
Citation: Kitayama, Y.; Takigawa, S.;

Harada, A. Effect of Poly(Vinyl

Alcohol) Concentration and Chain

Length on Polymer Nanogel

Formation in Aqueous Dispersion

Polymerization. Molecules 2023, 28,

3493. https://doi.org/10.3390/

molecules28083493

Academic Editor: Ali Nazemi

Received: 13 March 2023

Revised: 4 April 2023

Accepted: 13 April 2023

Published: 15 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Effect of Poly(Vinyl Alcohol) Concentration and Chain Length
on Polymer Nanogel Formation in Aqueous
Dispersion Polymerization
Yukiya Kitayama 1,2,* , Shunsuke Takigawa 1 and Atsushi Harada 1,2,*

1 Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University,
1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

2 Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University,
1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

* Correspondence: kitayama@omu.ac.jp (Y.K.); atsushi_harada@omu.ac.jp (A.H.)

Abstract: Nanotechnology has attracted increasing interest in various research fields for fabricating
functional nanomaterials. In this study, we investigated the effect of poly(vinyl alcohol) (PVA) ad-
dition on the formation and thermoresponsive properties of poly(N-isopropyl acrylamide)-based
nanogels in aqueous dispersion polymerizations. During dispersion polymerization, PVA appears
to play three roles: (i) it bridges the generated polymer chains during polymerization, (ii) it sta-
bilizes the formed polymer nanogels, and (iii) it regulates the thermoresponsive properties of the
polymer nanogels. By regulating the bridging effect of PVA via changing the PVA concentration and
chain length, the size of the obtained polymer gel particles was maintained in the nanometer range.
Furthermore, we found that the clouding-point temperature increased when using low-molecular
weight PVA. We believe that the knowledge gained in this study regarding the effect of PVA con-
centration and chain length on nanogel formation will aid in the future fabrication of functional
polymer nanogels.
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1. Introduction

Nanomaterials are employed in a wide range of applications, such as biomedical ap-
plications [1–7], catalysts [8], water treatment [9], and dye-adsorbents [10]. Polymer-based
nanomaterials are highly attractive because they can be functionalized using a wide range
of functional building blocks (monomers) and post-polymerization modifications. Aqueous
heterogeneous polymerization systems, such as miniemulsion [11–14], emulsion [15–20],
dispersion [21–24], and precipitation polymerizations [25–28], are attractive approaches
for preparing polymer-based particulate materials from monomer species directly in aque-
ous media. Among these, dispersion polymerizations with biocompatible stabilizers and
precipitation polymerization are attractive for preparing polymeric nanomaterials for bio-
related applications. Utilizing these polymerization systems, poly(N-isopropyl acrylamide)
(PNIPAm)-based microgels/nanogels can be prepared in aqueous media. The PNIPAm-
based microgels/nanogels exhibit thermoresponsive properties, owing to the lower critical
solution temperature (LCST)-type phase transition property of PNIPAm.

Several researchers have investigated the effect of stabilizers on the particle size
and thermoresponsive properties of polymer microgels in the dispersion polymerizations.
Among a wide range of stabilizers, poly(vinyl alcohol) (PVA) is a representative biocom-
patible water-soluble stabilizer in the dispersion polymerizations. In the presence of PVA,
the radical chain transfer reaction occurs, and the mid-chain radicals generated on PVA
initiate the propagation reaction with monomer species, resulting in covalent grafting of
PVA on the polymer gel particles [29]. The grafted PVA chain stabilized polymer particles
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via steric repulsion. To date, the effect of PVA on the synthesis of poly(NIPAm)-based
microgels in dispersion polymerizations has been investigated [30,31]. Yates et al. re-
ported the synthesis of PVA-stabilized PNIPAm-based microgels [30]. Guan and Zhang
reported that the addition of PVA significantly affected the thermoresponsive properties
of phenylboronic acid-functionalized PNIPAm-based microgels [31]. Furthermore, they
investigated the effect of PVA molecular weights on the thermoresponsiveness of the
PNIPAm-based microgels.

Nanometer-sized polymer gels (nanogels) with a particle size <100 nm are widely used
in drug delivery systems for cancer treatments because of their passive targeting properties
derived from enhanced permeability and retention effects [32]. However, PNIPAm-based
gels generally attain (sub)micrometer-sized particles in precipitation polymerizations.
Nanogels have been successfully synthesized via dispersion polymerization using sodium
dodecyl sulfate (SDS) as a surfactant [33]. However, SDS is harmful for biological appli-
cations. Recently, we have successfully demonstrated the synthesis of PNIPAm-based
nanogels via precipitation polymerization (without surfactants) under suitable condi-
tions [34–37]. Furthermore, the polymer nanogels can recognize intrinsic dysopsonic
proteins (serum albumin) and be employed as novel nanocarriers in drug delivery sys-
tems [34,38,39]. These polymer nanogels gain stealth capability in situ in the blood vessel by
cloaking themselves with intrinsic serum albumin, resulting in their prolonged circulation
in the blood [34]. Furthermore, gold nanoparticle-incorporated polymer nanogels prepared
via precipitation polymerization have been successfully used as radiation sensitizers [40].
Therefore, the polymer nanogels prepared by precipitation polymerization have been
successfully used as drug delivery carriers.

To the best of our knowledge, no studies examining the effect of PVA addition on
polymer nanogel formation have been reported. Herein, we investigated the effect of PVA
concentration and chain length on the particle formation and thermoresponsive properties
of PNIPAm-based nanogels prepared via aqueous dispersion polymerization (Scheme 1).
In a series of experiments, we discovered that PVA plays three roles: (i) it bridges the
generated polymer chains during polymerization, (ii) it stabilizes the formed polymer
nanogels, and (iii) it regulates the thermoresponsive properties of the polymer nanogels
when PVA possessing a low molecular weight (degree of polymerization: 500) is used.
We believe that the knowledge gained in this study will aid in the future fabrication of
functional polymer nanogels.
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2. Results and Discussion
2.1. Effect of PVA Addition on Nanogel Formation

Precipitation polymerization was performed without PVA in 10 mM phosphate buffer
(pH 7.4) using N-isopropyl acrylamide (NIPAm), t-butyl acrylamide (TBAm),
2-methacryloyloxyethyl phosphorylcholine (MPC), and N,N′-methylenebisacrylamide
(MBAA) as monomers. 2,2′-Azobis(2-methylpropionamidine) dihydrochloride (V-50) was
selected as the water-soluble initiator. All monomer species and the initiator were dissolved
in the solvent prior to polymerization. NIPAm-based polymers are thermoresponsive and
exhibit LCST-type phase transitions, owing to the polymer dehydration at high tempera-
tures; thus, the polymers precipitated and assembled as particles to decrease the interfacial
free energy during polymerization. The polymers were crosslinked by copolymerizing
with MBAA as a crosslinking agent. The conversion of this precipitation polymerization,
evaluated using 1H-nuclear magnetic resonance (NMR), was approximately 100%, with
the protons of the vinyl groups of the monomers almost disappearing (Figure S1). Using
dynamic light scattering (DLS), the average particle size of the obtained polymer nanogels
(PG0) was determined to be approximately 20 nm (Figure 1), which corresponds with that
obtained in our previous study [34].
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Figure 1. Transmittance (a) and average particle size (b) of PG0 and PG1000 dispersions at various
temperatures. Particle size distributions of obtained PG0 particles (prepared without PVA1000, (c))
and PG1000 particles (prepared with PVA1000, (d)) at 30 ◦C. PG0 and PG1000 particles were prepared
via precipitation and dispersion polymerizations with PVA1000 (3 mg/mL) at 70 ◦C for 3 h.

The thermoresponsiveness of PG0 was investigated using transmittance measurements.
When the temperature reached above the clouding-point temperature of NIPAm-based
polymers, their dehydration occurred, resulting in the precipitation of the polymer chains
from the aqueous phase. The transmittance of the PG0 dispersions steeply decreased above
40 ◦C, whereas their clouding-point temperature (the temperature at which polymers show
50% transmittance (T)) was estimated to be approximately 43 ◦C (Figure 1). However, the
particle size measured using DLS considerably increased to >1000 nm above the clouding-
point temperature, indicating that the polymer nanogels coagulated (Figure 1). The nearly
neutral zeta potential of the polymer nanogels (approximately 2.3 mV at 25 ◦C) indicated
that PG0 was stabilized via steric repulsion exhibited by hydrated polymer chains grafted
onto the polymer nanogels below the clouding-point temperature, rather than electrostatic
repulsion between the cationic chain ends of V-50. However, the polymer chains grafted
onto the nanogels do not exhibit steric repulsion above the clouding-point temperature due
to dehydration, causing particle coagulation.

To investigate the effect of PVA on the particle formation, PVA1000 (polymerization
degree: 1000; average saponification degree: 88%, 3 mg/mL) was added to the polymer-
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ization system. PVA is widely used in biomedical applications as a nanocarrier material
or bioadhesive because of its low toxicity [41,42]. Therefore, the PNIPAm-based nanogels
were prepared in the presence of PVA1000 (PG1000). The conversion reached approximately
100% even in the presence of PVA, as evaluated using 1H-NMR spectroscopy (Figure S2).
This is because the radical concentration in the polymerization system does not significantly
change when the radical chain transfer to PVA occurs. The clouding-point temperature
of the obtained PG1000 (approximately 40 ◦C) estimated from the transmittance measure-
ments was similar to that of the PG0 (approximately 43 ◦C) (Figure 1), indicating that the
additional amount of PVA1000 had no significant effect on the phase transition tempera-
ture of the gel particles. The transmittance of the gel particle dispersion was reversibly
changed by heating and cooling (Figure S3). However, the particle sizes of PG0 and PG1000
significantly differ. Below the clouding-point temperature, PG1000 had a larger average
particle size (approximately 125 nm) than PG0 (approximately 20 nm). Above the clouding-
point temperature, the average particle size of PG1000 remained constant at approximately
350 nm (Figure 1). The particle size distribution of PG1000 below the clouding-point tem-
perature indicates the bimodal distribution of nanometer-sized and submicrometer-sized
particles. However, the particle size distribution was unimodal above the clouding-point
temperature (at 60 ◦C), and the nanometer-sized particles disappeared from the distribution
(Figure 2). These results indicate that the nanometer-sized gel particles coagulated with the
submicrometer-sized gel particles above the clouding-point temperature. To investigate
whether particle coagulation occurred above clouding-point temperatures, particle size
measurements were performed after adding a cationic surfactant [cetyltrimethylammonium
bromide (CTAB)] because cationic surfactants suppress the coagulation of destabilized
particles above the clouding-point temperatures. Notably, above the clouding-point temper-
ature, the particle size of PG1000 did not significantly increase in the presence of a cationic
surfactant (Figure S4). These results indicate that the increase in the particle size of PG1000
above the clouding-point temperatures was caused by the coagulation of the destabilized
polymer nanogels.
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concentrations: 2 (a,a′), 3 (b,b′), 5 (c,c′), and 10 (d,d′) mg/mL. PG1000 particles were prepared via
dispersion polymerization with different PVA1000 concentrations (2, 3, 5, and 10 mg/mL) at 70 ◦C for
3 h.

Based on these results, PVA appears to play two roles in the particle formation/stabilization:
as a stabilizer (primary role) and as a bridging ligand (secondary role). During polymeriza-
tion, mid-chain radicals are generated on PVA via a chain transfer reaction, which initiates
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the monomer addition reaction. The radical species then undergo a termination reaction
with another radical species, yielding dead polymers. During dispersion polymerization,
the propagating/dead polymer chains precipitate from the aqueous phase. This series of
reactions (chain transfer, propagation, and termination) graft PVA chains on the polymer
nanogels, leading to particle stabilization via steric hindrance (primary role of PVA). How-
ever, the series of reactions can occur multiple times on the same PVA, inducing bridging
between two or more polymer nanogels with a single PVA chain (Scheme 2). The bridging
phenomenon (secondary role of PVA) may lead to the formation of submicrometer-sized
polymer nanogels.
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2.2. Effect of PVA1000 Concentration

Based on the above findings, we can speculate that the submicrometer-sized gel
particles were formed via the PVA1000-induced bridging of multiple nanogels, whereas
the nanometer-sized gel particles might have formed without the bridging effect. To
verify this hypothesis, we investigated the effect of the PVA1000 concentration on particle
formation and stabilization. When the PVA1000 concentration was increased from 2 to
10 mg/mL (at 35 ◦C, below the clouding-point temperature), the average size of the gel
particles gradually increased (Figure 3), and the peak corresponding to the nanometer-
sized gel particles disappeared when 10 mg/mL of PVA1000 was used (Figure 2). These
results indicate that the submicrometer-sized gel particles were formed because of the
bridging effect of PVA1000. Notably, the clouding-point temperatures determined using
the transmittance measurements were similar for all PVA1000 concentrations, indicating
that the PVA1000 concentration did not affect the phase transition temperature of PG1000
during polymerization (Figure S5). Furthermore, the particle size distributions obtained all
PVA1000 concentrations were unimodal above the clouding-point temperature (at 60 ◦C),
indicating that the submicrometer-sized polymer gel particles were colloidally stable even
above the clouding-point temperature (Figure 2). These results clearly indicate that the
addition of PVA1000 led to both the stabilization and bridging of polymer gel particles
and/or polymer chains during polymerization (Scheme 3). Thus, the polymer gel particles
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may have crosslinked by MBAA and PVA. Furthermore, the grafting density of the polymer
gel particles may increase with increasing PVA concentration because PVA can act as a
bridging agent (crosslinker) between different nanogel particles and/or polymer chains.
However, a detailed investigation is necessary to evaluate the crosslinking density of the
polymer gel particles using light or X-ray scattering.
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2.3. Effect of PVA Chain Length

To obtain stable polymer nanogels, we regulated the bridging and stabilization effects
of PVA on the obtained polymer nanogels by changing the PVA chain length. We investi-
gated the effect of the PVA chain length on the particle size and colloidal stability using
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three different PVAs with varying degrees of polymerization (500: PVA500, 1000: PVA1000,
and 3500: PVA3500). When PVA with a longer chain length was used, the PVA-induced
bridging effect of different polymer chains/nanogels was increased, and the large gel parti-
cles with high colloidal stability were obtained. However, the bridging effect decreased
when PVA with a shorter chain length was used, and small gel particles were obtained
owing to the suppression of the bridging effect of PVA.

Figure 4 shows the transmittance of the obtained polymer gel particle dispersions
prepared using three different types of PVA. When the polymerization degree of PVA
was increased to 3500 (PVA3500), the clouding-point temperature of the obtained polymer
gel particles (PG3500) was not significantly shifted to a lower temperature compared to
that of PG1000. Furthermore, the transmittance below the clouding-point temperature
was slightly low (~75%), implying the formation of larger polymer gel particles. In fact,
submicrometer-sized gel particles were obtained using PVA3500 (PG3500) below the clouding-
point temperature. These results support our hypothesis that PVA assists the bridging of
different polymer chains/nanogels during dispersion polymerization. Importantly, the
thermoresponsiveness of PG3500 was different from that of PG1000. The particle size of
PG1000 significantly increased above the LCST, whereas that of PG3500 decreased (Figure 4).
This phenomenon exhibited by PG3500 is observed for submicrometer-sized gel particles
with LCST-type thermoresponsive properties [43]. Furthermore, PG3500 particles showed a
similar decreasing trend even in the presence of CTAB. This implies that PG3500 did not
coagulate, but rather shrank because of dehydration above the clouding-point temperatures.
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Figure 4. Transmittance of PG500, PG1000, and PG3500 particle dispersions prepared via dispersion
polymerization (a). Average particle sizes (circles) and PDI (triangles) of PG500 (b,e), PG1000 (c,f),
and PG3500 (d,g) particles at various temperatures without (b–d) or with (e–g) CTAB. Particle size
distributions of PG500 (h,i) and PG3500 (j,k) particles at 60 ◦C without (h,j) and with (i,k) CTAB.
Polymer gel particles were prepared via dispersion polymerization with PVA polymer chains of
different lengths (polymerization degrees: 500, 1000, and 3500) at 70 ◦C for 3 h.



Molecules 2023, 28, 3493 8 of 12

The thermoresponsive properties and colloidal stability of the polymer gel particles
prepared using PVA500 (PG500) were different from those of PG1000 and PG3500. The particle
size of PG500 was less than 100 nm at temperatures lower than the clouding-point tempera-
ture (Figure 4). Furthermore, the nanometer-sized polymer nanogels were clearly visible
in transmittance electron microscopy images when the PNIPAm-based nanogels were
prepared with PVA500 (Figure 5). The nanometer size of PG500 particles was maintained
up to 60 ◦C, while the particles coagulated above 65 ◦C (Figure 4). The clouding-point
temperature estimated from the transmittance measurements of PG500 was approximately
63 ◦C, which was higher than those of PG1000 and PG3500. This may be attributed to the
insertion of PVA500 into the polymer main chains. Previous studies have revealed that the
copolymerization of a hydrophilic monomer with PNIPAm shifts the LCST to a higher tem-
perature [44]. Furthermore, a negligible increase in the particle size of PG500 was observed
above 60 ◦C when CTAB was added during DLS measurements. These results indicate that
the increase in particle size of PG500 (without CTAB) above 60 ◦C was caused by coagula-
tion. The colloidal stability of PG500 at high temperatures (up to 60 ◦C) was induced by the
steric repulsion of grafted PVA500. These results suggest that the bridging effect between
the different polymer nanogels weakened with decreasing polymerization degree of PVA,
whereas PVA-induced colloidal stability was afforded to the polymer nanogels. Therefore,
we can conclude that the different degrees of polymerization of PVA affected the formation
of polymer gel particles during dispersion polymerization by controlling the bridging
effect between different polymer chains/nanogels. Furthermore, to investigate whether
PVA was covalently bonded in PNIPAm nanogels, we prepared the PNIPAm nanogels
with fluorescein-labeled PVA. The fluorescence spectrum of the fluorescein-labeled PVA-
containing polymer gels as a dispersed state was obtained (Figure S6). The spectra clearly
indicate that the PVA was covalently bonded in PNIPAm nanogels.
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with PVA500.

3. Conclusions

In this study, we investigated the effect of PVA addition on the polymer nanogel
formation during dispersion polymerization. Our results indicate that PVA induces three
effects on the polymer nanogels: (i) bridging between different polymer chains formed
during polymerization, (ii) stabilization of the polymer nanogels, and (iii) regulation of
thermoresponsiveness. In the presence of PVA with a higher degree of polymerization
(PVA3500), microgel particles were formed during dispersion polymerizations, owing to
the enhanced bridging effect. On the contrary, the nanogels that are stable over a wide
temperature range (under 60 ◦C) were obtained using PVA500. The nanotechnology devel-
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oped herein may help in further advancing research on polymer nanogels in fields such as
biomedicine, wherein the fabrication of nanocarriers for targeted drug delivery and other
similar functions may be possible.

4. Materials and Methods
4.1. Materials

NIPAm, MBAA, and potassium dihydrogen phosphate were purchased from Nacalai
Tesque (Kyoto, Japan). TBAM, PVA with different degrees of polymerization and saponifi-
cation, disodium hydrogenphosphate, V-50, and VA-044 were purchased from Wako Pure
Chemical Co., Ltd. (Osaka, Japan). MPC, acryloxyethyl thiocarbamoyl rhodamine B, and
CTAB were purchased from Sigma–Aldrich (St. Louis, MO, USA). Deionized (DI) water
was obtained using a Millipore Milli-Q purification system. FAm was prepared using a
previously reported procedure [9].

4.2. Apparatus

UV-visible (UV-Vis) spectral measurements were conducted using a V-560 spectropho-
tometer (Jasco Ltd., Tokyo, Japan). 1H NMR spectra were measured using a 400-MHz
Fourier transform (FT)-NMR apparatus (JNM-ECX400 FT-NMR system, JEOL Ltd., Tokyo,
Japan). The particle size distribution and the zeta potential of the obtained particles were
measured using ZETASIZER NANO-ZS (Malvern, UK).

4.3. Precipitation/Dispersion Polymerizations

NIPAm (407 mg, 3.6 mmol), TBAm (7.6 mg, 60 µmol), MPC (30 mg, 0.1 mmol), FAm
(4 mg, 11 µmol), MBAA (30.8 mg. 0.2 mmol), and V-50 (217 mg, 0.8 mmol) were mixed
with 10 mM phosphate buffer (pH 7.4, 100 mL) in a Schlenk flask. After N2/vacuum cycles,
polymerization was performed at 70 ◦C for 3 h. To investigate the effect of the PVA concen-
tration, various amounts (final concentration: 0–10 mg/mL) of PVA (polymerization degree:
1000, saponification degree: 88%) were added to the solution. To investigate the effect of
the polymerization degree of PVA, the same concentrations (final concentration: 3 mg/mL)
of PVA with different polymerization degrees (500, 1000, and 3500) and 88% saponification
were added to the polymerization system.

4.4. Transmittance Measurements

As-prepared particle dispersions (3 mL) were poured into the UV-Vis cell, and the
transmittance measurement (λ = 600 nm) was conducted. The temperature was increased at
a constant rate (0.5 ◦C/min). The reversibility of the thermoresponsiveness of the obtained
particles was evaluated by alternately increasing and decreasing the temperature at a
constant rate (0.5 ◦C/min).

4.5. Particle Size Distributions

The particle size distributions of the as-prepared particle dispersions (3 mL) were
measured using DLS at different temperatures (25, 30, 35, 40, 45, 50, 60, and 70 ◦C). The
measurements were performed sequentially at 600 s intervals. To investigate the effect of
surfactants on particle aggregation, CTAB (~1 mg/mL) was added to the particle dispersion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28083493/s1. Figure S1: The 1H-NMR spectra of
precipitation polymerization, Figure S2: The 1H-NMR spectra of dispersion polymerization with
PVA, Figure S3: reversibility of the transmittance changes of polymer nanogel dispersion, Figure S4:
particle size change of nanogels in the presence of cationic surfactants, Figure S5: and clouding-
point temperatures of PG1000 prepared with different PVA1000 concentrations, Figure S6: Dispersion
polymerization with fluorescein-labeled PVA500.
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