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Abstract: A new mechanically stimulated solid-state reaction of PtCl4 with sodium β-diketonates
has been discovered. Platinum (II) β-diketonates were obtained by grinding excess sodium trifluo-
roacetylacetonate Na(tfac) or hexafluoroacetylacetonate Na(hfac) in a vibration ball mill, followed
by subsequent heating of the resulting mixture. The reactions occur under much milder conditions
(at about 170 ◦C) compared to similar reactions of PtCl2 or K2PtCl6 (at about 240 ◦C). Excess diketo-
nate salt plays the role of a reducing agent in the conversion of Pt (IV) salt to Pt (II) compounds. The
effect of grinding on properties of the ground mixtures was studied by XRD, IR, and thermal analysis
methods. The difference in the course of the interaction of PtCl4 with Na(hfac) or Na(tfac) indicates
the dependence of the reaction on the ligand properties. The probable reaction mechanisms were
discussed. This method of synthesis of platinum (II) β-diketonates makes it possible to substantially
reduce the variety of reagents used, the number of reaction steps, the reaction time, the use of solvents,
and waste generation compared to conventional solution-based methods.
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1. Introduction

Due to their unique properties, platinum-group metals β-diketonates and their deriva-
tives are increasingly used in the chemical industry, microelectronics, optics, hydrogen
energy systems, medicine, and other fields [1–7]. Conventional methods for the synthesis of
platinum metal β-diketonates are based on the interaction of β-diketone and a metal salt in
aqueous or aqueous organic solutions [8–10]. As stated earlier by Chimitov et al. [11], there
is currently no general method for the synthesis of platinum-group metal β-diketonates,
such as M(β-diketonate)2 (M = Pd, Pt) and M(β-diketonate)3 (M = Ru, Rh, Ir, Os). In
this regard, the possibilities of using alternative technologies for their preparation, e.g.,
microwave-assisted synthesis [11] or solid-state synthesis [12], are explored by researchers.
Note that the use of various mechanochemical techniques (solvent-free/solvent-less pro-
cesses, liquid-assisted grinding) in many cases makes it possible to accelerate reactions,
increase the efficiency of processes, and eliminate or significantly reduce the use of sol-
vents and waste generation. The mechanochemical approach is more environmentally
friendly than conventional solution-based reactions [13–17]. In 2019, IUPAC included
mechanochemistry in the list of top ten technologies for sustainable development [18,19].
A comprehensive review on the use of alternative technologies for the synthesis of vari-
ous types of organometallic and coordination compounds has recently been published by
Beillard et al. [20].

Recently, we developed a new general solid-state mechanochemical method for the
synthesis of platinum-group metal β-diketonates by reacting metal chlorides (PdCl2, PtCl2,
RuCl3.nH2O, RhCl3.nH2O, K2PtCl6) with β-diketone salts [12]. However, we were not satis-
fied with the high temperature (ca. 240 ◦C) required for the formation of Pt(β-diketonate)2
from ground mixtures with a simple PtCl2 or K2PtCl6 complex salts. Therefore, our goal
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was to find solid-state reactions for the synthesis of Pt(β-diketonate)2 under much milder
conditions. To solve this problem, we studied the solid-state interaction of a simple PtCl4
salt with sodium trifluoroacetylacetonate Na(tfac) or hexafluoroacetylacetonate Na(hfac)
using mechanical activation (ball milling) in the absence of a solvent, and compared the
reactivity of PtCl2, K2PtCl6, and PtCl4 in the reactions.

2. Results

Grinding a PtCl4–4.5 Na(hfac) mixture in a vibration ball mill for 3–4 h produced
a yellow powder, which turned brown when heated to ca. 150 ◦C. Strong reflections of
the reactant Na(hfac), weak reflections due to PtCl4, and traces of the products NaCl and
Pt(hfac)2, as well as possible intermediates (PtCl2) or by-products, were observed in the
X-ray powder diffraction patterns of the mixture after grinding. With increased grinding
time, the intensity of the NaCl reflections only slightly increased, while that for the reactant
PtCl4 decreased (Figure 1).
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Figure 1. X-ray diffraction powder patterns of (a) initial PtCl4 (PDF file 00-019-0914 [21,22]);
(b) sodium hexafluoroacetylacetonate Na(hfac); (c,d) the PtCl4–4.5Na(hfac) reaction mixture after
grinding for 3 and 4 h, respectively; (e) residue after platinum hexafluoroacetylacetonate, Pt(hfac)2,
vacuum sublimation; and (f) Pt(hfac)2 sublimed. Symbols denote: F, PtCl4; �, Na(hfac); N, NaCl;
•, Pt(hfac)2;
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Only slightly shifted absorption bands of the reactant Na(hfac) were observed in the
IR spectra of the mixture after grinding (Figure 2, Table 1). The IR data corresponded
to the results of XRD analysis, and indicated that the reaction passed through a series
of intermediate stages and led to the formation of only traces of the final product under
the grinding conditions used. The conclusion about the multistage nature of the process
under study is consistent with modern ideas about the dynamics of mechanochemical
processes, according to which solid-state mechanochemical reactions proceed in several
stages, including grinding and physical mixing of reagents, their homogenization at the
molecular or cluster level, and the conversion of the activated reactants into reaction
products [24]. Earlier, we showed that the transformation of the activated mixture into the
final products for a number of mechanically stimulated solid-state reactions occurs when
the mixture is heated [25]. In this regard, we carried out a thermoanalytical study of the
reaction mixtures.
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Figure 2. IR spectra of (a) Na(hfac); (b,c) the PtCl4–4.5Na(hfac) mixture after grinding for 3 and 4 h,
respectively; (d) residue after Pt(hfac)2 sublimation; and (e) Pt(hfac)2 sublimed.

Table 1. IR spectra of Na(hfac), ground mixtures, and obtained Pt(hfac)2 (ν, cm−1).

Na(hfac) Ground Mixture, 3 h Ground Mixture, 4 h Pt(hfac)2 Assignment

1673 s 1669 m 1672 m 1681 w ν(C . . . O)

1656 s 1657 m 1650 m ν(C . . . C)

1555 w 1533 m
1514 sh 1490 m

1553 w 1531 m
1513 w 1494 m 1553 w 1531 m 1493 m 1586 m 1560 vw

1535 vw 1436 m ν(C . . . O) + ν(C . . . C . . . C)

1334 w 1332 w 1320 w 1348 w νs(C–CF3)

1259 m
1205 m wide

1259 m
1191 m 1256 m 1212 m 1257 m 1200 m ν(C–CF3), ν(C–F), ν(C . . . C . . . C)

1131 vs 1127 vs 1135 vs 1146 vs δ(C–H) in plane

1087 vw 1087 vw 1079 w 1102 s

948 vw 948 vw 946 w 955 vw ν(C . . . O)

847 vw 802 m 852 w 794 m 852 w 792 m 833 vw 818 m δ as(C–CF3)

763 vw 763 vw 754 w δ s(C–CF3)

739 m 739 m 739 m 721 m Ring def.

663 m 663 m 663 m

579 m 579 m 580 m 612 m

Thermal analysis of the PtCl4–4.5Na(hfac) reaction mixtures after 3–4 h grinding
revealed several endothermic DTA peaks corresponding to weight losses in the TG curves.
In the temperature range of ca. 50–150 ◦C, between 5 and 10% of weight was lost (it appears
that Na(hfac) decomposition products arise from the Pt (IV)–Pt (II) reduction process). The
intensity of the peaks increases markedly with an increase in the grinding time from 3 to



Molecules 2023, 28, 3496 4 of 12

4 h. In our opinion, the data of instrumental investigations may indicate that the reaction
proceeds through the stage of reduction of the ground PtCl4 to finely dispersed PtCl2
(d 6.48
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It is known that solid PtCl4, when heated to 380 ◦C, decomposes with the release

of chlorine. When grinding PtCl4, especially in the presence of a reducing agent, the
decomposition temperature should decrease, which is what we observe in our reaction.
To interact with one molecule of chlorine, one molecule of the reducing agent is sufficient.
Fine dispersion of PtCl2 formed in this process leads to its high reactivity. To obtain Pt(β-
diketonate)2, two moles of the diketone salt are needed. The ratio (ligand):(metal) = 4.5:1
was used. Here, 2 moles of the ligand went to the formation of the complex, 1 mole went
to the reduction, and 1.5 moles were taken to ensure the completeness of the reaction.
Weak endothermic peaks at about 70 ◦C and 110 ◦C, the intensity of which increased with
increasing grinding time, indicated the formation of the decomposition products of the
hexafluoroacetylacetonate anion. The formation of volatile products can slow down the
course of this solid-state reaction due to the dissipation of mechanical energy, which is
due to its consumption for the processes of evaporation of volatile products (see below).
Therefore, to complete this solid-state reaction, it is necessary to heat the activated mixture.

The weak endothermic peak in the range of 150–220 ◦C with an extremum at ca. 180 ◦C
corresponds to the main stage of the weight loss changing from 28% after 3 h to 44% after
4 h grinding. Visual observation shows that sublimation of the target product Pt(hfac)2
occurs in this temperature range. A weak sharp peak at ca. 230 ◦C corresponding to a
weight loss of ~10% is presumably due to thermal degradation of Pt(hfac)2 and/or Na(hfac)
(Figure 3a,b).
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Figure 3. Thermal analysis data for the mixtures after grinding: (a) PtCl4 –4.5Na(hfac) for 3 h; (b) the
same for 4 h; (c) PtCl2–2.5Na(hfac) for 3 h; and (d) K2PtCl6–5Na(hfac) for 4 h [12].

To avoid thermal decomposition and contamination with by-products formed upon
the decomposition of Na(hfac) during Pt (IV)–Pt (II) reduction, the product Pt(hfac)2 was
isolated by vacuum sublimation of the ground mixtures at 140–180 ◦C. The PtCl4–Pt(hfac)2
conversion after grinding for 4 h reached 71% (vide infra, Experimental). The IR and XRD
data for the product are consistent with published data for Pt(hfac)2 [8,12]. The residue after
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the isolation of Pt(hfac)2 showed intense NaCl reflections and weak Na(hfac) reflections
(Figure 1e).

Comparison of the PtCl4–4.5Na(hfac) reaction to previously studied Na(hfac) reactions
with PtCl2 or K2PtCl6 (Figure 3c,d) [12] demonstrated that the reaction with PtCl4 proceeded
under much milder conditions (at a temperature ~50–60 ◦C or more lower than with PtCl2
or K2PtCl6) and results in the formation of Pt(hfac)2 with a higher conversion degree.

Thus, the processes occurring during this reaction can be represented by Scheme 1:
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Scheme 1. (a) grinding and physical mixing of the reactants, their homogenization at the molecular
or cluster level, and traces of products and intermediates; (b) heating of ground mixture in vacuum,
conversion to final products, and Pt(hfac)2 sublimation.

The solid-state reaction of PtCl4 with Na(tfac) differs somewhat from the reaction
described above. Grinding PtCl4–4.5Na(tfac) for 3–4 h leads to the formation of a brown
PtCl4–4.5 Na(tfac) mixture.

The X-ray diffraction pattern of the ground mixture consists mainly of NaCl reflections,
an amorphous phase at 2θ~20◦, and traces of the reactants Na(tfac) and PtCl4 (Figure 4c).
The presence of strong NaCl reflections (Figure 4) may indicate the formation of substitution
products in the ground mixtures. The formation of substitution products also manifested
in the IR spectra by a slight shift in the absorption bands of the Na(tfac) C=O group
(Table 2), and indicated a difference in the mechanisms of PtCl4 interaction with Na(hfac)
and Na(tfac). Mainly, strong reflections of the product NaCl and weak reflections of the
reactant Na(tfac) were observed in the residue after Pt(tfac)2 sublimation.
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Figure 4. XRD powder patterns of (a) initial PtCl4 (PDF file 00-019-0914 [21,22]); (b) sodium triflu-
oroacetylacetonate Na(tfac); (c) PtCl4–4.5Na(tfac) mixture after grinding for 4 h; (d), residue after
platinum trifluoroacetylacetonate Pt(tfac)2 vacuum sublimation; and (e) Pt(tfac)2 sublimed. Symbols
denote: F, PtCl4; �, Na(tfac); N, NaCl.



Molecules 2023, 28, 3496 6 of 12

Table 2. IR spectra of Na(tfac), ground mixture, and obtained Pt(tfac)2 (ν, cm−1).

Na(tfac) Ground Mixture, 4 h Pt(tfac)2 Assignment

1694 vw 1686 s, 1668 s ν(C . . . O)

1636 s 1611 s 1583 s ν(C . . . O)

1517 m 1495 s 1525 s 1523 m ν(C . . . C . . . C)

1429 w 1449 m 1450 m δas(CH3)

1363 w 1363 m 1367 m δs(CH3)

1287 s 1272 s 1287 m 1304 s ν(C . . . C) + ν(C–CH3)

1225 w, 1217 w, 1178 m, 1135 s 1192 s 1137 s 1090 m 1234 s, 1188 m, 1158 s, 1142 vs ν(C–F) + ν(C–CF3)

1020 w 1024 w 1001 w 1025 w ρr(CH3)

994 w 949 m 948 w ν(C–CH3) + ν(C . . . O)

845 m 843 w 882 m

765 m 802 m 801 m δ as(C–CF3), δ(C–H)
out-of-plane

727 m 725 m 745 m 720 m δ s(C–CF3)

690 w 662 w 694 m Ring def.

The IR spectra mainly display slightly shifted absorption bands of Na(tfac) and some
bands close to those of Pt(tfac)2 (Figure 5, Table 2).
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Figure 5. IR spectra: (a) initial Na(tfac); (b) PtCl4–4.5Na(tfac) mixture after grinding for 4 h;
(c) Pt(tfac)2 sublimed. Symbols: (�) Na(tfac); (•) absorption bands close to those of Pt(tfac)2.

The DTA curve of the reaction mixture after grinding for 4 h shows weak endother-
mic peaks at 98 and 110 ◦C corresponding to a weight loss of ~4% in the TG curve
(Figure 6). In the range of 110–180 ◦C, an intense exothermic peak was observed with
a maximum at ~170 ◦C, corresponding to the main stage of weight loss. Visual obser-
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vation shows that the vacuum sublimation of the target product, light yellow Pt(tfac)2,
occurs in the range of 140–180 ◦C. The degree of conversion of PtCl4 to Pt(tfac)2 was ~69%
(vide infra, Experimental).
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Figure 6. Thermal analysis data for PtCl4–4.5Na(tfac) mixture after grinding for 4 h.

Comparison of the results from instrumental research methods suggests that, un-
like reaction in the PtCl4–4.5Na(hfac) mixture (Scheme 1, formation of PtCl4 reduction
products), this reaction proceeds via a sequence of addition–elimination steps with the
possible formation of intermediates such as Na[PtCl4(tfac)]+, Pt(tfac)2Cl2 or others, and the
production of the desired Pt(tfac)2. Taking into account the polymeric structure of PtCl4,
the formation of various other intermediates can be assumed [26].

Thus, the processes occurring during this reaction can be represented by Scheme 2:
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Scheme 2. (a) grinding of reactants, formation of intermediates; (b) heating and the formation of the
final reaction products.

A difference in the course of PtCl4 reactions with Na(hfac) (Scheme 1) and Na(tfac)
(Scheme 2) indicates a significant dependence of the reaction course on the structural,
electronic, and steric properties of organic ligands. Na(hfac) easily reduces PtCl4 with the
formation of highly volatile products and PtCl2, while the reaction with Na(tfac) proceeds
via addition–elimination steps. It can be expected that PtCl4 reactions with salts of less
acidic β-diketones will also proceed similarly to the reaction with Na(tfac).

Thermal analysis data show that the main stage of weight loss (sublimation of target
products) corresponds to the weak endothermic effect, with an extremum at ca. 178 ◦C
for the reaction of PtCl4 with Na(hfac) (Figure 3) and the exotherm with a maximum at ca.
171 ◦C for the reaction with Na(tfac) (Figure 6); this is in contrast to the analogous reactions
with PtCl2 or K2PtCl6 accompanied by exothermic effects with maxima at ca. 240 ◦C [12].
These data indicate a decrease in the formation temperature of Pt(II) diketonates by about
60 ◦C when using PtCl4 instead of PtCl2 or K2PtCl6.

The degree of conversion of the initial platinum salt in the considered solid-state
reactions is comparable to that for conventional solution-based methods [8]. However,
the solid-state synthesis approach makes it possible to achieve the following: significantly
reduce the variety of reagents used, the number of reaction steps, and the reaction time;
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reduce or eliminate the use of solvents; and significantly reduce waste generation. Fur-
ther research is necessary to elucidate the mechanism and optimize the conditions of the
reactions under consideration.

Previously, in the course of a systematic study, we studied the feasibility and some
features of the solid-state mechanochemical synthesis of various classes of coordina-
tion and organometallic compounds, such as cyclopentadienyl complexes of d- [27] and
f - elements [28], Fe, Co, and Ni metallocenes [29], bis-dicarbollyl complexes of Fe, Co, and
Cr [30], β-diketonates [25,31], carboxylates [32], dialkyldithiocarbamates [33], and other
complexes of a number of metals.

The data obtained by us and by other researchers make it possible to reveal some
typical features that make a difference between solid-state mechanochemical reactions and
other mechanochemical technologies and conventional solution-based reactions. These
features are associated primarily with the impact of mechanical energy on the crystalline
reactants (grinding), which results in their physical mixing, fragmentation, and homoge-
nization, an increase in the contact area between them, the formation of various defects
in the crystal structure, and an increase in temperature of the reaction mixture. All these
factors increase the reactivity of the reactants.

The accumulation of energy by mixtures during their grinding can be most clearly
detected using thermal analysis. During grinding, a new exothermic effect appears in the
DTA curves of the reaction mixtures, which is absent in the DTA curves of the reactants
and products. With an increase in grinding time, its temperature decreases due to the
formation of smaller particles of reactants in the mixture. This exotherm corresponds to
the interaction of the reactants with the formation of final products. When the reaction
temperature approaches the ambient temperature, the reactants are instantly converted
into products in the thermal explosion mode [34].

Milled mixtures with too high temperatures of the exothermic effect (above 200 ◦C)
do not reach the stage of transformation into final products even with prolonged grinding
under experimental conditions. Instrumental research methods indicate the presence of
only ground reactants in such mixtures (broadened absorption bands in the IR spectra
and broadened reflections in powder X-ray diffraction patterns). Evidently, the power
of the used vibration mill is not enough to heat the reactor to the temperature of the
reaction initiation. These mixtures can be converted into products by further heating after
grinding [12].

The yield of products is very sensitive to the quality of the reactants and decreases
drastically in the presence of trace water or other volatile compounds because the pres-
ence or formation of liquid or viscous compounds prevents the transfer of mechanical
energy to crystalline reactants due to energy dissipation. In this case, other regularities are
observed [35].

In some cases, mixtures that have accumulated mechanical energy may remain reactive
for some time, and they can be called activated mixtures. This allows them to be used to
conduct or study reactions of the synthesis in the mode of self-propagation. The advantage
of such systems is a low temperature of the process (less than 300 ◦C), and the possibility of
visual control of the process due to a change in the color of the reaction mixture during the
reaction. The reaction in the Na(acetylacetonate)–CrCl3 system is one of the first examples
of the synthesis of complex compounds in the self-propagation mode. Reactions of this type
demonstrate the relationship between the phenomena of mechanical activation, thermal
explosion, and reactions in the self-propagation mode [25,34,36].

Most of the systems studied are characterized by the presence of both reaction products
and a new exothermic effect in the DTA curves of milled mixtures. In these systems, both
final or intermediate products and activated mixtures of reactants are formed as a result of
grinding. On the thermograms of these mixtures, an exotherm is observed, the temperature
of which decreases with an increase in the grinding time, but does not reach the inner
temperature (temperature of the reactor). The superposition of the exothermic effects of the
reaction and the endothermic effects of melting or sublimation of the products can lead to a
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complex shape of the DTA curves. In the X-ray powder diffraction patterns of the milled
mixtures, the intensity of the reflections of the reactants decreases and that of the reaction
products increases. The IR spectra indicate a decrease in the intensity of the absorption
bands of reactants and an increase in the absorption bands of products. There is a gradual
decrease in the amount of reactants, and an increase in the amount of reaction products
in the ground mixtures. The reactions slow down due to dilution of the reaction mixture
by the reaction products. In this case, heating of ground mixtures can significantly reduce
time of synthesis, increase the product yield, and prevent mechanochemical decomposition
of the target products [33].

The data obtained suggest that activating devices of a vibration-mill type are efficient
enough for creating optimal conditions for mechanochemical synthesis of coordination and
organometallic compounds. More powerful devices, such as planetary mills, are hardly
suitable for the purpose since they can cause decomposition of the product and a decrease
in the yield. Similar patterns in relation to the use of apparatuses of various types were
observed in the synthesis of boron hydride derivatives [37].

A comparison of the three considered types of reactions indicates that the difference
between them is of no fundamental importance and is caused only by the influence of
external factors, namely, the temperature of the process. It can be assumed that when
milling at low temperatures, the transformation of the activated mixture into products will
be hindered, while at elevated temperatures most of the reactions will proceed in a purely
mechanochemical mode.

The advantages of solid-state methods also lie in the fact that they make it possible
to solve a number of problems that are difficult or impossible to solve by conventional
methods, such as the preparation of non-solvated or hydrolysis-sensitive products [38],
as well as products of complete replacement of chloride ligands in platinum compounds
under mild conditions (this work) compared to reactions in solution or liquid-assisted
grinding reactions [39].

Thus, the study of the effect of grinding on mixtures of solid metal chlorides with
anionic derivatives of organic compounds made it possible to expand the existing ideas on
the reactivity of solids, develop solid-state methods for the synthesis of certain classes of
compounds, and discover a number of phenomena previously unknown in the chemistry
of coordination and organometallic compounds.

3. Experimental
3.1. Materials and Methods

Sodium trifluoroacetylacetonate Na(tfac) and hexafluoroacetylacetonate Na(hfac) were
obtained as described previously [31]. Freshly prepared β-diketonates were used in the
reactions. Platinum (IV) chloride (Sigma-Aldrich; 96% purity) was used without further
purification. Preparation of mixtures of starting materials, samples for instrumental studies,
loading and unloading of a ball mill grinding jar, as well as other operations with air-
sensitive substances were carried out in a nitrogen atmosphere in a drybox.

Grinding the reaction mixtures was carried out in a stainless-steel grinding jar with
a volume of 85 cm3 using a custom-made vibration ball mill [12]. Weighed amounts of
the reactants (~1 g) and 20 steel balls 12.3 mm in diameter (~150 g) as milling bodies were
loaded into the jar. The jar was sealed, mounted on the vibration ball mill, and subjected
to vibration (amplitude 11 mm, frequency 12 Hz; energy intensity of ~0.5 W/g) for a
preset time. Then, the jar was opened and the reaction mixture was separated and used
for instrumental studies and isolation of target products. The properties of the reactants,
reaction mixtures, and products were studied by X-ray phase analysis, IR spectroscopy,
and thermal analysis. The products were identified according to the data of chemical
analysis and instrumental research methods. X-ray diffraction powder patterns of the
samples were recorded on an ADN-2-01 diffractometer (CuKα radiation, Ni filter). IR
spectra of the reactants, reaction mixtures, and products were recorded on a Bruker Vertex
70 v Fourier-transform infrared spectrometer. Thermal studies were performed on an
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STA-449 F5 Jupiter thermal analyzer (Netzsch, Selb, Germany) in the temperature range of
20–250 ◦C at a heating rate of 10 ◦C/min with a sample weight of ~10 mg.

3.2. Synthesis

Pt(hfac)2. A mixture of 0.2894 g (0.859 mmol) PtCl4 and 0.9003 g (3.906 mmol) Na(hfac)
was ground for 4 h. The resulting yellow powder was studied by IR spectroscopy, XRD,
and thermal analysis; part of the powder was used to isolate the product. From 0.7107 g of
the activated mixture, 0.2226 g of Pt(hfac)2 was obtained as an orange crystalline substance
by vacuum sublimation at 140–180 ◦C, ~10−1 Torr. PtCl4–Pt(hfac)2 conversion, 71%. M.
p. 137–138 ◦C. Lit. data: 138 ◦C [40]. Found, %: C 19.67; H 0.35; Pt 32.1. Calculated for
Pt(C5H1F6O2)2, %: C 19.69; H 0.33; Pt 32.13.

Pt(tfac)2. A mixture of 0.1858 g (0.5515 mmol) PtCl4 and 0.4775 g (2.713 mmol) Na(tfac)
was subjected to grinding for 4 h. The resulting brown powder was studied by IR spec-
troscopy, XRD, and thermal analysis; part of the powder was used to isolate the product.
From 0.2042 g of the reaction mixture, 0.0587 g of a light-yellow substance was obtained
by vacuum sublimation at 150–190 ◦C. The IR and XRD data of the product correspond
to a mixture of cis- and trans-Pt(tfac)2 isomers [8,40]. PtCl4–Pt(tfac)2 conversion, 69%. M.
p. 172–173 ◦C. Lit. data: 170 ◦C [40]. Found, %: C 23.69; H 1.69; Pt 38.55. Calculated for
Pt(C5H4F3O2)2, %: C 23.96; H 1.61; Pt 38.92.

4. Conclusions

In the course of a systematic study of the solid-state mechanochemical synthesis of
coordination compounds, a new mechanically stimulated solid-state reaction of PtCl4
with excess Na(tfac) or Na(hfac) was discovered. The reaction, solid-state grinding PtCl4
with excess Na(tfac) or Na(hfac) in a vibration ball mill with subsequent heating, made
it possible to obtain the corresponding Pt(II) β-diketonates in yields comparable to those
of conventional solution-based methods and proceeded under much milder conditions
compared to similar PtCl2 or K2PtCl6 reactions. Excess diketonate salt played the role
of a reducing agent in the conversion of Pt (IV) salt to Pt (II) compounds. The effect
of grinding on the properties of ground mixtures was studied by XRD, IR, and thermal
analysis methods. The difference in the course of the reaction of PtCl4 with Na(hfac) or
Na(tfac) indicated a dependence of the reaction on the ligand properties. Probable reaction
mechanisms were discussed. In the case of the reactions under consideration, the solid-state
synthesis approach makes it possible to eliminate the use of solvents, significantly reduce
the variety of reagents used, the number of stages, the reaction time, and waste generation
compared to conventional solution-based methods. An analysis of our data in addition
to the literature made it possible to reveal some features of the mechanical activation of
“metal chloride-anionic derivative of an organic compound” solid mixtures.
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