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Abstract: Phosphonic acids represent one of the most important categories of organophosphorus
compounds, with myriad examples found in chemical biology, medicine, materials, and other
domains. Phosphonic acids are rapidly and conveniently prepared from their simple dialkyl esters
by silyldealkylation with bromotrimethylsilane (BTMS), followed by desilylation upon contact
with water or methanol. Introduced originally by McKenna, the BTMS route to phosphonic acids
has long been a favored method due to its convenience, high yields, very mild conditions, and
chemoselectivity. We systematically investigated microwave irradiation as a means to accelerate
the BTMS silyldealkylations (MW-BTMS) of a series of dialkyl methylphosphonates with respect
to solvent polarity (ACN, dioxane, neat BTMS, DMF, and sulfolane), alkyl group (Me, Et, and iPr),
electron-withdrawing P-substitution, and phosphonate–carboxylate triester chemoselectivity. Control
reactions were performed using conventional heating. We also applied MW-BTMS to the preparation
of three acyclic nucleoside phosphonates (ANPs, an important class of antiviral and anticancer drugs),
which were reported to undergo partial nucleoside degradation under MW hydrolysis with HCl
at 130–140 ◦C (MW-HCl, a proposed alternative to BTMS). In all cases, MW-BTMS dramatically
accelerated quantitative silyldealkylation compared to BTMS with conventional heating and was
highly chemoselective, confirming it to be an important enhancement of the conventional BTMS
method with significant advantages over the MW-HCl method.

Keywords: microwave-assisted synthesis; phosphonic acids; bromotrimethylsilane; dealkylation

1. Introduction

Phosphonic acids constitute one of the most important categories of organophosphorus
compounds. The diverse utility of phosphonates encompasses applications as antibiotic
and antiviral agents, chelating agents in imaging, catalysts, ion exchange materials, and
components of polymers used in paints and adhesives, among many others [1]. As a result,
efficient preparative routes to phosphonic acid derivatives are a subject of continuing
interest in synthetic chemistry [2–4].

When present as part of a complex molecule, phosphonates are normally maintained
as simple alkyl esters until final conversion to the final phosphonic acid product. Since its
introduction by the senior author [5–7], silyldealkylation by bromotrimethylsilane (BTMS)
became established as a standard method for accomplishing this transformation [1,8] as the
resulting bis(trimethylsilyl) phosphonate is facilely desilylated upon contact with water
or methanol. BTMS silyldealkylation is compatible with a wide range of acid-, base-, and
hydrogenation-sensitive functional groups, including alkenyl, alkynyl, alkoxyalkyl, benzyl,
benzoyl, diazomethyl, carboxamide, and carboxylate ester groups [3,7,8].

Under typical reaction conditions, BTMS silyldealkylations of phosphonate dialkyl
esters proceed at room temperature or with moderate thermal heating. A growing trend
in organic synthesis during recent years has been the substitution of microwave (MW)
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irradiation for conventional heating, with organophosphorus chemistry being no excep-
tion [9]. Some years ago, Kumar briefly examined the effect of microwave heating on
the reaction of BTMS in acetonitrile (ACN) with a series of ethyl phosphonates, phospho-
ramides, and phosphates [10]. Yields > 95% (NMR) were achieved within a few minutes,
whereas conventional heating required up to several hours to complete the reactions. These
microwave-accelerated BTMS de-ethylation reactions were tolerant of bromoalkyl, piper-
azine, and nitrile moieties. The successful application of these conditions in preparing the
(sulfonyl)methyl phosphonic acid analogues of prenyl diphosphates was subsequently
reported by Tantillo [11]. Meziane [12] examined the microwave acceleration of diethyl
phosphonate silyldealkylation by the Morita reagent (chlorotrimethylsilane and sodium
iodide), which gave inferior yields compared to those obtained with BTMS and was less
convenient in the workup phase. More recently, incidental examples of MW-assisted
BTMS reactions with a dialkyl phosphonate ester have been reported by Maguire [13] and
ourselves [14].

In 2012, Jansa et al. studied the acid-catalyzed hydrolysis of acyclic nucleoside phos-
phonate (ANP) esters under microwave irradiation [15]. ANPs are a group of nucleotide
analogues that possess a broad spectrum of biological activity and include an array of
important antiviral agents (Figure 1) [16,17]. Using 2–3 molar equivalents of aqueous HCl
and temperatures of 130–140 ◦C in a sealed vessel, ethyl and isopropyl phosphonate esters
were hydrolyzed in 20–30 min. The hydrolysis mechanism was suggested to involve a
carbocation intermediate, consistent with a reactivity order: iPr esters > Et esters. However,
in the case of diaminopurine (DAP) nucleoside phosphonates, partial hydrolysis of the
C6 amino group was observed, leading to the formation of 10% guanine side products.
This side reaction was reduced to 5% by lowering the temperature to 130 ◦C and using a
lower concentration of HCl. As such, yields of products varied between 77% and 93% [15].
The authors claimed that this method has the advantage of being a ‘green’ alternative, an
assertion subject to challenge [2]. In place of HCl for the hydrolysis of several phosphinate
esters, the latter authors investigated the use of a catalytic amount of p-toluenesulfonic acid
(PTSA), which was shown to be an effective substitute, albeit still requiring high reaction
temperatures (160–180 ◦C), sealed reaction vessels, and reaction times of 0.5–5 h [2].
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Figure 1. Examples of acyclic nucleoside phosphonates (ANPs) with antiviral activity.

Here, we present a systematic investigation of the scope of the microwave-assisted
BTMS (MW-BTMS) dealkylation of phosphonate alkyl esters, comparing the influence
of the alkyl (methyl, ethyl, or isopropyl) ester groups on the 100% conversion time and
examining the role of the solvent. The effect of an electron-withdrawing P-substituent is
examined, as is the chemoselectivity for trialkyl phosphonoacetates. Finally, we assess
its compatibility with three ANP phosphonate esters possessing acid-sensitive groups:
PMEDAP (OiPr)2, (S)-PMPDAP (OEt)2, and PMEA (OiPr)2 [10]. MW-BTMS (and thermally
heated BTMS) reactions were typically performed at 40 or 60 ◦C with a small molar excess
of BTMS. In a few cases, higher temperatures were used (80 or 110 ◦C), but these never
exceeded the standard boiling point of the solvent. All reactions were carried out at ambient
pressure and protected from moisture with a drying tube.
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2. Results

Scheme 1 outlines the general reaction scheme adopted to investigate the effects
of reaction conditions on microwave-assisted BTMS phosphonate ester dealkylations.
Dimethyl-, diethyl-, or diisopropyl methylphosphonate reacted with 2 equiv of BTMS
in a commercial thermostat microwave oven. Solvent and temperature were varied to
study their effect on reaction times and yields, which are listed in Table 1 together with the
corresponding results for control reactions performed under the same reaction conditions,
except for the replacement of microwave irradiation by conventional heating with a sand
bath. The time to the completion of silyldealkylation with MW-BTMS was determined by
31P NMR, and after treatment with MeOH, the yield of isolated methylphosphonic acid
was obtained.
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Scheme 1. General reaction scheme for microwave-assisted BTMS dealkylation in the conversion of
phosphonate alkyl esters to phosphonic acids.

Table 1. Results for the dealkylation reactions represented in Scheme 1.

Entry R Solvent
BTMS

(Molar Ratio
to Substrate)

Temp.
(◦C)

Time: MW
(min) % Yield a

Time:
Thermal

Heating (h)

% Yield
(31P NMR)

1 Me ACN 2 40 10 93 a 1 91
2 Me ACN 2 60 4 97 a - -
3 Et ACN 2 40 15 93 a 7 80
4 Et ACN 2 60 5 97 a - -
5 iPr ACN 4 40 90 97 a - -
6 iPr ACN 2 60 30 98 a 6 85
7 Me 1,4-Dioxane 2 40 5 >99 a 1 95
8 Me 1,4-Dioxane 2 60 2 >99 a - -
9 Me 1,4-Dioxane 2 80 2 >99 a - -

10 Et 1,4-Dioxane 2 40 15 95 a 7 74
11 Et 1,4-Dioxane 2 60 6 96 a - -
12 Et 1,4-Dioxane 2 80 3 96 a 2 48
13 iPr 1,4-Dioxane 2 80 30 >99 a 4 89
14 Me Neat BTMS 6 40 2 >99 a - -
15 Et Neat BTMS 6 40 2 98 a - -
16 iPr Neat BTMS 6 40 15 >99 a - -
17 Me DMF 2 40 4 97 a - -
18 Me DMF 2 60 2 94 a - -
19 Et DMF 2 40 6 98 a - -
20 Et DMF 2 60 2 98 a 4 62
21 Et DMF 2 80 2 95 a 4 98
22 iPr DMF 2 80 20 96 a - -
23 iPr DMF 2 100 5 97 a 1 73
24 iPr DMF 2 110 2 95 a - -
25 Me Sulfolane 2 40 4 >99 b - -
26 Me Sulfolane 2 60 2 >99 b - -
27 Et Sulfolane 2 40 15 100 b - -
28 Et Sulfolane 2 60 2 100 b 4 40
29 iPr Sulfolane 2 60 10 100 b - -
30 iPr Sulfolane 2 80 2 100 b 4 92

a Isolated yield of methylphosphonic acid; yields of bis(trimethylsilyl) methylphosphonate intermediate were
>99% by 31P NMR. b Yield of bis(trimethylsilyl) ester by 31P NMR.
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Reaction completion times were compared for four aprotic solvents with markedly
different structures, with sulfolane being the most polar (ε = 43), followed by ACN
(ε = 37), DMF (ε = 38), and 1,4-dioxane, which is the least polar (ε = 2.2) [18]. As a
reference, reactions in neat BTMS were also run [5]. The results are presented in Table 1. As
the enhanced rate of microwave-assisted reactions involves the excitation of polar bonds in
molecules, solvent polarity is expected to influence the absorption of the radiant energy
from the microwave source and thereby affect the reaction rate.

For the methyl ester, shorter reaction times were observed in DMF and sulfolane
compared to ACN when the temperature and other conditions were held constant, although
the dielectric constant (ε) of DMF is marginally lower than that of ACN. Significantly, in
1,4-dioxane, the least polar of the solvents tested, this reaction proceeded to completion
at least as rapidly as in ACN. Rapid conversions were also observed for the reactions in
neat excess BTMS. For the ethyl ester, the reaction in all four solvents was complete at
40 ◦C within 6–15 min. The reaction of the isopropyl ester required only 2 min in sulfolane
at 80 ◦C and 20–30 min in ACN, DMF, or 1,4-dioxane at 60–80 ◦C.

In all cases, MW-BTMS reactions were up to >100 times faster (often complete within a
few min) than their conventionally heated counterparts (not always complete after several
hours), depending on the ester alkyl group, temperature, and BTMS molar excess. The
reaction of all three esters was complete in neat BTMS within 2–15 min at 40 ◦C.

The marked P-O vs. C-O chemoselectivity of BTMS for silyldealkylation in carboxylate-
phosphonate mixed esters under standard conditions is well established [7,19,20]. To
investigate the conservation of this synthetically useful property under MW-BTMS, two
model mixed esters, trimethyl- and triethylphosphonoacetate (Table 2, Entries 1 and 2), were
reacted with BTMS under microwave irradiation in ACN at 60 ◦C. The results, displayed
in Table 2, reveal that the quantitative dealkylation of these compounds requires more
time than their simple methylphosphonate diester counterparts. As previously noted,
the initial attack of the P=O group at the silicon atom of BTMS displacing Br− creates a
positive charge at phosphorus, decreasing reactivity when R’ is an electron-withdrawing
substituent such as a carboxyl or α-halo alkyl group [5,21]. This effect persists in MW-
BTMS, as exemplified by the dealkylation of diethyl (bromodifluoro)phosphonate (Table 2,
Entry 4), which required a twofold molar excess of BTMS and irradiation at 60◦C for 1 h.

Table 2. Results for microwave BTMS dealkylation reactions on mixed carboxylate–phosphonate
esters, as well as on 2-(diethoxyphosphoryl)acetic acid and diethyl(bromodifluoro)phosphonate.

Entry Substrate Solvent
BTMS (Molar

Ratio to
Substrate)

Temp.
(◦C)

Time:
MW (min)

% Yield
(NMR a/Isolated b)

1
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In contrast to the ethyl triester (Table 2, Entry 2), diethyl carboxylmethylphosphonate
was appreciably less reactive under MW-BTMS in ACN, taking twice as long to complete
with a threefold higher concentration of the BTMS reagent (Table 2, Entry 3). This may



Molecules 2023, 28, 3497 5 of 10

be due to the formation of an intramolecular hydrogen bond between the free carboxyl
group and the P=O, which would decrease the nucleophilicity of the P=O oxygen in its
rate-determining attack on silicon in BTMS (Figure 2).
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Figure 2. Internal hydrogen bonding in diethyl carboxyphosphonate decreases P=O oxygen nucle-
ophilicity, leading to decreased silyldealkylation reactivity under MW-BTMS.

Slight modifications to the workup procedures for the carboxylphosphonate products
were necessary. For the silyl ester intermediate of 2-phosphonoacetic acid (Table 2, Entry 3),
desilylation to the final product was performed with water because the use of methanol
esterified the carboxylic acid group (for acid-sensitive compounds, hydrolysis with a neu-
tral pH aqueous buffer is recommended) [22]. Importantly, for the mixed P-O and C-O
triesters (Table 2, Entries 1 and 2), silylation is 100% selective at the P-O ester. However, the
presence of trace amounts of unreacted BTMS produces HBr upon exposure to moisture,
which can result in partial dealkylation at the carboxylate ester [19,20,23]. In order to avoid
this, any excess BTMS must be removed under reduced pressure before the desilyation of
the silyl ester intermediate. In addition to the deployment of a drying tube, the BTMS reac-
tions with phosphonoacetates were carried out under dry nitrogen as an extra precaution
against moisture.

ANPs, especially those containing DAP or PMEA groups, may undergo the partial
degradation of the nucleoside moiety during phosphonate ester dealkylation under the
vigorous HCl hydrolysis conditions described by Jansa et al. [15]. In contrast, the data
presented in Table 3 show that the silyldealkylation of these compounds using MW-BTMS
was quantitative within 15–30 min at 60 ◦C, depending on the molar ratio of BTMS to the
ester substrate. Control reactions in which all reaction conditions were the same except for
microwave irradiation (Table 3) revealed that the MW-BTMS dealkylations were completed
16–20 times faster.

Table 3. BTMS dealkylations of acyclic nucleoside phosphonate esters using microwave irradiation.

Entry Substate Structure Solvent
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(Molar
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Substrate)

Temp.
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3. Discussion

The initial report on the acceleration of BTMS silyldealkylations of certain diethyl
phosphonates in ACN [11] was followed only sparsely by further examples [11,12,15], none
of which defined the scope and comparative utility of this method. Recently, our labora-
tory demonstrated that under specific MW heating conditions for a BTMS dealkylation
step, unwanted anomerization in the synthesis of dTTP analogues could be avoided [24].
Meanwhile, alternative MW-based approaches have been suggested [15] and criticized [2].
Here, we have systematically examined the effects of solvent polarity, alkyl ester structure,
and temperature on MW-BTMS phosphonate diester silyldealkylation in comparison to
thermal heating as a route to a series of phosphonic acids. Compared to conventional
thermal heating of reaction mixtures, microwave irradiation can provide greatly shortened
reaction times [10,25], cleaner reaction profiles [26], better reproducibility [27], and higher
product yields [10,26].

Using BTMS reacting with a uniform dialkyl methylphosphonate substrate, MW irra-
diation under the experimental conditions (Materials and Methods) was found to accelerate
reactions dramatically for all three types of alkyl ester in all four aprotic solvents and neat
excess BTMS, with quantitative conversion by NMR obtained for the dimethyl ester in as
little as 2 min at 40–60 ◦C in solvents with different polarities and neat BTMS (Table 1).
Notably, the least polar solvent (1,4-dioxane) was as effective at 40 ◦C as ACN, which has
an almost twentyfold larger dielectric constant. Microwave-assisted organic synthesis is
believed to involve at least two different heating mechanisms: dipolar polarization and
ionic conduction. Dipolar polarization transfers heat energy via the interaction of a reactant
or solvent dipole with the applied oscillating electric field. Ionic conduction is caused by the
oscillation of dissolved charged particles in the microwave field. Dielectric properties thus
determine the heating characteristics of a particular material. Even if the solvent has a low
dielectric constant, polar reactants will enable effective energy transfer [28]. We do not have
ε values for the two key substrates, dimethyl methyl phosphonate and BTMS; however, as
an approximation, we calculated their dipole moments (µ) as 3.11 and 3.92 D, respectively,
using equilibrium geometry at ground state (Spartan ’20) and density functional models
(ωB97X-D, 6-31G*), assuming a solvent environment of low polarity (ε = 3.7, similarly to
ethyl ether). These values are similar to the µ for acetonitrile, 3.89 D.

In ACN at 40 ◦C, the methyl ester reaction time was longer than for the other sol-
vents (10 min vs. 2–5 min), but this was more than halved by raising the temperature to
60 ◦C. Results for the diethyl esters showed only a small decrease in reactivity, depending
on the solvent. For the diethyl ester in 1,4-dioxane, the reaction time increased slightly to
15 min at 40 ◦C (vs. 7 h with conventional heating), but it was reduced to 6 min at 60 ◦C
and 4 min at 80 ◦C. The reaction was virtually immediate in DMF, sulfolane, and ACN at
60 ◦C (2–5 min) and greatly accelerated compared to thermal heating alone. MW-BTMS
silyldealkylation times of the sterically more hindered isopropyl diesters, which are typ-
ically less reactive with BTMS under conventional heating, did show a dependence on
solvent polarity; sulfolane was the most effective (10 min at 60 ◦C and 2 min at 80 ◦C),
compared to DMF (20 min at 80 ◦C, 5 min at 100 ◦C, and 2 min at 110 ◦C), 1,4-dioxane
(30 min at 80 ◦C), and ACN (90 min at 40 ◦C and 30 min at 60 ◦C). The ability of MW-BTMS
to achieve the rapid quantitative silylation of the isopropyl esters under these mild con-
ditions is a signal improvement over the traditional BTMS method, where limitations to
methyl or ethyl ester precursors of targeted phosphonic acids to avoid higher temperatures
and longer reaction times may be encountered.

Neat BTMS reactions were used in the initially reported phosphonate diester
silyldealkylations [5,6]. With simple dialkyl phosphonates, thermal heating reaction times
in 5–70% excess BTMS ranged from less than an hour for a dimethyl ester to several hours
for the corresponding diisopropyl ester. It was therefore of interest to assess the reaction
performance of MW-BTMS carried out in the neat reagent. As shown in Table 1, quantitative
silyldealkylation yields were achieved within 2 min from both the dimethyl and diethyl
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esters reacted at 40 ◦C, using 6 equiv of BTMS. Under the same conditions, the conversion
of the diisopropyl ester was completed in 15 min.

A hallmark of the BTMS approach to the synthesis of phosphonic acids from their
diesters is its chemoselectivity against the dealkylation of a carboxylic acid ester present in
the same molecule [5]. Consequently, we investigated whether this selectivity is preserved
under MW reaction conditions (Table 2). Both trimethyl and triethyl phosphonoacetate
irradiated in ACN at 60 ◦C for 10 and 15 min, respectively, were cleanly converted to the
corresponding C-methyl mono esters with 100% chemoselectivity, and C-alkyl phosphonic
acids were isolated in 96–98% yield after desilylation of silyl ester intermediates. It was also
possible to convert diethyl phosphonoacetic acid to the triacid in 99% isolated yield using a
twofold excess of BTMS in ACN at 60 ◦C and a 30 min reaction time. The longer reaction
times presumably reflect the effect of a relatively more electronegative 1-carbon substituent
on the phosphonium-like transition state generated by the nucleophilic attack of the phos-
phoryl oxygen on the silicon atom in BTMS [6,21] (in addition to the proposed effect of
internal H-bonding in the phosphonoacetic acid). We therefore repeated the reaction using
diethyl bromodifluoromethylphosphonate (Table 2), a useful synthon for introducing the
–CF2P(O)(OEt)2 moiety, which has an exceptionally electronegative phosphonate carbon.
This compound required 1 h in ACN at 60 ◦C to complete silyldealkylation, suggesting that
MW irradiation does not change the mechanism of the reaction in terms of it proceeding
via an electron-deficient transition state.

BTMS silyldealkylation has often been a valuable tool for the preparation of biologi-
cally active phosphonic acids, including ANPs [3,4,11,13,14]. This is particularly the case
when the pharmacophore in these compounds may be vulnerable to degradation under
harsh hydrolysis conditions, an example of which is treatment with HCl at high temper-
atures [15]. We examined the applicability of MW-BTMS to three ANP alkyl esters that
were reported to be sensitive to HCl hydrolysis [15]: PMEDAP(OiPr)2, (S)-PMPDAP(OEt)2,
and PMEA(OiPr)2. The reaction times required for the quantitative conversion of these
compounds to the bis(trimethylsilyl) esters by treatment with BTMS in ACN at 60 ◦C
(conventional heating) ranged from 4 to 6 h (Table 3). In contrast, by applying MW-BTMS
under otherwise identical conditions, the conversion was complete within 15–30 min. In
neither case was significant decomposition detected (NMR), and pure phosphonic acid was
obtained in an 82–91% yield after recrystallization.

With the ongoing interest in expanded methods to prepare phosphonic acids from
diverse ester substrates [29,30], we believe that MW-BTMS is a suitable topic for further
investigation as well as being a demonstrably valuable tool for practical synthesis.

4. Materials and Methods

BTMS was purchased from Sigma-Aldrich (St. Louis, MO, USA) and distilled under
nitrogen (greaseless glass joints) prior to use. Dimethyl methylphosphonate, trimethyl
phosphonoacetate, and triethyl phosphonoacetate were purchased from Aldrich. Diethyl
methylphosphonate was purchased from Alfa Aesar (now Thermo Scientific Chemicals,
Ward Hill, MA, USA), while diisopropyl methylphosphonate was purchased from Lancaster
Synthesis (Lancaster, UK). Diethyl (bromodifluoromethyl)phosphonate was purchased
from Oakwood Products (Estill, SC, USA). Acetonitrile was purchased from EMD Chemi-
cals (Port Wentworth, GA, USA) and distilled prior to use; Drisolv N,N-dimethylformamide
was purchased from EMD Chemicals; 1,4-dioxane was purchased from Macron Chemicals
(Avantor/VWR, Radnor, PA, USA) and distilled over sodium; sulfolane was purchased
from Sigma-Aldrich and distilled under reduced pressure. Diethyl phosphonoacetate [31]
and the ANP esters were synthesized according to published methods [32,33].

All glassware was oven-dried, solvents were AR reagent grade, and NMR spectra
were obtained at 500 (1H) or 202 (31P) MHz on a Varian VNMRS-500 NMR. The microwave
irradiation of reaction mixtures was carried out in a Milestone Ethos Synth Microwave
Synthesis Labstation. The chemical shift references for 1H NMR spectra were the residual
HDO (δ 4.79) in D2O or residual CHCl3 (δ 7.26) in CDCl3, while the 31P NMR spectra were
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referenced against an external 85% H3PO4 standard (δ 0.00). All chemical shift values (δ)
are given in ppm, and NMR sample pH values were measured in 99.9% D2O without
deuterium isotope corrections. The approximate concentration of the NMR samples was
1–3 mg/mL for isolated compounds.

General procedure for the microwave-assisted dealkylation of methylphosphonate
dialkyl esters (Table 1): the appropriate dialkyl methylphosphonate ester (1.8 mmol) in a
10 mL round bottom flask equipped with a reflux condenser and protected from moisture
by a Drierite-filled tube was dissolved in 1 mL of solvent, and BTMS (3.8 mmol) was
rapidly added dropwise with stirring. All microwave reaction times include a 1-minute
ramp to the listed temperature. After the reaction was complete, the mixture was allowed
to cool for 3–10 min, after which it was treated with excess methanol and then stirred
for 10 min at room temperature. The methylphosphonic acid product was isolated as a
colorless oil by drying in vacuo to a constant weight. For reactions in sulfolane, the product
was not isolated. All experiments were repeated in triplicate to verify reproducibility.
Control reactions were also performed, in which all reaction conditions were unchanged
except for the replacement of microwave heating with a thermally heated sand bath. All
starting diesters (Table 1) were dealkylated to the same product, methylphosphonic acid,
producing essentially identical 1H and 31P NMR spectra, so we reproduce representa-
tive product spectra for the methylphosphonic acid product from the microwave BTMS
dealkylation of dimethyl methylphosphonate in ACN at 40 ◦C for 10 m: 1H NMR (D2O)
δ: 1.20–1.24 (d) ppm (Figure S1); 31P NMR (D2O) δ: 31.05 ppm (Figure S2) These values are
consistent with previously reported spectra data: 31P NMR (D2O) δ: 31.11 and 1H NMR
(D2O) δ: 1.24–1.31 [30].

General procedure for the microwave dealkylation of trimethyl- and triethyl phos-
phonoacetate (Table 2, Entries 1 and 2, respectively), diethyl phosphonoacetate (Table 2,
Entry 3), and diethyl (bromodifluoromethyl)phosphonate (Table 2, Entry 4): the procedure
was the same as for the methylphosphonate esters; however, in the case of trimethyl- and
triethyl phosphonoacetate, the solvent and any excess BTMS were removed under reduced
pressure before treatment with methanol, and the reactions were carried out under dry ni-
trogen as an extra precaution against moisture. This was necessary due to the sensitivity of
carboxylate esters to the HBr produced when BTMS is exposed to moisture. The 31P NMR
spectra of product mixtures in CDCl3 were obtained for the bis(trimethylsilyl) esters of
(2-methoxy-2-oxoethyl)phosphonic acid (Figure S3) and (2-ethoxy-2-oxoethyl)phosphonic
acid (Figure S4), in addition to the 1H and 31P NMR spectra of the final phosphonic acid
products of Table 2 (Figures S5–S11) [34–36].

General procedure for the microwave-promoted BTMS dealkylation of dialkyl
ANPs (Table 3). PMEDAP(OiPr)2 (0.134 mmol), (S)-PMPDAP(OEt)2, or PMEA(OiPr)
2 (0.140 mmol) were dissolved in 1.5 mL of acetonitrile, and 4 or 6 molar equivalents
of BTMS was quickly added. All microwave reaction times included a 1-minute ramp
to 60 ◦C (Table 3). After microwave irradiation for 15 or 30 min, the reaction mixture
was allowed to cool for 10 min, excess methanol was added, and the mixture was left
to stir at room temperature for 10 min. The product was then dried under reduced
pressure, dissolved in ammoniated water, and precipitated by adjustment of the pH to
2–2.5 with HBr. The white crystalline product was then filtered and washed with cold
water and acetone or ethanol and dried under vacuum at 45 ◦C to a constant weight.
Representative 31P and 1H NMR spectra are shown in Figures S12–S17) [15].

5. Conclusions

Under the microwave conditions described here (MW-BTMS), the conventional BTMS
silyldealkylation of methyl, ethyl, and isopropyl phosphonate diesters is greatly accelerated
in aprotic solvents having both low and high dialectric constants, including ACN [10],
1,4-dioxane, DMF, sulfolane, and neat BTMS, requiring in general only a few minutes at
40–60 ◦C to achieve quantitative yields. A large excess of BTMS is unnecessary, and the
reactions are conveniently carried out in unsealed vessels at ambient atmospheric pressure.
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MW-BTMS offers a striking improvement in efficiency over traditional BTMS silyldealkyla-
tions and appears to provide significant advantages, including superior chemoselectivity,
over the MW-assisted HCl method [15] to prepare phosphonic acids from the corresponding
alkyl esters.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules28083497/s1: Figures S1–S17: 31P and 1H NMR spectra of dealkylated products
from Tables 1–3; Figure S18: depiction of the MW apparatus used in the synthetic experiments.
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