigma-Aldrich Poland, Merck Poland) reagents and solvents were
used in all experiments.

3.2. Analytical Techniques

HPLC analyses were carried out using a Knauer device with a UV VIS detector (LiChro-
spher 18-RP 5 µm column, eluent: 75% methanol). M.p. values were measured on the
Boetius apparatus and were uncorrected. IR spectra were derived from the FTS Nicolet IS 10
spectrophotometer. UV/Vis spectra were recorded using a spectrometer UV-5100 BIO-SENS
and were determined for the 200–500 nm range. MS spectrums were registered using a
high-performance liquid chromatograph Agilent 1200 conjugated with a spectrometer mas
Agilent 6120 Agilent Technologies, Inc., Santa Clara, CA, USA. Stationary flow 0.35 mL/min
acetonitrile/water = 50/50, column ReproSil-Pur Basic-C18, 3 µm, 100 × 2 mm (Dr. Maisch,
High Performance LC GmbH, Beim Brückle 14, Ammerbuch, Germany). The isotopic
pattern and high-resolution mass were calculated in the software package Perkin Elmer
ChemDraw Prime v.20 (PerkinElmer Waltham, MA, USA). NMR spectrums were registered
using Bruker AV500 (1H 500 MHz) spectrometers (Bruker; Billerica, MA, USA). All spectra
were obtained in CDCl3 or DMSO-d6 solutions and the chemical shifts (δ) are expressed in
ppm using the internal reference to TMS.

3.3. Cycloaddition between Z-C-(3-pyridyl)-N-methylnitrone and Nitroalkenes–General Procedure

A solution of nitroalkene (0.02 mol) and nitrone (0.01 mol) in dry benzene (25 mL) was
mixed at room temperature for 24 h. The post-reaction mixture was filtered, and the solvent
was evaporated in a rotary evaporator. The residue was recrystallized from the ethanol.
Pure products were identified on the basis of spectral data. The obtained characteristics are
collected in the Supplementary Materials.

3.4. ELF Computational Study

DFT calculations were conducted using the hybridωB97X-D functional [41], which
is included in the GAUSSIAN 16 package [42], along with the 6-311G(d) basis set. All
stationary points were characterized by frequency analysis; transition states (TSs) showed
only one negative eigenvalue in their Hessian matrices; substrates and products showed
only positive eigenvalues in their Hessian matrices. The influence of the solvent on the
reaction was included by using the IEFPCM algorithm [43]. All calculations were made for
molecules at 298.15 K and 1 atm.

The global electron density transfer [35,44] (GEDT) was calculated using the equation
GEDT (f)n = ∑(q∈f) q, where q are the charges, computed by natural population analy-
sis [45,46] (NPA), of all atoms belonging to one of the two frameworks (f) at the TS. The
global reactivity indices (electronic potential µ, chemical hardness η, global electrophilicity
ω, and global nucleophilicity N) were calculated at B3LYP/6-31G(d) computational level
using the equation described in [47].

Electron Localization Function (ELF) [46] analysis was performed using the TopMod
package [47] at the standard cubical grid step size of 0.1 Bohr. To visualize the molecular
geometries and ELF basin attractors, the GaussView program [48] was used.

4. Conclusions

[3 + 2] Cycloaddition reactions Z-C-(3-pyridyl)-N-methylnitrone with E-2-R-nitroethenes
are realized under mild conditions and with full regio- and stereochemical control. Ob-
tained products can be considered as nicotinoids, with possible applications as biological
active compounds. The comprehensive MEDT study exhibits all important mechanistic
backgrounds of the described transformations. In particular, according to the Domingo
terminology, considered processes should be classified as two-stage, one-step processes.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28083535/s1, Table S1. ELF valence basins populations,
distances of the forming bonds, relative electronic energies, GEDT and IRC values of the IRC
structures, MC-P11, defining twelve phases characterizing the molecular mechanism of the [3 + 2]
cycloaddition reaction of nitrone 1 and 3,3,3-trichloro-1-nitropropene 2a. Distances are given in
angstroms, Å, GEDT values, and electron populations in an average number of electrons, e, relative
energies in kcal mol−1 and IRC values in a.
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