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Abstract: Protic pyrazoles (N-unsubstituted pyrazoles) have been versatile ligands in various fields,
such as materials chemistry and homogeneous catalysis, owing to their proton-responsive nature.
This review provides an overview of the reactivities of protic pyrazole complexes. The coordination
chemistry of pincer-type 2,6-bis(1H-pyrazol-3-yl)pyridines is first surveyed as a class of compounds
for which significant advances have made in the last decade. The stoichiometric reactivities of protic
pyrazole complexes with inorganic nitrogenous compounds are then described, which possibly
relates to the inorganic nitrogen cycle in nature. The last part of this article is devoted to outlining
the catalytic application of protic pyrazole complexes, emphasizing the mechanistic aspect. The
role of the NH group in the protic pyrazole ligand and resulting metal–ligand cooperation in these
transformations are discussed.

Keywords: pyrazole; pyrazolato; pincer ligand; metal–ligand cooperation; homogeneous catalysis;
bifunctional catalysis; transfer hydrogenation; hydrazine

1. Introduction

Pyrazole is an aromatic five-membered N-heterocycle containing a potentially Brøn-
sted acidic NH group adjacent to a Schiff-base nitrogen atom. This amphiprotic character
gives rise to the rich coordination chemistry of pyrazoles. Unlike aprotic N-heterocycles,
such as pyridine, pyrazole can be deprotonated easily, and the resulting pyrazolate anion
bridges two metal centers to form di- or polynuclear complexes in some cases. The NH
group also provides a clue to integration of pyrazole units, making multidentate ligands,
such as poly(pyrazolyl)borates [1]. The flexible ligand design based on the easy construc-
tion of the pyrazole ring [2–4] and N-functionalization has led to the structural diversity of
the pyrazole complexes [5–8] and their applications in various fields, including materials
chemistry [9], homogeneous catalysis [10,11], bioinorganic modeling [12], supramolecular
chemistry [13–15], and medicinal chemistry [16].

Coordination of a pyrazole to a Lewis acidic metal center renders the pyrazole NH
proton more acidic [2]. The increased Brønsted acidity causes intra- and intermolecular
hydrogen bonding as well as facile deprotonation that switches the coordination mode from
a lone-pair donating L-type to a covalent X-type. These events should make an electronic
impact on the complex. It is to be emphasized that the deprotonation in the position β to
the metal may be coupled with ligand dissociation on the metal center. As illustrated in
Scheme 1a, elimination of HX or outer sphere transfer of nucleophilic group X along with a
proton from such a “β-protic” pyrazole complex would yield a coordinatively unsaturated
pyrazolato complex. Bond cleavage of pronucleophile HX on this complex regenerates the
pyrazole complex. The interconversion associated with change in the coordination mode
of the pyrazole rather than the formal oxidation state of the metal would mediate various
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bond activation and transfer of HX. Such metal–ligand cooperative transformations have
also been known for related proton-responsive ligands [17–26], exemplified in Scheme 1b.
Nevertheless, difference in ligand acidity and relative positions to the metal center in the
protic pyrazole complexes brings about their unique reactivities. Tamm and co-workers
demonstrated that the pyrazolylborane 1 reacts with dihydrogen gas at room temperature
to afford the zwitterionic pyrazolium borate 2 (Scheme 2) [27]. Heterocumulenes, such
as carbon dioxide, also react with 1 to give the corresponding adduct 3, for example [28].
These reactions showcase the pyrazole-based bifunctional reactivities operating even in the
field of transition-metal-free, frustrated Lewis pair chemistry.
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Scheme 1. (a) Elimination and addition of pronucleophiles HX in pyrazole complexes. (b) Represen-
tative examples of related metal–ligand cooperative interconversion.
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In this review, we outline the reactivities of the β-protic pyrazole complexes of tran-
sition metals. The proton-responsive nature and catalytic application of this class of
complexes were surveyed about a decade ago [10,11]. This article updates these earlier re-
views by focusing on their stoichiometric and catalytic reactivities. Special attention will be
paid to the mechanistic aspects in the discussion on the catalysis. Protic pyrazoles are also
known as modules in spin-crossover materials [29–33] and phosphorescent complexes [34],
which are not covered in this review. The readers can also refer to papers [33,35,36] to learn
the design and synthesis of specific classes of protic pyrazole ligands.

2. Reactions of Protic Pyrazole Complexes
2.1. Pincer-Type Complexes Bearing Protic Pyrazole Arms

Chelation has been a rational strategy to ensure the coordination of pyrazoles for metal–
ligand cooperative reactivities [35,37]. During the last decade, significant advances have
been made particularly in the coordination chemistry of 2,6-bis(1H-pyrazol-3-yl)pyridines
(RLH2; R represents the substituent at the 5-position of the pyrazole ring), which place the
two protic pyrazole groups at trans positions rigorously, owing to the rigid pincer-type
framework [38]. This class of compounds have long been used as a ligand in iron(II)
complexes showing thermal and photochemical spin-state transitions [29–33]. The protic
pyrazole groups therein greatly affect the spin-crossover properties of the complexes
through hydrogen bonding interaction with surrounding counteranion and solvent. In this



Molecules 2023, 28, 3529 3 of 37

section, we describe the transition metal RLH2 complexes and related pincer-type pyrazole
complexes, focusing on their stoichiometric reactivities, which originate mostly from the
protic pyrazole units.

2.1.1. Bis(1H-pyrazol-3-yl)pyridine Complexes
Ruthenium and Osmium

In 2010, Thiel and co-workers reported that deprotonation of the nBuLH2-ligated ruthe-
nium(II) complex 4a under carbon monoxide leads to the formation of the bis(pyrazolato)
carbonyl complex 5 (Scheme 3) [39]. The result shows the diprotic nature of the pincer-type
complex 4a. The nBuL complex 5 is also obtained by the dehydrogenative coordination of
nBuLH2 to [RuH2(CO)(PPh3)3].
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Scheme 3. Dehydrochlorination of a protic pincer-type ruthenium complex in the presence of
carbon monoxide.

Soon after that, our group demonstrated that the deprotonation can be done stepwise
and reversible at least in the first step [40]. Thus, the ruthenium(II) complex 4b having
a tert-butyl substituted pincer ligand, tBuLH2, undergoes reversible deprotonation by
equimolar amount of a base to afford the pyrazole–pyrazolato complex 6 (Scheme 4). The
partial deprotonation of the pincer ligand is established by the 1H NMR spectrum of 6,
showing the D2O-exchangeable NH resonance at δ 10.17 with only 1H intensity as well
as inequivalence of the two pyrazole arms. The single crystal X-ray analysis allows the
detailed structural comparison between the pyrazole and deprotonated pyrazolato rings.
The deprotonated pyrazole group lacks neighboring hydrogen bond acceptors and features
a smaller NαNβC angle (106.8(4)◦) due to the increased s character of the lone pair electrons
on the deprotonated nitrogen atom [10,41]. Complete deprotonation of the pyrazole arms is
achieved by an additional base in methanol, giving the bis(pyrazolato) methanol complex
7. In the crystal of 7, a hydrogen bonding network involving a co-crystalized methanol is
observed (inset). The methanol ligand in 7 is replaced by molecular nitrogen and oxygen to
yield the dinitrogen complex 8 and a side-on peroxo complex, respectively.
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Some osmium complexes having RLH2 or its deprotonated form are known [42,43].
Substitution reactions of [OsCl2(H2O)(tBuLH2)] by bio-relevant molecules are reported [43].

Rhodium and Iridium

Goldberg and co-workers reported the reactivities of the iridium(I) complex [Ir(tBuLH2)
(coe)2]PF6 (9; coe = cyclooctene) bearing labile coe ligands (Scheme 5) [44]. The coe ligands
are easily displaced by carbon monoxide, giving the bis(carbonyl) complex 11 featuring
κ2-coordination of the tBuLH2 ligand. When 11 is dissolved in acetone-d6 under N2, a
monocarbonyl species 10 having equivalent pyrazole arms is observed, suggesting an
equilibrium between 10 and 11. Addition of 4-tert-butylpyridine (tBuPy) to 11 results in an
oxidative addition of one of the two pyrazole NH groups to afford the hydridoiridium(III)
pyrazolato complex 12. Co-crystallization of an additional pyridine, which is engaged in
hydrogen bonding with the pyrazole arm of the tBuLH ligand, has been confirmed by X-ray
analysis. Deprotonation of 12 affords the bis(pyrazolato) complex [IrH(CO)(tBuPy)(tBuL)].
Triphenylphosphine also reacts with the carbonyl complex 11 with oxidative addition of
the pyrazole arm; however, the isolated product is [IrH(CO)(PPh3)2(tBuLH)]PF6, having a
κ2-bound tBuLH ligand. Interestingly, thermolysis of 12 leads to dinuclear reductive elimi-
nation of H2 to give the diiridium(II) complex 13. Complex 13 is also formed by treatment
of 12 with (Ph3C)PF6. Deprotonation of the dicationic complex 13 yields the bis(pyrazolato)
complex [{Ir(CO)(tBuPy)(tBuL)}2]. Isolation of the iridium complexes ranging from Ir(I) to
Ir(III) indicates the electronic flexibility of the RLHn (n = 0–2) ligands.
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On the other hand, Bogojeski and Bugarčić [45] and we [46] reported the synthesis and
crystal structures of the trichlorido rhodium(III) and iridium(III) complexes [MCl3(tBuLH2)]
(M = Rh, Ir), respectively. The kinetics of the substitution reactions of the rhodium complex
with small biomolecules, such as amino acids, is studied [45].

Platinum

Goldberg and co-workers [47] demonstrated that reaction of the chlorido complex
14 with methyllithium results in methylation of the platinum center, along with depro-
tonation of the tBuLH2 ligand to afford the methyl complex 15 with a dangling lithium
cation on one of the two pyrazolato arms (Scheme 6). In the solution of THF-d8, the pin-
cer ligand in 15 is symmetric, and the lithium cation is removed by the treatment with
bis(triphenylphosphine)iminium (PPN) chloride to give the anionic complex 16. The methyl
bis(pyrazolato) complex 16 undergoes three-step protonation with a pyridinium tetraflu-
oroborate. While the first protonation product is insoluble and remains uncharacterized,
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following protonation yields the cationic methyl complex 17 and acetonitrile complex 18
sequentially. Thus, the first site of protonation is the pyrazolato ligand rather than the
Pt–Me bond. Methane release from [PtMe(tBuLH2)]Cl, a chloride salt of 17, is not observed
in C6D6 until 180 ◦C, indicating that the high energy barrier for the intramolecular proton
transfer to the methyl ligand.

Molecules 2023, 28, x FOR PEER REVIEW 5 of 38 
 

 

bis(pyrazolato) complex 16 undergoes three-step protonation with a pyridinium tetra-
fluoroborate. While the first protonation product is insoluble and remains uncharacter-
ized, following protonation yields the cationic methyl complex 17 and acetonitrile com-
plex 18 sequentially. Thus, the first site of protonation is the pyrazolato ligand rather than 
the Pt–Me bond. Methane release from [PtMe(tBuLH2)]Cl, a chloride salt of 17, is not ob-
served in C6D6 until 180 °C, indicating that the high energy barrier for the intramolecular 
proton transfer to the methyl ligand. 

 
Scheme 6. Reactions of the bis(pyrazolato) pincer-type platinum complex 14. PPN = (Ph3P)2N+; Hpy 
= 2,6-dimethoxypyridinium cation. 

In this connection, uncharged bis(pyrazolato) phosphine complexes [Pt(PPh3)(RL)] 
are also synthesized [48]. The complexes display green phosphorescence in solution and 
in the solid state; however, the reactivities are unknown. 

First-Row Transition Metals 
The 3d transition metal complexes of RLH2 have been known much earlier [49]. Most 

of the studies were, however, limited to their structural determination, except for the spin-
crossover properties of the iron(II) complexes with the Fe:ligand ratio of 1:2 until recently. 
In 2013, we synthesized a 1:1 complex 19 of iron(II) and tBuLH2 and uncovered the reactiv-
ity [50]. The paramagnetic dichlorido complex 19 is converted to the diamagnetic phos-
phine complex 20a with the aid of sodium triflate. Complex 20a catalyzes disproportion-
ation of hydrazine (vide infra). We later obtained the cobalt and manganese analogues 
[MCl2(tBuLH2)] (M = Co (21b), Mn) and explored the ligand substitution reactions of 19 and 
21b, as summarized in Scheme 7 [49]. The iron and cobalt complexes, 19 and 21b, are 
converted into the high-spin, triflato complexes 22, upon treatment with silver triflate in 
acetonitrile. The iron complex 22a reacts with dioxygen to give the oxido-bridged 
diiron(III) complex 23 [49,51]. The two pincer ligands in 23 are almost perpendicular, and 
the protic pyrazole arms make a hydrogen bond with the triflato ligand on the opposite 
iron center. The low-spin phosphine and carbonyl complexes, 20 and 24, can further be 
derivatized by sequential ligand replacement of the triflato complexes of 22. The ammine 
complex [Fe(NH3)(PMe3)2(tBuLH2)](OTf)2 is obtained similarly [50]. 

N

NH
N

N
NH

Pt Cl

tBu

tBu

Cl

N

N
N

N
N

Pt Me

tBu

tBu

Li Cl

thf

N

N
N

N
N

Pt Me

tBu

tBu

PPN

Li(thf)3

N

NH
N

N
NH

Pt Me

tBu

tBu

BF4

N

NH
N

N
NH

Pt NCCD3

tBu

tBu

(BF4)2

(1) MeLi
     6 equiv
     THF
(2) H2O

14 15 16

(PPN)Cl
1 equiv
THF
−2LiCl

(HPy)BF4
2 equiv
CD3CN

18 17

CD3CN
−CH4

(HPy)BF4
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In this connection, uncharged bis(pyrazolato) phosphine complexes [Pt(PPh3)(RL)] are
also synthesized [48]. The complexes display green phosphorescence in solution and in the
solid state; however, the reactivities are unknown.

First-Row Transition Metals

The 3d transition metal complexes of RLH2 have been known much earlier [49]. Most
of the studies were, however, limited to their structural determination, except for the
spin-crossover properties of the iron(II) complexes with the Fe:ligand ratio of 1:2 until
recently. In 2013, we synthesized a 1:1 complex 19 of iron(II) and tBuLH2 and uncovered the
reactivity [50]. The paramagnetic dichlorido complex 19 is converted to the diamagnetic
phosphine complex 20a with the aid of sodium triflate. Complex 20a catalyzes dispropor-
tionation of hydrazine (vide infra). We later obtained the cobalt and manganese analogues
[MCl2(tBuLH2)] (M = Co (21b), Mn) and explored the ligand substitution reactions of 19
and 21b, as summarized in Scheme 7 [49]. The iron and cobalt complexes, 19 and 21b, are
converted into the high-spin, triflato complexes 22, upon treatment with silver triflate in
acetonitrile. The iron complex 22a reacts with dioxygen to give the oxido-bridged diiron(III)
complex 23 [49,51]. The two pincer ligands in 23 are almost perpendicular, and the protic
pyrazole arms make a hydrogen bond with the triflato ligand on the opposite iron center.
The low-spin phosphine and carbonyl complexes, 20 and 24, can further be derivatized
by sequential ligand replacement of the triflato complexes of 22. The ammine complex
[Fe(NH3)(PMe3)2(tBuLH2)](OTf)2 is obtained similarly [50].
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Scheme 7. Ligand substitution of iron and cobalt complexes of tBuLH2.

Following that, Caulton and co-workers reported dehydrochlorination of the iron(II) and
cobalt(II) complexes 21 with two equiv of a lithium silylamide in THF (Scheme 8) [52,53]. Full
dehydrochlorination is, however, not achieved, and the products are the monochlorido-
bridged, anionic complexes 25. For cobalt, the reactions in diethyl ether or toluene yield
single crystals of unexpected polynuclear complexes, apparently caused by partial dissocia-
tion of the tBuLH2. Complexes 25 can be regarded as lithium chloride adducts of dimers of
the expected two-fold dehydrochlorination products MtBuL with coordinative unsaturation.
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In contrast, treatment of the iron complex 21a in the presence of two-electron donor
ligands results in complete dissociation of the chloride ligands to give the bis(pyrazolato)
complexes, such as 26–28 (Scheme 9) [52]. The 4-dimethylaminopyridine (DMAP) complex
26 is paramagnetic, while the isocyanide complex 27 as well as the diphosphine complex
28 obtained similarly is diamagnetic. The DMAP complex 26 is further converted to
the oxido-bridged Fe(III)2 complex 29 upon treatment with silver triflate, although the
oxidant remains unclear [54]. In 29, the Lewis-basic pyrazolate arms are bridged by the
silver cation. On the other hand, chloride abstraction of 21a with two equiv of NaBArF

4
(ArF = C6H3(CF3)2-3,5) in THF leads to the formation of the dicationic THF complex 30 [52],
which, however, is found to decompose into [Fe(tBuLH2)2]2+ with ligand redistribution
during recrystallization from dichloromethane.

As in the case of the iron analogue 21a, dehydrochlorination of the cobalt(II) com-
plex 21b in the presence of triethylphosphine affords the bis(phosphine) complex 31
(Scheme 10) [55]. Subsequent treatment with nitrous oxide results in oxidation of the
phosphine ligand to yield the (phosphine oxide)-bridged dinuclear complex 32. This
complex catalyzes oxidation of PEt3 and PPh3 with nitrous oxide or O2, owing to the
interconversion between 31 and 32. Meanwhile, the ligand basicity of 31 was suggested by
the formation of the cobalt(III) complex 33 with each pyrazolato arm binding to a silver cen-
ter [54]. Even cooperation of Lewis acid–Brønsted base centers is proposed for the oxidation
of 31 in dichloromethane to give the cobalt(III) chlorido complex 34 (Scheme 11) [56].
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Synthesis of the elusive, coligand-free bis(pyrazolato) complexes MRL has been
achieved for chromium(II) by redox-neutral, salt metathesis reaction of K2

tBuL [54] with
CrCl2 or treatment of a chromium(II) silylamide and tBuLH2 [57]. The primary product
was claimed to be the bis(pyrazolato)-type dimer 35, which subsequently converts into the
tetramer 36 during recrystallization (Scheme 12). Owing to the coordinative unsaturation,
35 reacts with four equiv of DMAP to give the mononuclear bis(dmap) complex 37 with a
square-pyramidal geometry. In contrast, addition of chloride anion to 35 affords the anionic
monochlorido complex 38, maintaining the pyrazolato-bridged dichromium(II) core.
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Scheme 12. Reactions of the pyrazolato-bridged dichromium complex 35. PPN = (Ph3P)2N+;
DMAP = 4-dimethylaminopyridine.

Cooperative reactivities of the Lewis acidic metal center and Brønsted basic pyrazolato
nitrogen atoms in 35 are also reported. Treatment of 35 with phenol does not result in
simple redox-neutral acid–base reaction to give a phenoxido–pyrazole complex; instead,
the Cr(II)Cr(III) mixed-valent phenoxido complex 39a is obtained (Scheme 12) [57]. The
oxidation has been explained by evolution of dihydrogen gas, which, however, is not
detected in the reaction mixture. Benzoic acid similarly reacts with 35 to yield the corre-
sponding benzoate complex 39b. On the other hand, treatment of 35 with an equimolar
amount of 2-naphthol (NapOH) results in partial dissociation of the pincer ligand to afford
the trinuclear Cr(II)Cr(III)2 complex [{(tBuLH2)Cr(ONap)(µ2-ONap)2}2Cr](Cl)2, wherein
the two chloride counteranions are accommodated between the pyrazole rings through
hydrogen bonding [57].

Chemical reduction of 35 with four equiv of KC8 suggests that the pincer-type bis(1H-
pyrazol-3-yl)pyridine ligand is redox non-innocent. The reaction eventually yields the
oxido-bridged dichromium complex [K4(thf)10][Cr2

tBuL2(µ2-O)] (40), possibly after reac-
tions with adventitious water and dihydrogen evolution as postulated in the previous
reactions (Scheme 12) [58]. The X-ray analysis of 40 revealed that the C–C bond distances
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around the 4-position of the pyridine ring (1.420(10)–1.439(10) Å) are much longer than
the distances of the C2–C3 and C5–C6 bonds (1.352(9)–1.367(8) Å), indicating reduction in
the pincer ligand tBuL with an unpaired electron at the 4-position of the pyridine ring. The
DFT calculation also supports the description of the oxidation state of 40 as Cr(II)(tBuL•−)
rather than Cr(I)tBuL.

In addition, reduction of 35 with two equiv of KC8 as well as oxidation of 35 with
ferrocenium cation is examined [58]. Recrystallization of the reaction products again results
in uptake of adventitious water to produce oxido-bridged tri- and tetranuclear complexes,
respectively, with ambiguous reaction stoichiometry. The reduced species is trapped
with carbon dioxide to afford a carbonato-bridged, dianionic–dinuclear complex [59].
On the other hand, the oxidation of 35 with a quinone gives rise to the formation of a
bis(semiquinone) Cr(III)2 complex [58].

2.1.2. Modified 1H-Pyrazol-3-yl Pincer Complexes

Partial replacement of the components in the protic pincer ligand RLH2, the central
pyridine and flanking pyrazoles, should tune the properties of their metal complexes as in
other pincer-type complexes. This section provides an overview of the reactivities of protic
pyrazole complexes obtained by ligand modification of RLH2.

Modification at Pincer Center

Introduction of a strong σ-donor as the central ligating atom in the protic pincer
framework should affect the reactivities of the trans ligand in particular. We reported
ligand substitution of the NCN pincer-type ruthenium complexes 41, which are obtained
by cyclometalation of the corresponding 1,3-bis(1H-pyrazol-3-yl)benzenes (Scheme 13) [46].
Owing to the trans effect of the central aryl group in the pincer ligand, the substitution
takes place even at room temperature to give 42, in contrast to the reaction of the NNN
pincer-type analogue 4b at 100 ◦C with the aid of a Lewis acid [60]. An iridium complex,
bearing this NCN pincer ligand, is also synthesized in a similar manner [46].
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Scheme 13. Ligand substitution of an NCN pincer-type protic pyrazole ruthenium complex.

We also installed an N-heterocyclic carbene (NHC) unit in the center of the pincer
framework furnished with two protic pyrazoles [61]. The increase in the electron density
of the resulting ruthenium complexes, such as 43, is indicated by the CV measurements.
Meanwhile, the CO stretching frequency of the carbonyl derivative is higher than that of
the pyridine-centered counterpart [Ru(CO)(PPh3)2(tBuL)] (1989 vs. 1964 cm−1). The DFT
calculations suggest that the twist of the pincer ligand due to the increase in the chelate
size in the NHC-centered pincer may lead to delocalization of the metal d-orbital to the
pyrazole π-orbitals, which reduces π-back donation to the carbonyl ligand.

In addition to the C-centered pincer ligands, a novel triprotic NNN pincer ligand
bearing a donating central nitrogen atom has been developed recently. The reaction of
iron(II) chloride with 1,3-bis(1H-pyrazol-3-ylimino)isoindoline results in tautomerization
of the ligand to give the 3-amino-1-imino-1H-isoindole complex 44 (Scheme 14). This
dichloridoiron(II) complex exhibits reactivities similar to those of the tBuLH2 complex
19 shown in Scheme 7 [62]. The CO stretching frequency of the carbonyl complex 46
(1963 cm−1) is much lower than that of the tBuLH2 analogue 24a (2005 cm−1) [49], indicating
the donating nature of the central isoindole unit. Importantly, 46 undergoes deprotonation
of the chelate backbone rather than the pyrazole groups to afford the isoindolin-2-yl
complex 47 bearing a monoanionic bis(pyrazole) pincer ligand.
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Scheme 14. Reactions of isoindoline-based pincer-type protic pyrazole iron complexes.

Unsymmetrical Pincer-Type Complexes

Replacement of one of the two pyrazole arms in pincer-type RLH2 ligands by other
donor groups has also been investigated. Such desymmetrization modifies the numbers and
acidity of the protic sites as well as the electronic and steric properties of the metal center.
We revealed that tautomerization of imidazole assisted by chelation with a pyrazolylpyri-
dine unit results in the formation of the protic pincer-type ruthenium(II) complexes 48,
having protic pyrazole and N-heterocyclic carbene (pNHC [63]) arms (Scheme 15) [60,64].
These complexes undergo reversible deprotonation to afford the corresponding pyrazolato
complexes 49, showing that protic pyrazole is more acidic than pNHC. Exhaustive deproto-
nation of 48a under carbon monoxide gives the pyrazolato–imidazolyl carbonyl complex
50 [60]. Similar treatment of 48b under dihydrogen results in heterolytic cleavage of H2
to yield the hydrido complex 51, in which the proton derived from H2 goes to the more
Brønsted basic imidazolyl arm [64].
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A tertiary amino group can also be incorporated into the protic pincer framework to
afford unsymmetrical pincer-type complexes with a hemilabile arm. After our isolation
of the ruthenium(II) and iron(II) complexes, such as 52 [65], Goldberg and co-workers
reported the reactivities of the platinum(II) complexes bearing this unsymmetrical protic
pincer ligand (Scheme 16) [47]. The methyl–pyrazolato complex 53, obtained from a
dimethylplatinum(II) complex and the free ligand, undergoes protonation at the pyrazolato
arm rather than the methyl ligand, as observed in the symmetrical bis(pyrazolato) complex
16 (vide supra). The reaction of 54 with hydrogen chloride leads to methane evolution
to afford the chlorido complex 55. In contrast, intramolecular proton migration from the
NH group to the methyl ligand appears more difficult. The methyl complex 54, with
a deuterium-labeled NH group, releases only unlabeled CH4 after being subjected to
the temperature higher than 100 ◦C. The absence of CDH3 generation indicates that the
methane is derived from an external proton source rather than the NH group. Interestingly,
heating of the methyl–pyrazolato complex 53 in benzene results in the formation of the
phenyl complex 56. The reaction in C6D6 revealed concurrent site-specific deuteration
of the methylene hydrogens in the ethyl groups of the pincer ligand, which implies the
hemilabile nature of the dialkylaminomethyl arm.
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Scheme 16. Synthesis and reactions of NNN pincer-type pyrazole platinum complexes bearing an
aminomethyl arm.

Caulton and co-workers reported the iron [66] and cobalt [67] complexes bearing a
PNN pincer-type protic pyrazole ligand (Scheme 17). The dichlorido iron(II) and cobalt(II)
complexes 57 with a distorted square-pyramidal geometry are deprotonated with lithium
silylamide to afford the N-lithiated complexes 58. Subsequent treatment with KC8 under
carbon monoxide yields the iron(I) and cobalt(I) complexes 59–61. Further reduction of the
iron complex 59a with KC8 results in the formation of a monoanionic dicarbonyl iron(0)
complex. The iron complex 59a also undergoes N-borylation of the pyrazolato arm with
concurrent hydrogen evolution [66]. On the other hand, treatment of the mixture of the
cobalt complexes 60 and 61 with an additional base leads to the second deprotonation at the
methylene group of the pincer ligand to afford 62 with a dearomatized pyridine moiety [67],
as in the related lutidine-based pincer-type complexes [17]. The result substantiates the
diprotic nature of the PNN pincer-type ligand bearing a protic pyrazole arm.
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Scheme 17. Reactions of iron and cobalt complexes bearing a protic PNN pincer-type ligand.

The square-planar nickel(II) complex 63, bearing a PNN pincer-type pyrazole ligand is
also reported (Scheme 18) [68]. As expected, deprotonation of 63 affords the corresponding
pyrazolato complex 64, which is subsequently converted to the azido complex 65. Mean-
while, deprotonation of the SNN pincer-type complex 66 results in P–C bond cleavage of
the pincer ligand to give the pyrazole complex 67 with a trigonal bipyramidal geometry.
The methyl hydrogen atom as well as pyrazole proton is believed to be derived from
adventitious water. The reaction in rigorously dried THF leads to redistribution of the
nickel–pincer unit in 66 to give a bis(pincer ligand)-type nickel complex.
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Scheme 18. Deprotonation and subsequent reactions of PNN and SNN pincer-type nickel complexes.

Previously, Lam and co-workers reported a CNN pincer-type pyrazole complex 68,
wherein one of the two protic pyrazolyl groups in the HLH2 ligand is replaced by a
phenyl group (Scheme 19) [69]. This complex undergoes dehydrochlorination to afford
the pyrazolato-bridged dinuclear complex 69, as observed in bidentate 2-(1H-pyrazol-3-
yl)pyridine complexes [70,71].
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2.2. Redox Reactions of Hydrazines and Azobenzene

Given the expanded π-conjugated structure, the pincer-type RLH2 ligands may be
expected to function as an electron reservoir in addition to a proton source. The electron
transfer coupled with proton transfer in the second coordination sphere appears crucial in
various enzymatic transformations, including biological nitrogen fixation. In this context,
reactions of protic pyrazole complexes with partially reduced dinitrogen species, such as
hydrazine, have been investigated.

We revealed that the iron(II) tBuLH2 complex 20a catalyzes N–N bond cleavage of
hydrazine as shown in Scheme 20 [50]. The pivotal role of the pyrazole NH groups is
suggested by the reactions of the N-methylated derivatives, 20a-Me and 20a-Me2, which
are sluggish and much more complicated. The catalytic activities of the amide-substituted
complex 70 [72] as well as the isoindoline-based pincer complex 45 [62] are also lower
than that of 20a. Control experiments and theoretical calculations [73] led to the proposed
mechanism summarized in Scheme 21, featuring multiple and bidirectional proton-coupled
electron transfer (PCET) between the metal–ligand bifunctional platform and the hydrazine
substrate. The pyrazole NH group promotes heterolytic N–N bond cleavage of the coordi-
nated hydrazine in 71 through a hydrogen bond with the distal nitrogen atom. The second
pyrazole NH group in the pincer ligand behaves as an acid–base catalyst for substitution of
the amido ligand in 72 by the second molecule of hydrazine to afford the hydrazido(1−)
complex 73. The calculations also suggest some radical character of the κN-nitrogen lig-
ands in these high-valent iron species 72 and 73, and hence a mixed electronic structure of
FeIV(NH2

−) and FeIII(NH2
•), for example [73]. Following PCET from the hydrazido(1−)

ligand to the high-valent iron–bis(pyrazolato) fragment would yield the iron(II) diazene
complexes 74. In fact, the phenyldiazene complex 74b is isolated in the reaction of phenyl-
hydrazine. An X-ray analysis revealed that the phenyldiazene ligand in 74b benefits from
stabilization by hydrogen-bonding interactions with the two pyrazole NH units and coun-
teranion. Meanwhile, the reaction of 1,1-diphenylhydrazine results in reductive elimination
of a hydrazinophosphonium salt from the hydrazido(1−) iron(IV) complex 73 bearing
trimethylphosphine ligands (omitted in Scheme 21) due to the lack of the distal hydrogen
atom. Finally, the diazene complex 74a releases free diazene, which disproportionates to
dinitrogen and hydrazine. An alternative scenario that merits comments involves a direct
reaction of 74a with hydrazine to give two moles of ammonia. The proposed 2H+/2e−

shuttling may be applicable to other multielectron redox processes.
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2+. The total charge of the iron complexes (+2) and tert-butyl
groups in the pincer ligand are omitted.

Similar disproportionation of a substituted hydrazine is reported for a triprotic, tripo-
dal tris(1H-pyrazol-3-ylmethyl)amine complex [74]. Treatment of the chlorido-bridged
diruthenium(II) complex 75 with 1,2-diphenylhydrazine results in N–N bond cleavage
to afford the aniline complex 76 (Scheme 22) [75]. Concurrent formation of azobenzene
along with free aniline indicates disproportionation of two moles of 1,2-diphenylhydrazine
to azobenzene and two moles of aniline in this transformation. The aniline ligand in 76
is engaged in hydrogen bonding network with the protic pyrazole units along with the
chloride counteranion. The disproportionation proceeds catalytically when an excess of
1,2-diphenylhydrazine is added to 75. An analogous complex of a tetradentate ligand
having non-protic pyridylmethyl arms displays no catalytic activity, even in the presence
of external protic pyrazole as a proton source, indicating that the proton-responsive unit in
the second coordination sphere is responsible for the N–N bond cleavage.
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Scheme 22. N–N bond cleavage of 1,2-diphenylhydrazine by a tripodal protic pyrazole ruthenium
complex. Mes = 2,4,6-Me3C6H2.

Caulton’s group demonstrated that the reaction of dichromium(II) complex 35 (vide
supra) [57] with azobenzene yields the paramagnetic chromium(III) complex 77 having an
unsymmetrically bridged PhNNPh unit (Scheme 23) [76]. The N–N distance of 1.471(9)
Å indicates that the N=N bond is reduced by the chromium(II) centers in 35 to give
the hydrazido(2−) ligand. A benzo[c]cinnoline derivative, featuring η2:η2-coordination
of the azo group and lack of the THF ligand, is also characterized. Reduction of these
hydrazido(2−) complexes with KC8 is further examined. Only the benzo[c]cinnoline
derivative undergoes N–N bond cleavage upon treatment with an excess of the reductant.
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Scheme 23. Reaction of the pyrazolato-bridged dichromium complex with azobenzene
and phenylhydrazine.

Electron transfer from the dichloromium(II) complex 35 to phenylhydrazine gives
rise to the formation of the phenylhydrazido(2−)-bridged di(aniline)dichromium(III) com-
plex 78 (Scheme 23) [77]. The two aniline ligands, derived from N–N bond cleavage of
phenylhydrazine, bind to one of the two chromium atoms at trans positions and form
intramolecular hydrogen bonding with the protic pyrazoles on the other chromium center.
While the reaction stoichiometry should be rather complicated, ammonia and benzene
were detected as the fission products in the reaction mixture.
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Even dinitrogen is coordinated to proton-responsive pyrazole-based complexes, as in
the mononuclear tBuL complex 8 [40]. The NCN pincer-type dinuclear complex 79, sup-
ported by two linking diphosphine ligands, reacts with dinitrogen to afford the dinitrogen-
bridged diruthenium(II) complex 80 (Scheme 24) [78]. Unfortunately, no further transfor-
mation of the dinitrogen ligand in this multiproton-responsive cavity has not been reported.

Molecules 2023, 28, x FOR PEER REVIEW 16 of 38 
 

 

center. While the reaction stoichiometry should be rather complicated, ammonia and ben-
zene were detected as the fission products in the reaction mixture. 

Even dinitrogen is coordinated to proton-responsive pyrazole-based complexes, as 
in the mononuclear tBuL complex 8 [40]. The NCN pincer-type dinuclear complex 79, sup-
ported by two linking diphosphine ligands, reacts with dinitrogen to afford the dinitro-
gen-bridged diruthenium(II) complex 80 (Scheme 24) [78]. Unfortunately, no further 
transformation of the dinitrogen ligand in this multiproton-responsive cavity has not been 
reported. 

 
Scheme 24. Synthesis of a dinitrogen-bridged diruthenium complex bearing protic pyrazole lig-
ands. 

2.3. Nitrate Reduction 
Reduction of nitrogen oxides constitutes the inorganic nitrogen cycle in nature. Better 

understanding of the reaction may be important to address the issue of the coastal eu-
trophication caused by excessive use of nitrogen fertilizer. We found that the reaction of 
the ruthenium(II) complex 81 with silver nitrite leads to N–O bond cleavage of the nitro 
anion, giving the nitrosylruthenium(II) complex 82 (Scheme 25) [41]. The dehydrative con-
version is most likely assisted by proton transfer from the pyrazole ligand, and the overall 
reaction is redox neutral.  

 
Scheme 25. Dehydrative conversion of a nitrite ion to a nitrosyl ligand on a protic pyrazole complex 
of ruthenium. 

Caulton�s group demonstrated that N,N′-disilyldihydropyrazines, whose usefulness 
in salt-free reduction was uncovered by Mashima and co-workers [79], are effective for 
deoxygenation of NOx ligands on protic pyrazole complexes. Thus, the tris(nitrate) chro-
mium(III) complex 83, bearing a protic bis(pyrazole)-type pincer ligand [80], reacted with 
three equiv of an N,N′-disilyldihydropyrazine to afford the nitrosyl–nitrate chromium(I) 
complex 84 (Scheme 26) [81]. The reaction byproducts, hexamethyldisiloxane and pyra-
zine, were detected in the reaction mixture via 1H NMR spectroscopy. It is to be noted that 
the reaction takes place without any damage on the pyrazole NH protons. 

Ru
Cl

N

NH
N

81Ph

Ru
NN

N
N

82Ph

O

(1) AgNO2
    1 equiv
(2) KOTf
MeCN, RT
−AgCl

OTf

Ru
NN

N
N

Ph

O

O

+
−

H −OH−

Scheme 24. Synthesis of a dinitrogen-bridged diruthenium complex bearing protic pyrazole ligands.

2.3. Nitrate Reduction

Reduction of nitrogen oxides constitutes the inorganic nitrogen cycle in nature. Better
understanding of the reaction may be important to address the issue of the coastal eutroph-
ication caused by excessive use of nitrogen fertilizer. We found that the reaction of the
ruthenium(II) complex 81 with silver nitrite leads to N–O bond cleavage of the nitro anion,
giving the nitrosylruthenium(II) complex 82 (Scheme 25) [41]. The dehydrative conversion
is most likely assisted by proton transfer from the pyrazole ligand, and the overall reaction
is redox neutral.
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Caulton’s group demonstrated that N,N′-disilyldihydropyrazines, whose usefulness in
salt-free reduction was uncovered by Mashima and co-workers [79], are effective for deoxy-
genation of NOx ligands on protic pyrazole complexes. Thus, the tris(nitrate) chromium(III)
complex 83, bearing a protic bis(pyrazole)-type pincer ligand [80], reacted with three equiv
of an N,N′-disilyldihydropyrazine to afford the nitrosyl–nitrate chromium(I) complex 84
(Scheme 26) [81]. The reaction byproducts, hexamethyldisiloxane and pyrazine, were
detected in the reaction mixture via 1H NMR spectroscopy. It is to be noted that the reaction
takes place without any damage on the pyrazole NH protons.
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Similarly, treatment of the bis(1H-pyrazol-3-ylpyridine)nickel(II) nitrato complex 85
with an equimolar amount of the disilyldihydropyrazine results in deoxygenation of the
nitrate and formation of mono-deprotonated product 86 (Scheme 27) [71]. The NH proton
remaining on a pyrazole ring in 86 is identified by the larger NαNβC angle. The deoxy-
genated product in this transformation, nitrite ion, was not detected; however, further
deoxygenation of 86 affords the diamagnetic nickel(0) complex 87, having linear nitrosyl
ligands derived from deoxygenation of the nitrate ligand. Thermodynamics of deoxygena-
tion of the NOx ligands with a disilyldihydropyrazine was also investigated theoretically
for manganese complexes bearing a PNN pincer-type protic pyrazole ligand [82].

Molecules 2023, 28, x FOR PEER REVIEW 17 of 38 
 

 

 
Scheme 26. Deoxygenation of a nitrato ligand with N,N′-disilyldihydropyrazine on a protic pyra-
zole complex of chromium. 

Similarly, treatment of the bis(1H-pyrazol-3-ylpyridine)nickel(II) nitrato complex 85 
with an equimolar amount of the disilyldihydropyrazine results in deoxygenation of the 
nitrate and formation of mono-deprotonated product 86 (Scheme 27) [71]. The NH proton 
remaining on a pyrazole ring in 86 is identified by the larger NαΝβC angle. The deoxygen-
ated product in this transformation, nitrite ion, was not detected; however, further deox-
ygenation of 86 affords the diamagnetic nickel(0) complex 87, having linear nitrosyl lig-
ands derived from deoxygenation of the nitrate ligand. Thermodynamics of deoxygena-
tion of the NOx ligands with a disilyldihydropyrazine was also investigated theoretically 
for manganese complexes bearing a PNN pincer-type protic pyrazole ligand [82]. 

 
Scheme 27. Deoxygenation of a nitrate ion with N,N′-disilyldihydropyrazine on a protic pyrazole 
complex of nickel. 

The PNN pincer-type cobalt(II) dichlorido complex 88 bearing a protic pyrazole arm 
reacts with sodium nitrite to afford the tris(nitrito-N)cobalt(III) complex 89 and bent ni-
trosyl cobalt(III) complex 90 [83]. Although the yields and ratio of 89 and 90 are not de-
scribed, the reaction stoichiometry shown in Scheme 28 has been proposed along with 
proton transfer from the pyrazole moiety to the bridging nitrite in a dinuclear intermedi-
ate. The compounds 89 and 90 are independently obtained by the reaction of the pincer 
ligand with a cobalt(III) complex Na3[Co(NO2)6] followed by deoxygenation and deproto-
nation with a disilyldihydropyrazine [83]. 

 
Scheme 28. Reaction of a protic, PNN pincer-type cobalt complex with sodium nitrite. 

  

N

N
H

N

N NH
Cr

ONO2

O2NO

O2NO
tBu

tBu

N

N
H

N

N NH
Cr

N

O2NO

O2NO
tBu

tBu

O
N

N

83 84

CH2Cl2
RT +  2

+  2 (Me3Si)2O

N

N
SiMe3

SiMe3

+  2

1 : 3

Ni
O

O N
N

N

N
N

N
NO

Ph

Ph

H
H

NO3

Ni
O

O N
N

N

N
N

N
NO

Ph

Ph

H

N
NN NiNi

N
N

N

Ph

Ph

NN
O O

85

MeCNN

N
SiMe3

SiMe3

+

+  (Me3Si)2O

N

H
N

NO2
−

+

86

86    +  2
N

N
SiMe3

SiMe3

THF
1/2

+  2

+  2 (Me3Si)2O  +  2
N

N

N N
H
N

Ph
87

N N NH
Co

NO2

Ph

P
tBu2

NO2

NO2

N N NH
Co

Cl

Ph

P
tBu2

Cl

2 +  5 NaNO2

18-crown-6
(5 mol%)

CH2Cl2
+ N N N

Co
NO2

Ph

P
tBu2

N
O

89 90

+  4 NaCl

+  NaOH

88

Scheme 27. Deoxygenation of a nitrate ion with N,N′-disilyldihydropyrazine on a protic pyrazole
complex of nickel.

The PNN pincer-type cobalt(II) dichlorido complex 88 bearing a protic pyrazole arm
reacts with sodium nitrite to afford the tris(nitrito-N)cobalt(III) complex 89 and bent nitrosyl
cobalt(III) complex 90 [83]. Although the yields and ratio of 89 and 90 are not described,
the reaction stoichiometry shown in Scheme 28 has been proposed along with proton
transfer from the pyrazole moiety to the bridging nitrite in a dinuclear intermediate. The
compounds 89 and 90 are independently obtained by the reaction of the pincer ligand with
a cobalt(III) complex Na3[Co(NO2)6] followed by deoxygenation and deprotonation with a
disilyldihydropyrazine [83].
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Scheme 28. Reaction of a protic, PNN pincer-type cobalt complex with sodium nitrite.

2.4. CO2 Reduction

Liaw, Lu, and co-workers demonstrated that the pyrazolato-bridged {Fe(NO)2}9 com-
plex 91 undergoes two-electron reduction to give the dianionic complex 92 (Scheme 29) [84].
Subsequent reaction with carbon dioxide results in nucleophilic attack of the pyrazolato
ligand, resulting in the formation of the mononuclear CO2 adduct 93. Interestingly, addi-
tion of an equimolar amount of calcium triflate yields calcium oxalate and regenerates the
dinuclear complex 91. A calcium-assisted one-electron transfer from the iron center to the
CO2 unit followed by bimolecular coupling with 93 is proposed for the last step of this
synthetic cycle.
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3. Catalysis of Protic Pyrazole Complexes

In addition to the aerobic oxidation of phosphines (Section 2.1.1) and catalytic dis-
proportionation of hydrazines (Section 2.2), the catalytic application of protic pyrazole
complexes to various chemical transformations has been investigated. This section focuses
on recent work along with studies in which the role of the protic pyrazole ligand is evident
or discussed. A previous review on this topic is available [11].

3.1. Hydrogenation and Transfer Hydrogenation

In 2008, Yu’s group demonstrated that the protic pincer-type ruthenium(II) complex
94 catalyzes transfer hydrogenation of acetophenones with 2-propanol in the presence of
an excess of a base (Scheme 30) [85]. Introduction of a non-protic pyrazole arm instead
of the NHC in 94 significantly accelerates the reaction with 95 [86,87]. It is to be noted
that the imidazole complex 96a with an NH group at a remoter position γ to the metal
displays catalytic activity comparable with 95, whereas the non-protic analogue 96b is
much less effective [88,89]. These results may suggest an inner-sphere mechanism in-
volving β-hydrogen elimination of an alkoxide intermediate instead of a pyrazole-aided
outer-sphere hydrogen transfer. The NH group in the pincer ligand may still operate to
facilitate the dissociation of the halido ligand and to increase the nucleophilic character
of the hydrido intermediate through deprotonation of the NH unit. Even asymmetric
transfer hydrogenation of aryl ketones has been achieved with protic pincer-type com-
plexes, such as 97, bearing an optically active oxazolinyl group in the chelate framework
(Scheme 31) [90]. We [46] and Halcrow [91] also reported that RLH2 and related NCN
pincer-type ruthenium(II) complexes 4 and 41 promote catalytic transfer hydrogenation of
acetophenone with 2-propanol in the presence of alkoxide bases. The reactivities parallel
with stoichiometric hydrogenation transfer in other protic pyrazole complexes [92,93].
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Scheme 31. Asymmetric transfer hydrogenation of acetophenone catalyzed by a protic, pincer-type
pyrazole ruthenium complex.

Thiel and co-workers demonstrated that the diprotic ruthenium(II) complexes 4a
and 98 catalyze not only transfer hydrogenation but also hydrogenation of acetophenone
(Scheme 32) [39]. Theoretical calculations suggest that outer sphere hydrogen transfer from
the anticipated hydrido–pyrazole intermediate to the carbonyl substrate as well as the
heterolytic cleavage of dihydrogen at the coordinatively unsaturated pyrazolato complex
is facile. On the other hand, in the transfer hydrogenation reaction, the efficiency of the
non-protic analogues, such as 99, is comparable or even higher in some cases [94–97],
implying that such metal–pyrazole cooperating mechanism is less probable. Catalytic
hydrogenation with the tBuLH2 analogue 4b is also reported [65].
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Scheme 32. Hydrogenation of acetophenone catalyzed by diprotic pyrazole ruthenium complexes.

Nikonov’s group uncovered that the ruthenium(II) complexes, typified by 100, bearing
a P–N chelate protic pyrazole ligand, promote transfer hydrogenation of not only acetophe-
none [98] but also nitriles, heteroaromatics, alkynes, alkenes, and esters [99]. In the reaction
of aromatic and aliphatic nitriles with 2-propanol, the initially formed amine product
further reacts with acetone, a byproduct of the transfer hydrogenation in 2-propanol, to
afford the ketimines as the final product (Scheme 33). No further reduction of the ketimines
to secondary amines is observed. In the transfer hydrogenation of inner alkynes, semi-
hydrogenation products, alkenes, are obtained with E-selectivity. The E-alkenes would be
formed by the isomerization of Z-alkenes initially generated. Actually, cis-stilbene isomer-
izes to trans-stilbene under the catalytic conditions. When the substituents on alkynes are
less bulky, further reduction takes place to give the corresponding alkanes. Meanwhile, the
conversion of a terminal alkyne is very low. Scheme 33 also illustrates catalytic transfer
hydrogenation of ethyl trifluoroacetate to 1,1,1-trifluoroethanol. In this reaction, ethanol is
oxidized to ethyl acetate through Tishchenko reaction, and whole process can be viewed as
ester metathesis [100].
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Gong, Meggers, and co-workers revealed that the chiral-at-metal iridium(III) com-
plex 101 catalyzes asymmetric transfer hydrogenation of ketones in the presence of protic
pyrazoles (Scheme 34) [101]. Other additives, such as PnBu3, 2,6-diaminopyridine, and
imidazole, leads to much lower catalytic activity and enantioselectivity as the reaction
without the protic pyrazoles. An X-ray analysis of a related chlorido–pyrazole complex
suggests that the NH unit would be placed in the optimum orientation for efficient bifunc-
tional hydrogen transfer to the ketone substrate (inset). Further, attractive π–π interaction
between the C–N chelate ligand and the arene ring in the substrate is proposed to realize
the high enantioselectivity. This binary catalyst system is also effective for asymmetric
hydrogenation of acetophenone [102]. In addition, the catalyst serves as a photoredox me-
diator, which allows asymmetric hydrogenation and photoredox transformation sequences
without isolation of the chiral alcohol intermediate. On the other hand, half-sandwich C–N
chelate pyrazole complexes of iridium(III) are known to catalyze transfer hydrogenation of
acetophenone with 2-propanol [93].
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Scheme 34. Asymmetric transfer hydrogenation and hydrogenation of acetonitrile mediated by a
chiral iridium complex and protic pyrazoles binary catalysts. In inset, tert-butyl groups are omitted.

Niedner-Schatteburg, van Wüllen, and Thiel’s team demonstrated that the pyrazola-
toruthenium(II) complex 102 catalyzes hydrogenation of carbon dioxide under supercritical
conditions (Scheme 35), in addition to transfer hydrogenation of acetophenone with 2-
propanol [103]. The CO2 hydrogenation activity of 102 is almost comparable with those of
the conventional dichloridoruthenium(II) phosphine complexes. A mechanism without any
proton response of the pyrazolato group is proposed on the basis of theoretical calculations
(Scheme 36). A major role of the ionizable pyrazole in the chelate appears to be to make
the chelate ligand anionic and more electron-donating [104]. The stronger trans influence
of the pyrazolato moiety leads to generation of a vacant site, where carbon dioxide is
coordinated. Subsequent insertion into the Ru–H bond gives a formato ligand, which
mediates heterolytic cleavage of dihydrogen.

Himeda, Ertem, and co-workers described the half-sandwich iridium(III) complexes
bearing proton-responsive ligands as efficient CO2 hydrogenation catalysts in basic aque-
ous solutions (Scheme 37) [105,106]. The protic pyrazole group brings about better catalytic
activity than the N-methylpyrazole group (103a vs. 103b and 104a vs. 104b). The per-
formance of the pyrazole complexes 103 is, however, not so prominent when compared
with that of the imidazole complexes 105. Meanwhile, introduction of an OH group at the
6-position of the pyridine ring significantly accelerates the reaction (104 and 106). These



Molecules 2023, 28, 3529 21 of 37

observations as well as DFT calculations led to the mechanistic proposal that the proton-
responsive site on the diazole rings offers strong electron donation to the iridium center
through its deprotonation. Still, the diazolato unit may also provide a proton acceptor site
for the H2 heterolysis even in the absence of an OH group.
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3.2. Hydrogen Evolution

Dehydrogenation of formic acid, a reverse reaction of CO2 hydrogenation, is also
catalyzed with protic pyrazole complexes. Wang, Himeda, and co-workers revealed that
the 2-(1H-pyrazol-3-yl)pyridine iridium(III) complex 107 promotes hydrogen evolution
from formic acid under acidic conditions (Scheme 38) [107]. The catalytic activity of 107 is
less than that of the imidazole analogue 108 with a remoter γ-NH group, suggesting that
the azole units mainly have a role in increasing the electron donation to the metal center
through their deprotonation. Interestingly, introduction of a pendant pyridyl group on the
pyrazole unit improves the catalytic activity [108]. The proposed mechanism involves a
two-point hydrogen bonding between protic pyrazole–pyridinium unit and an external
formic acid in the second coordination sphere (Scheme 39). The proton relay would facilitate
the protonation to the hydrido ligand.
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Scheme 39. Proposed mechanism for dehydrogenation of formic acid catalyzed by an iridium
complex bearing a pyridine-appended protic pyrazolylpyridine chelate ligand.

We reported hydrogen evolution from formic acid catalyzed by the CF3LH ruthe-
nium(II) complex 109 (Scheme 40) [109]. The catalytic activity of the less acidic tBuLH
analogue 6 is poor, indicating the importance of proton transfer from the protic pyra-
zole arm in the catalysis. The reaction with the NCN pincer-type complex 110 is also
much slower.
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Scheme 40. Dehydrogenation of formic acid catalyzed by protic pincer-type ruthenium complexes.

In addition to formic acid, amine–boranes have attracted much attention in terms of
chemical H2-storage. Pal and Nozaki reported hydrogen evolution from dimethylamine–
borane promoted by the pyrazole–pyrazolato rhodium(III) complex 111 [110]. On the basis
of theoretical calculations as well as the fact that [{Cp*RhCl2}2] and the free pyrazole are
catalytically inactive in separate runs, a metal–pyrazole cooperative mechanism is proposed,
as shown in Scheme 41. Dehydrochlorination of the catalyst precursor 111 generates
the coordinatively unsaturated bis(pyrazole) complex 112. The Lewis acidic rhodium
center and Brønsted basic pyrazolato ligand in 112 dehydrogenates dimethylamine–borane
substrate in a cooperative manner. The resulting hydrido complex 113 releases dihydrogen
gas guided by an intramolecular hydrogen bond to regenerate 112.
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Scheme 41. Proposed mechanism for dehydrogenation of an amine–borane catalyzed by a protic
pyrazole rhodium complex.

3.3. Borrowing Hydrogen Catalysis

Owing to their hydrogen transfer ability, protic pyrazole complexes also exhibit bor-
rowing hydrogen catalysis, wherein the catalyst first borrows hydrogen atoms from the
alcohol substrate and then returns them after the bond formation of the resulting carbonyl
intermediate [111]. Ryu and co-workers applied a pincer-type ligand in the Yu’s trans-
fer hydrogenation catalyst (Section 3.1) to α-alkylation of amides with primary alcohols
(Scheme 42) [112]. As in typical borrowing hydrogen transformations, initial dehydrogena-
tive oxidation of the primary alcohol followed by dehydrative condensation of the resulting
aldehyde and amide is proposed. Subsequent transfer hydrogenation from the catalyst
would yield the α-alkylation product.
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Scheme 42. α-Alkylation of amides with primary alcohols catalyzed by a protic pyrazole ruthe-
nium complex.

Bagh’s group demonstrated that the pyrazolato-bridged diiridium(III) complex 114
promotes α-alkylation of arylacetonitriles with secondary alcohols (Scheme 43) [113]. When
the catalyst precursor 114 is dissolved in DMSO, the DMSO complex 115 is obtained,
whereas reaction of 114 with cyclohexanol affords the hydrido–pyrazole complex 116 with
liberation of cyclohexanone (Scheme 43b). Formation of these mononuclear N–O chelate
complexes suggests that the catalysis involves initial split of the pyrazolato dimer complex
114 into a coordinatively unsaturated pyrazolato complex 117, which then undergoes
transfer hydrogenation from the secondary alcohol to give the hydrido–pyrazole complex
116 (Scheme 43c). Following steps in borrowing hydrogen cycle were also supported by
the stoichiometric reactions.
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3.4. Dehydrogenative Oxidation

If the hydride intermediate in the borrowing hydrogen catalysis somehow releases dihy-
drogen gas instead of returning the hydrogen atoms to give the redox-neutral product, the
net reaction would turn to be dehydrogenative oxidation. Hölscher, Bera, and co-workers
described acceptorless double dehydrogenation of primary amines catalyzed by the ruthe-
nium(II) complex 118a bearing an N–N chelate protic pyrazole ligand (Scheme 44) [114]. Both
aromatic and aliphatic nitriles are obtained in this manner. Secondary amines are also
converted to the corresponding imines under the reaction conditions. The poor activity
of the N-methylated analogue 118b indicates the crucial role of the pyrazole NH group
in the catalysis. Meanwhile, the uncharged pyrazolato complex 119 with a Lewis acid
displays catalytic performance comparable with that of 118a even in the absence of base. A
coordinatively unsaturated pyrazolato complex is thus suggested to be a catalytically active
species. Computational study proposed that the pyrazole unit is not involved directly
in the abstraction of hydride from the amine substrate, but dehydrogenation of an imine
intermediate occurs in a concerted, metal–ligand cooperative manner with the aid of an
external substrate molecule in the second coordination sphere (inset). The resultant hydrido
complex would undergo protonation with ammonium cation to evolve dihydrogen gas.
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Scheme 44. Acceptorless dehydrogenation of primary amines catalyzed by protic pyrazole ruthe-
nium complexes.

Chai and co-workers reported synthesis of imines catalyzed by the protic pyrazole
manganese(I) complex 120a (Scheme 45) [115]. The non-protic analogue 120b exhibits
lower conversion and brings about increased formation of the amine byproduct through
the borrowing hydrogen pathway, although the detailed reason is not mentioned. The
reaction is proposed to proceed via dehydrative condensation of aniline and benzaldehyde,
which is formed by dehydrogenative oxidation of benzyl alcohol with a coordinatively
unsaturated pyrazolato complex.
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3.5. Transformation of Allylic and Propargylic Compounds

Satake and co-workers demonstrated that the N–N chelate pyridylpyrazole palla-
dium(II) complex 121 catalyzes the reaction of allylic acetates and ketene silyl acetals, as
shown in Scheme 46 [116]. The significance of the NH group therein is evident by com-
parison with the catalytic performance of the non-protic complex 122. On the other hand,
the position of the NH group appears unimportant since the protic imidazole complex 123
bearing a γ-NH group displays similar catalytic activity and even better selectivity for cy-
clopropanation over allylation [117]. The proposed mechanism is illustrated in Scheme 47.
Deprotonation of the catalyst precursor 121 gives the uncharged pyrazolato complex 124,
which undergoes nucleophilic attack of the ketene silyl acetal to afford the palladacyclobu-
tane complex 125. The major role of the NH group would be to make the chelate ligand
a better σ-donor, which directs the attack of nucleophile at the central carbon rather than
the terminal carbon atoms [118]. Use of chiral oxazolidines as the chelate tether realizes
asymmetric cyclopropanation of a ketene silyl acetal with moderate stereoselectivity [119].
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Gimeno, Lledós, and co-workers described isomerization of allylic alcohols mediated
by protic azole ruthenium(IV) catalyst precursors in water (Scheme 48) [120,121]. Because
the N-methylated pyrazole and γ-protic imidazole complexes exhibit similar and much
higher catalytic performance, respectively, the aqua ligand rather than the protic azoles is
proposed as an acid–base catalytic site to promote the metal–ligand cooperative hydrido
migration from the allylic carbon to the vinyl carbon atom.
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We uncovered that the protic pyrazole ruthenium(II) complexes 126 catalyze isomeriza-
tion of 1,1-dimethyl-3-phenylprop-2-yn-1-ol to 3-methyl-1-phenylbut-2-en-1-one in methanol
(Scheme 49) [122]. The reaction, known as Meyer–Schuster rearrangement [123,124], does
not occur with non-protic analogue 127 as well as a substitution-inert isocyanide complex,
whereas the complex 126b with a less electron-withdrawing phenyl substituent requires
a more elevated temperature (reflux, 87%). These observations indicate that both Lewis
acidic metal center and Brønsted acidic NH group in 126 are necessary for this catalysis.
A proposed mechanism is shown in Scheme 50. The π-bound propargylic alcohol in 128
undergoes an SN2′-type propargylic substitution by the solvent methanol with the aid of
the intramolecular NH···O hydrogen bonding in the second coordination sphere to afford
the allene complex 129. Dissociation and solvolysis of the allene would yield an acetal,
which is finally converted to the enone product via hydrolysis.
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Use of less nucleophilic solvents, such as 1,2-dichloroethane and 1,4-dioxane, com-
pletely switches the reaction outcome. In the absence of the external nucleophile, a two-
point interaction between the protic pyrazole complex and the substrate would lead to
facile C–O bond cleavage, giving the η3-propargyl complex 130 (Scheme 51). Involvement
of 130 in the Meyer–Schuster rearrangement in methanol (Scheme 50) is less likely because
the nucleophilic addition to η3-propargyl ligands generally takes place at the central carbon
atom [125] and would fail to provide the observed product. The pyrazolato unit in 130
mediates proton migration in the η3-propargyl ligand to afford the η3-butadienyl complex
131, which is isolable in the case of R = CF3. When the pyrazolato ligand in 131 is more
nucleophilic (R = Ph), intramolecular addition to the terminal carbon in the η3-butadienyl
ligand occurs to give the N-allenylmethylpyrazole complex 132.
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Scheme 51. Transformation of a propargylic alcohol on protic pyrazole ruthenium complexes in less
nucleophilic solvents.

3.6. Hydroamination of Alkenes

The metal–ligand bifunctional nature of protic pyrazole complexes is further applied
to catalytic hydroamination of alkenes, in which both amine and olefin functional groups
are activated simultaneously. We disclosed that the C–N chelate protic pyrazole iridium(III)
complex 133 promotes cyclization of aminoalkenes with the aid of an equimolar amount of
an alkoxide base (Scheme 52). The catalyst is compatible with various functional groups
such as ester, bromo, cyano, and hydroxy groups. The pyrazolato-bridged dimer 134,
obtained by dehydrochlorination of 133, exhibits catalytic activity similar to 133 even in
the absence of the base. Meanwhile, the catalytic performance of the related complexes,
135 and 136, having a proton-responsive site at the positions γ and α to the iridium center,
respectively, is poor. Additionally, catalytically inactive are the N-methylated derivative 137
and the six-membered chelate analogue 138 [93]. These results indicate that an exquisitely
positioned proton-responsive site with appropriate direction and acidity is crucial for
the catalysis. Scheme 53 illustrates a proposed mechanism featuring the metal–ligand
cooperation. The olefin part in the aminoalkene substrate binds to the coordinatively
unsaturated mononuclear pyrazolato complex 139, derived from dehydrochlorination of
the chlorido complex 133 or split of the pyrazolato dimer 134. The activated olefin is
attacked by the amino group with increased nucleophilic character owing to intramolecular
hydrogen bond with the pyrazolato unit. The tight-fitting assembly in transition state 140
is supported by the large negative activation entropy provided by kinetic experiments.
Subsequent proton transfer from the pyrazole unit to the Ir–C bond yields the product and
regenerates the unsaturated pyrazolato complex 139.
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Scheme 52. Cyclization of an aminoalkene catalyzed by iridium complexes.
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3.7. Hydration of Nitriles

Metal-mediated coupling of nitrile and pyrazole to give a stable chelate pyrazoly-
lamidino ligand, illustrated in Scheme 54, has been known for a long time. Nevertheless, a
certain type of protic pyrazole complex catalyzes hydration of nitriles. Rodríguez, Romero,
and co-workers reported hydration of benzonitriles and acrylonitrile catalyzed by the
pyrazole complexes, such as 141 and 142 (Scheme 55) [126,127]. The reaction is proposed
to proceed via nucleophilic attack of water or hydroxide anion to the coordinated nitrile.
Although the role of the pyrazole ligand in this catalytic reaction is not mentioned, the
proton-responsive pyrazole ligand may increase the nucleophilic character of water through
hydrogen bonding in the second coordination sphere.

Molecules 2023, 28, x FOR PEER REVIEW 30 of 38 
 

 

 
Scheme 53. Proposed mechanism for cyclization of aminoalkenes catalyzed by a protic pyrazole 
iridium complex. Substituents of aminoalkenes are omitted. 

3.7. Hydration of Nitriles 
Metal-mediated coupling of nitrile and pyrazole to give a stable chelate pyrazolyla-

midino ligand, illustrated in Scheme 54, has been known for a long time. Nevertheless, a 
certain type of protic pyrazole complex catalyzes hydration of nitriles. Rodríguez, 
Romero, and co-workers reported hydration of benzonitriles and acrylonitrile catalyzed 
by the pyrazole complexes, such as 141 and 142 (Scheme 55) [126,127]. The reaction is 
proposed to proceed via nucleophilic attack of water or hydroxide anion to the coordi-
nated nitrile. Although the role of the pyrazole ligand in this catalytic reaction is not men-
tioned, the proton-responsive pyrazole ligand may increase the nucleophilic character of 
water through hydrogen bonding in the second coordination sphere. 

 
Scheme 54. Coupling of pyrazole and nitrile on a metal center. 

 
Scheme 55. Catalytic hydration of benzonitrile with protic pyrazole ruthenium complexes. 

3.8. Catalysis with Coordinatively Saturated Complexes 
In their seminal work on chiral-at-metal complexes [128,129], Gong and Meggers de-

scribed ligand-centered catalysis of protic pyrazole complexes. For example, the iridium 
complex 143 bearing an amido-substituted protic pyrazole ligand catalyzes asymmetric 
1,4-addition of indoles to β-nitroacrylates (Scheme 56) [130]. As the well-known thiourea 
organocatalysis [131], the amidopyrazole unit serves as a hydrogen bond donor to the 
nitroalkene. The chiral metal center in the catalyst 143 is coordinatively saturated and in-
ert; however, the carboxamide substituent in the C–N chelate acts as a hydrogen bond 
acceptor for the indole, making the complex bifunctional. 

Ir

NN

Ph

Ir

N
N

Ph

H-N

NH2

N
HH

Ir

N
NH

Ph

N
H

133
−HCl

134

H

139

140

M
N

NN

R
H

M
N

N N

C
R

H+

−
or M

N

N
N

C
R

H

N N NH

Ru
S

S

Cl

Cl O

141

PhCN  +  H2O
H2O, 80 °C

Ru cat
(1 mol%)

Ph NH2

O

O

75% (for 141)
71% (for 142)

Ru cat =

Cl N NH

Ru
S

S

Cl

S O

142

O

O

Scheme 54. Coupling of pyrazole and nitrile on a metal center.



Molecules 2023, 28, 3529 30 of 37

Molecules 2023, 28, x FOR PEER REVIEW 30 of 38 
 

 

 
Scheme 53. Proposed mechanism for cyclization of aminoalkenes catalyzed by a protic pyrazole 
iridium complex. Substituents of aminoalkenes are omitted. 

3.7. Hydration of Nitriles 
Metal-mediated coupling of nitrile and pyrazole to give a stable chelate pyrazolyla-

midino ligand, illustrated in Scheme 54, has been known for a long time. Nevertheless, a 
certain type of protic pyrazole complex catalyzes hydration of nitriles. Rodríguez, 
Romero, and co-workers reported hydration of benzonitriles and acrylonitrile catalyzed 
by the pyrazole complexes, such as 141 and 142 (Scheme 55) [126,127]. The reaction is 
proposed to proceed via nucleophilic attack of water or hydroxide anion to the coordi-
nated nitrile. Although the role of the pyrazole ligand in this catalytic reaction is not men-
tioned, the proton-responsive pyrazole ligand may increase the nucleophilic character of 
water through hydrogen bonding in the second coordination sphere. 

 
Scheme 54. Coupling of pyrazole and nitrile on a metal center. 

 
Scheme 55. Catalytic hydration of benzonitrile with protic pyrazole ruthenium complexes. 

3.8. Catalysis with Coordinatively Saturated Complexes 
In their seminal work on chiral-at-metal complexes [128,129], Gong and Meggers de-

scribed ligand-centered catalysis of protic pyrazole complexes. For example, the iridium 
complex 143 bearing an amido-substituted protic pyrazole ligand catalyzes asymmetric 
1,4-addition of indoles to β-nitroacrylates (Scheme 56) [130]. As the well-known thiourea 
organocatalysis [131], the amidopyrazole unit serves as a hydrogen bond donor to the 
nitroalkene. The chiral metal center in the catalyst 143 is coordinatively saturated and in-
ert; however, the carboxamide substituent in the C–N chelate acts as a hydrogen bond 
acceptor for the indole, making the complex bifunctional. 

Ir

NN

Ph

Ir

N
N

Ph

H-N

NH2

N
HH

Ir

N
NH

Ph

N
H

133
−HCl

134

H

139

140

M
N

NN

R
H

M
N

N N

C
R

H+

−
or M

N

N
N

C
R

H

N N NH

Ru
S

S

Cl

Cl O

141

PhCN  +  H2O
H2O, 80 °C

Ru cat
(1 mol%)

Ph NH2

O

O

75% (for 141)
71% (for 142)

Ru cat =

Cl N NH

Ru
S

S

Cl

S O

142

O

O

Scheme 55. Catalytic hydration of benzonitrile with protic pyrazole ruthenium complexes.

3.8. Catalysis with Coordinatively Saturated Complexes

In their seminal work on chiral-at-metal complexes [128,129], Gong and Meggers
described ligand-centered catalysis of protic pyrazole complexes. For example, the iridium
complex 143 bearing an amido-substituted protic pyrazole ligand catalyzes asymmetric
1,4-addition of indoles to β-nitroacrylates (Scheme 56) [130]. As the well-known thiourea
organocatalysis [131], the amidopyrazole unit serves as a hydrogen bond donor to the
nitroalkene. The chiral metal center in the catalyst 143 is coordinatively saturated and inert;
however, the carboxamide substituent in the C–N chelate acts as a hydrogen bond acceptor
for the indole, making the complex bifunctional.
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3.9. Miscellaneous

Suzuki–Miyaura coupling reactions with bis(pyrazole) palladium(II) complexes [132]
as well as a binary system of PdCl2 and PhLH2 [133] are reported. Garralda and co-workers
described hydrolysis of ammonia–borane and amine–boranes catalyzed by the rhodium(III)
bis(pyrazole) complexes, such as 144 (Scheme 57) [134]. Rodríguez and Romero reported
the ruthenium(II) complex 145 bearing a protic pyrazole ligand catalyzes photochemical
oxidation of alcohols in water in the presence of a sacrificial oxidant along with [Ru(bpy)3]2+

as a photosensitizer (Scheme 58) [135]. Chemical oxidation of alkenes to epoxides is also
promoted. Unfortunately, the mechanisms for these reactions and the role of the protic
pyrazole ligand therein are not discussed.
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Scheme 58. Oxidation of an alcohol and alkene catalyzed by a protic pyrazole ruthenium complex.

4. Conclusions

It is now apparent that the protic pyrazoles are versatile non-innocent ligands, owing
to their ability to place a proton-responsive site in the second coordination sphere. The
deprotonation of the β-NH unit turns the pyrazole ligand to a stronger σ-donor. In both
protonated and deprotonated forms, the ligand-based hydrogen bonding and electrostatic
interactions at the β-position allows efficient substrate recognition and activation as well as
additional tuning of the electronic properties of the metal center. Importantly, these events
in the outer coordination sphere are linked with the metal-centered reactions in some cases.
Such metal–ligand cooperation can be compared with those of related proton-responsive
ligand systems (Scheme 1); however, the stiff five-membered structure that fixes the proton
with an azole acidity in the metal–pyrazole plane makes the reactivity of protic pyrazole
complexes distinctive. Additionally, facile redox of the metal–pyrazole framework coupled
with deprotonation is implied for π-delocalized, bis(pyrazole)-type tBuLH2 complexes
(Scheme 21 and compound 40 in Scheme 12). The metal–ligand cooperative catalysis thus
has been explored for various types of reactions, typified by transfer hydrogenation and
functionalization of unsaturated carbon–carbon bonds. The role of the NH groups therein,
however, appears to depend on the catalyst systems. In some reactions, control experiments
with γ-protic imidazole complexes indicate that the presence of the ionizable NH group is
prerequisite for the catalysis but the position is unimportant. The protic pyrazole ligand
in this case would remain deprotonated during the catalytic turnover and serve only to
increase the electron density of the metal center. Further studies are needed to elucidate
the conditions under which the metal–ligand cooperation is exerted. These efforts will lead
to improvement and deeper mechanistic understanding of the catalysis of protic pyrazole
complexes. The metal–ligand cooperation has also been applied to activation of small
inorganic molecules. A future target in this direction will undoubtedly be multiproton-
coupled multielectron reduction of inert molecules, such as carbon dioxide and dinitrogen,
with polyprotic pyrazole complexes. In these studies, novel design of protic pyrazole
ligands will continue to be a major subject to create more sophisticated metal–ligand
cooperation platforms for both stoichiometric and catalytic transformations unique to protic
pyrazole complexes. Facile construction of the pyrazole rings will be advantageous in the
synthesis of the pyrazole ligands whose Brønsted acidity and deployment are controlled by
the substituents on the ring and chelate framework.
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