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Abstract: Spinel LiMn2O4 (LMO) is a state-of-the-art cathode material for Li-ion batteries. However,
the operating voltage and battery life of spinel LMO needs to be improved for application in various
modern technologies. Modifying the composition of the spinel LMO material alters its electronic
structure, thereby increasing its operating voltage. Additionally, modifying the microstructure of the
spinel LMO by controlling the size and distribution of the particles can improve its electrochemical
properties. In this study, we elucidate the sol-gel synthesis mechanisms of two common types of
sol-gels (modified and unmodified metal complexes)—chelate gel and organic polymeric gel—and
investigate their structural and morphological properties and electrochemical performances. This
study highlights that uniform distribution of cations during sol-gel formation is important for the
growth of LMO crystals. Furthermore, a homogeneous multicomponent sol-gel, necessary to ensure
that no conflicting morphologies and structures would degrade the electrochemical performances,
can be obtained when the sol-gel has a polymer-like structure and uniformly bound ions; this can be
achieved by using additional multifunctional reagents, namely cross-linkers.

Keywords: spinel LiMn2O4; sol-gel synthesis mechanism; chemical homogeneity; chelated complex;
cross-linked gel; Li-ion battery

1. Introduction

Li-ion batteries (LIBs) are used in a variety of applications, because they offer sev-
eral benefits, including high energy density, low weight, low self-discharge, high cycle
life, and environmental friendliness, over other types of batteries [1]. LIBs can be em-
ployed in frequently used products with longer life expectations. However, their battery
performance needs to be improved further to meet the requirements of developments
in modern technology. During the battery development process, the main performance
parameters such as voltage, capacity, cycle life, self-discharge, temperature range, safety,
and cost are considered individually. Therefore, developing a high-performance battery
or improving the abovementioned performance parameters requires the development of
high-performance individual components of the battery. Among the battery components,
the cathode is the main component that affects battery capacity. Lithium cobalt oxide (LCO)
is the most commonly used cathode material for LIBs owing to its high energy density and
high operating voltage, making it a popular choice for use in portable electronic devices
such as smartphones and laptops. However, LCO has certain drawbacks including high
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cost, low cycle life, and a tendency to overheat if it is rapidly charged or discharged [2].
To address these problems, other cathode materials, such as lithium nickel manganese
cobalt oxide (NMC) [3], lithium manganese oxide (LMO) [4], and lithium iron phosphate
(LFP) [4,5] have been developed. These materials have different trade-offs between energy
density, cycle life, and safety and are used in different types of applications based on their
specific properties. Among them, the unique 3D-tunnel-structured spinel LMO has been
considered to be the most promising alternative cathode material for the new generation
of lithium-ion batteries owing to its high capacity, good rate performance, non-toxicity,
and ease of manufacturing [6]. In addition, LMO is relatively inexpensive and abundant,
making it attractive for use in many applications. However, the operating voltage and
battery life of spinel LMO need to be improved to expand its applications [7]. One way
to improve the low operating voltage of spinel LMO is to modify the composition of the
material. This can be achieved by replacing some of the manganese in the spinel with
another element that has higher operating voltage levels; for example, cobalt or nickel [4,7].
Another method to improve the voltage of spinel LMO is to add dopants, which are small
amounts of other elements, to the material [8]; this can alter the electronic structure of
spinel LMO and increase its operating voltage. In addition, modifying the microstructure
of spinel LMO by controlling the size or distribution of the particles can also improve
its electrochemical properties [9–13]. Several factors can reduce the cycle life of LMO
cathodes: LMO cathodes can be sensitive to high operating voltages, temperatures, and
use poor quality materials or manufacturing processes [14–16]. Therefore, the first priority
is to produce LMO of high purity with uniform particle and size distribution to improve
the structure and morphology of the LMO cathode, owing to which the electrochemical
performance can be improved [17,18]. For example, smaller particles have a larger surface-
area-to-volume ratio, which can improve the kinetics of charge and discharge reactions
(Li-ion diffusion), resulting in improved electrochemical performance [8,19,20]. In addition,
homogeneous particles with a narrow size distribution can reduce the particle-to-particle
variability and improve the consistency of the electrochemical performance. However,
homogeneous particles with a high degree of agglomeration can reduce the effective surface
area of the particles, leading to reduced electrochemical performance [21,22]. Similarly,
particles with defects or impurities can lead to electrochemical degradation, resulting in
a reduced performance and cycle life. In the synthesis of high-purity particles using wet
chemical methods, the choice and quality of solvents, reagents, and reaction conditions
are critical for achieving high purity. Controlling the purity of the starting materials, as
well as minimizing the presence of impurities during the reaction and purification steps, is
essential for achieving high-purity particles. In addition, it is crucial to carefully control
the reaction conditions (such as temperature, pressure, and pH) to prevent unwanted side
reactions, and to clean the product thoroughly to remove residual impurities. In addition,
for sol-gel synthesis, it is important to mix the starting materials at a stoichiometric ratio
to conduct a residual-free reaction [15,23–25]; therefore, the synthesis of active materials
is very important. There are several methods for synthesizing spinel LMO. One common
method is solid-state synthesis, in which the starting materials are mixed and heated to
high temperatures in a furnace to form the desired product. Another method is sol-gel
synthesis, in which the starting materials are dissolved in a solvent to form a gel, which is
then heated to remove the solvent and form a spinel. Other methods for synthesizing spinel
LMO include hydrothermal, coprecipitation, and solvothermal synthesis [8,26]. Among
these, the sol-gel method is well-suited to meet the above requirements.

Some advantages of sol-gel synthesis include a low calcination temperature, short
processing time, and the formation of submicron-sized particles with a narrow particle-size
distribution [27]. In addition, it does not produce harmful by-products or require high
temperatures, making it a safer alternative to other synthesis methods [27]. The sol-gel
synthesis of materials is a multistep process that involves the conversion of a precursor
solution into a sol or gel, and the subsequent conversion of the sol-gel to an oxide com-
pound [28,29]. Citric acid-assisted sol-gel synthesis, which uses citric acid as a chelating



Molecules 2023, 28, 3489 3 of 21

agent, is the most commonly used method for LMO production. Furthermore, it has been
reported that the use of ethylenediaminetetraacetic acid (EDTA), an amino polycarboxylic
acid, as a chelating agent improves the electrochemical properties by forming metal com-
plexes with different structures of complex precursors and providing better conditions for
the formation of LMO [10]. Moreover, many studies have reported that by manipulating
the sol-gel structure using different chelating reagents, the shape and size distribution of
LMO particles can be controlled during LMO formation [28,30,31]. Chemical homogeneity
with respect to the distribution of cations in the sol-gel often determines the compositional
homogeneity of the final powder. Therefore, it is crucial to design an appropriate precursor
solution for the formation of a homogeneous multicomponent gel without the occurrence
of phase segregation during sol-gel formation [29]. One strategy to overcome this problem
and obtain a homogeneous multicomponent gel is to obtain a sol-gel with an essentially
polymer-like structure and to uniformly bind the ions using multifunctional reagents
such as cross-linkers [32,33]. The influence of crosslinking agents or organic polymer gels
changes the structure of the sol-gel at the molecular level, which reduces the segregation
of particular metal ions via the combustion of polymer intermediates and ensures the
compositional homogeneity of LMO powders [29]. However, although LMOs prepared
using these methods have been extensively studied, the critical effects of cation distribution
at the matrix level are yet to be reported.

In this study, we described the synthesis mechanism of two commonly used types
of sol-gels: chelate and organic polymeric gels [34]. Their structural, morphological,
and electrochemical properties when prepared under the same reaction conditions were
investigated, and the theoretical and practical implications of the results were discussed. It
is hoped that further development of the sol-gel synthesis process may facilitate methods
such as coating, element substitution, and fusion for solving challenges pertaining to the
use of LMO as a cathode material. Furthermore, the ordered distribution of cations in
the sol-gel phase was achieved using key reagents, such as highly structured additional
reagents of multifunctional or chelating reagents and does not rule out finding LMO in the
sol-gel phase as well.

2. Results
2.1. Structure and Morphology

Figure 1 shows the SEM images of the LMO-W, LMO-E, and LMO-G powders. All
three powders exhibited regular octahedral morphologies and high crystallinity and con-
sisted of a few agglomerates with a large size distribution. While the LMO-W and LMO-E
powders exhibited close dense agglomeration, the LMO-G sample exhibited uniform
and weak agglomeration owing to the uniform distribution of cations in the cross-linked
structured polymer gel. Although the grain growth process is mainly dependent on the
annealing conditions, it has been reported that, under the same conditions, the crystal
growth process changes with the distribution of cations in the matrix [35]. The average size
of the crystalline grains was estimated to be 351 nm for LMO-W and 312 nm for LMO-E
but was drastically lower, 219 nm, for the LMO-G powder. As can be seen from the particle
size distribution in Figure 1d, which was determined using the ImageJ software [36], the
LMO-W sample had a measured particle size range of 189 nm and 611 nm, with more than
66% of the distribution being between ~200 nm and ~400 nm because of agglomeration;
meanwhile the particle sizes in the LMO-E sample varied between 176 nm and 598 nm,
with ~70% of the particles being between 100 nm and 300 nm. In the LMO-G sample,
the particle sizes ranged between 133 nm and 365 nm with 86% of the particles being
distributed between approximately 100 and 200 particles, that is, the particles were almost
monodispersed which is a narrower and, therefore, improved particle size distribution
compared with the LMO-W and LMO-E samples. In addition, the dispersion states of the
powders were observed from the depth differences in the electron images (Figure 2a–c). For
LMO-W and LMO-E, the grains aggregated, causing the appearance of large-size particles
in some parts, while for sample LMO-G, no apparent difference in particle size could
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be observed. The compositions of the powders were analyzed using EDS, as shown in
Figure 2d–f; all three samples were composed of O and Mn at an atomic weight ratio of
approximately 2:1, indicating a stoichiometric composition of LMO. Table A1 presents a
comparison of the samples obtained using the sol-gel method under similar conditions,
except for the addition of a small amount of ethanol or ethylene glycol. The synthesis was
performed without any additional catalytic reagents or processing, using only pure citric
acid and ethanol or ethylene glycol as monomers for polymerization in aqueous media.
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Figure 1. SEM images of (a) LMO-W, (b) LMO-E, and (c) LMO-G powders. (d) Particle-size distribu-
tion for all samples.
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Figure 2. EDS electron images of (a) LMO-W, (b) LMO-E, and (c) LMO-G. EDS spectra of (d) LMO-W,
(e) LMO-E, and (f) LMO-G samples.

To determine the effect of the chemical environment on crystallinity, XRD studies
were performed on three types of powders prepared under different chemical modification
conditions, that is, by varying the monomer of polymerization. Figure 3 shows the XRD
patterns of the LMOs and the full width at half maximum β of the Bragg peaks. The
corresponding lattice constants, a, are summarized in Table 1, and are compared to that of
the cubic spinel LMO obtained from the JCPDS card. A similar XRD pattern was obtained
for all samples, and their diffraction peaks could be indexed to a single cubic LMO Fd-3m
space group. In addition, only corresponding diffraction peaks were observed, indicating
that the samples were highly pure without undesirable impurities. If the sol-gel matrix
is not properly removed during calcination, it can leave behind carbonaceous residues
that could interfere with the formation of the spinel phase or affect its properties [24];
therefore, carbonaceous residues were completely removed by calcinating the samples at
800 ◦C, as reported in the literature [24], which was confirmed by the XRD results. The
intensity ratios I(111)/I(311), I(311)/I(400), I(400)/I(111), and I(440)/I(111) from the crystal facet



Molecules 2023, 28, 3489 6 of 21

XRD patterns of spinel LMO powder provide information about the crystal structure and
orientation of the material [37]; the I(111)/I(311) ratio indicates the growth of the (111) crystal
plane, whereas the (440) and (400) crystal facets correspond to the (110) and (100) crystal
planes, respectively [37]. The intensity ratios were calculated (Table 1) for all samples to
compare the crystal structure plane orientations. The I(111)/I(311) ratios showed similar
values, with values of 1.88 for LMO-W and 1.81 for LMO-E and LMO-G; however, the value
for the LMO-W sample being slightly higher indicates that the powder had a preferential
orientation along the (111) crystallographic direction [37–40]. The (111) crystal planes
of the spinel LMO particles being predominantly oriented in a particular direction can
lead to anisotropic properties, such as different electrochemical performances in different
crystallographic directions. In contrast, comparing the I(400)/I(111) intensity ratios, the value
for the LMO-W sample was slightly lower than those for the LMO-E and LMO-G samples,
indicating that the (100) crystal plane was dominant, which provides more favorable
support for Li+ transport kinetics [41]. However, comparing the I(440)/I(111) intensity ratios,
the (110) crystal plane was dominant for LMO-E, while LMO-W and LMO-G had the same
values. The I(311)/I(400) ratios of the samples were in the range of 1.02–1.09, which indicates
that the samples were similar to each other, and that the [Mn2]O4 spinel framework is
stable [42,43]. These small differences in crystallinity and crystal structure indicate that
the (100) crystal plane, which is favorable for Li+ transport kinetics, is predominant in the
LMO-E and LMO-G samples, which contain carbon atoms in the sol-gel matrix; this may
be because of the small increase in temperature caused by the production of CO2 and CO
during combustion [41]. Furthermore, the lattice strain can provide information on the
crystal structure of a material. Lattice strain can be evidenced by the use of the Scherrer
formula [10].

β2cos2(θ) = 16e2sin2(θ) + (K2λ2/L2), (1)

where β is the full width at half maximum, θ is the diffraction, e2 is a local strain (defined
as ∆d/d, where d is the interplanar spacing), L is the crystallite size, and K = 0.88 for a
spherical crystallite shape. The plot of β2cos2 (θ) as a function of sin2 θ, the slope e2, the
intercept K2λ2/L2, and the coherence length L were used to calculate the strain e2. As
presented in Table 1, the lattice strain was calculated to be 3.57 × 10–6 for the LMO-W
sample, 2.89 × 10–6 for the LMO-E sample, and the lowest value of 2.62 × 10–6 for the
LMO-G sample. From the local strain result, it appears that there is more stress on a larger
scale, but it also verified that the difference in strain arose from differences in the internal
electronic structures and crystallinity of the synthesized samples. For this study, all the
changes in structures between samples can be explained by the synthesis process, and,
further, by considering the mechanism of the citric acid-assisted sol-gel synthesis from the
initial sol-gel formation stage to the final LMO extraction stage.
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Table 1. Physical parameters for LiMn2O4 materials synthesized using the citric acid-assisted method.

Powders Particle Size, (D)
(nm)

Lattice Constant, (a)
(Å)

The Volume of the
Unit Cell (V)

(Å)3

Peak Intensity
Ratio

(I111/I311)
(I311/I400)

Peak Intensity
Ratio

(I400/I111)
(I440/I111)

Strain, (e)
(×10−6)

LMO-W 351 8.23 557.5 1.88
1.09

0.50
0.25 3.57

LMO-E 312 8.22 555.5 1.81
1.02

0.52
0.27 2.89

LMO-G 219 8.21 553.3 1.81
1.05

0.53
0.26 2.62

2.2. Mechanism of Sol-Gel Synthesis

To determine the functional groups and crystallinity of the gel during the sol-gel
formation stage for the synthesis mechanism, FTIR analysis was performed on the sol-gel
form of each sample; hereinafter, the sol-gel prepared from LMO-G will be referred to as
G-G, from LMO-W as G-W, and from LMO-E as G-E. Figure 4 shows the FTIR spectra
of the sol-gels obtained. All three sol-gels exhibited a broad absorption band between
3200 cm−1 and 3400 cm−1, indicating the presence of carboxyl and water-derived hydroxyl
groups [44]. The characteristic peaks at 2856 cm−1 (G-G) and 1030 cm−1 to 1075 cm−1

(G-W, G-E, and G-G) are attributed to the bending vibrations of the C–O, C–C, and C–O–C
groups [45]. In addition, two strong bands were observed from 1552 cm−1 to 1408 cm−1 for
G-W, 1553 cm−1 to 1408 cm−1 for G-E, and 1568 cm−1 to 1393 cm−1 for G-G. These indicate
the symmetric and asymmetric stretching vibrations of the C=O bond in metal carboxylates,
thereby confirming the chelation of metal ions by citric acid [31,44,46]. For the G-G gel, a
characteristic peak was observed at 1725 cm−1, which was not observed for G-W or G-E;
this indicated the formation of the cross-linked polymer, and it is obvious that ethylene
glycol was polymerized by cross-linking the ester through two carboxyl groups [47]. In
comparison, it can be concluded that the νa(COO)

− and ν(COO)
− of free carboxy anions are

mixed with carboxy groups of the unionized form in the G-W sol-gel and G-E. For G-G,
the presence of extended peaks attributed to the symmetric and asymmetric stretching
vibration of C=O indicated a decrease in the carboxyl groups of the unionized form [46,48].
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Figure 4. FTIR spectra of obtained LMO sol-gels.

Based on the literature and FTIR results, the synthesis mechanism of the citric-assisted
sol-gel method can be explained by the reaction between cations, citric acid, solvent, and a
monomer of sol-gel polymerization, as follows. Mechanistic pathways were considered for
each sample tour. For LMO-W, the reactions observed when lithium acetate, manganese
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acetate, and citric acid are dissolved in water and then mixed can be expressed using
Equations (2)–(4). In Equation (2), when manganese acetate is dissolved in water, the
acetate ions [CH3COO−] separate from the manganese ions [Mn2+] and react with water
molecules to form acetic acid and hydroxide ions [OH−]. The hydroxide ions then react
with the manganese ions to form manganese hydroxide. However, this reaction depends on
the pH of the solution, and can then be controlled by changing the pH [24]. In Equation (3),
when lithium acetate is dissolved in water, the acetate ions [CH3COO−] separate from the
lithium ions [Li+] and react with water molecules to form acetic acid and hydroxide ions
[OH−]. Citric acid is a weak organic acid that dissolves in water to produce hydrogen ions
[H+] and citrate ions (Equation (4)) [28,34,46].

Mn(CH2COOH)2 + 2H2O = Mn2+ + 2OH− + 2CH2COO− + 4H+, (2)

LiCH2COOH + H2O = Li+ + OH− + CH2COO− + 2H+, (3)
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Therefore, in the case of sample A, the sol-gel structure was a complex of metal ions, 

and metal ions were dispersed through this complex (Equation (7)).  
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Generally, metal ions can form coordination complexes with organic compounds such
as citric acid. Therefore, [Li+] forms lithium citrate, whereas [Mn2+] forms an independent
chelate compound. According to the literature, the chief chelate compound of manganese
citrate is lgβ = 8 (MnH2L), which means that the chelate compound of manganese citrate is
mostly a chelate compound of a single molecule [46,49,50]. The reaction equations for the
formation of the corresponding lithium citrate and manganese chelate complexes can be
expressed using Equations (5) and (6).
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Therefore, in the case of sample A, the sol-gel structure was a complex of metal ions,
and metal ions were dispersed through this complex (Equation (7)).
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Therefore, in the case of sample A, the sol-gel structure was a complex of metal ions, 
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In the case of B, the dissolution process of sample B was the same as that of sample
A, so the reaction mechanism was the same. In the next step, the esterification reaction
between the metal citrate complex and ethanol occurred through a series of reactions with
tri-ethyl citrate, as expressed in Equations (8) and (9) [24,51]. The ester is not a polymer,
but a large molecule made up of repeating units or monomers. Therefore, the sol-gel
structure of sample B was a non-polymerizable metal complex [28], which permits less
compositional homogeneity [52]. The general form of the sol-gel structure can be expressed
using Equation (10).
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In the case of sample C, the metal ions and citric acid were dissolved in water; the
reaction was the same as that for sample A. After that ethylene glycol was mixed with the
resulting metal citric complex solution, and the esterification reaction proceeded, as shown
in Equation (11). Because polymerization occurs at this stage while emitting 120 ◦C heat,
the choice of a monomeric compound with two more alcohol groups (–OH) indicates that
it is possible to obtain a cross-linked polymer gel (Equation (12)). Therefore, sol-gels with
three-dimensional network structures with a high dispersion of metal cations over short
distances can be achieved using polymers containing two (–OH) groups [52]. This method
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of polymerization, which involves the formation of a polymer gel using citric acid and
ethylene glycol as the monomers, is known as the Pechini method [28,46,52].
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condensation, following which the next process of LMO formation begins by combusting
the distributed cations on the atomic scale in the organic matrix. The combustion process
takes place in two stages at 450 ◦C and 800 ◦C; at temperatures below 420 ◦C, dehydration
and decarboxylation (removal of the organic) occur. The cations are uncoordinated from
their ligands at this stage, and the oxides and spinel structures are mixed in the system;
the related equations are shown in Equations (13)–(15). Then, during thermal decompo-
sition at 800 ◦C, stable oxides are formed, further organic ligand residues are completely
removed, and the previously formed spinel LMO grows, resulting in a pure LMO structure
(Equation (16)) [53].
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Li2O + Mn2O3 + 2MnO2 → 2LiMn2O4, (16)

2.3. X-ray Photoelectron Spectroscopy (XPS) Analysis

A metal chelate complex containing a high number of carbon atoms cannot reduce the
Mn content in spinel LMO during calcination; however, it can control the Mn oxidation
state and improve the electrochemical performance of the material by increasing the tem-
perature [24]. As shown in Equations (4), (7) and (8), it depends on the content of carbon
atoms contained in the sol-gel structure, and the G-G and G-E structures contain more
carbon atoms than the G-W structure because of the additional of ethanol and ethylene
glycol contents. To confirm this, XPS analysis was performed for each sample, as XPS can
provide information about the oxidation state of a particular element in a sample using
semiquantitative estimation. The Mn 2p region is typically used to analyze the oxidation
state of Mn because it is more sensitive to the valence state of the element than the Mn 3p
region. The Mn 2p region has two peaks, one associated with the Mn 2p3/2 state and the
other with the Mn 2p1/2 state. The energy difference between the two peaks can be used to
determine the oxidation state of Mn: the Mn 2p3/2 peak generally shifts to higher binding



Molecules 2023, 28, 3489 11 of 21

energies as the oxidation state of Mn increases, owing to which the position of the Mn
2p3/2 peak can be used to distinguish between [Mn3+] and [Mn4+]. Figure 5 shows the XPS
spectra of the LMOs samples. The energy band at approximately 51 eV was assigned to Mn
3p and Li 1s, the band at approximately 530 eV to O 1s, and the bands at approximately
641 eV and 653 eV to Mn 2p3/2 and Mn 2p1/2, respectively (Figure 5a,b). Comparing the
Mn 2p1/2 and Mn 2p3/2 peaks in the XPS spectra of the samples (Figure 5b), the peaks for
LMO-E (641.21 eV and 652.91 eV) and LMO-G (641.20 eV and 652.71 eV) were at lower
binding energies compared with those for LMO-W (641.31 eV and 653.11 eV). If the peak
associated with the Mn 2p3/2 state shifts to a lower binding energy, it suggests that the
electron density around the Mn nucleus has increased, which is consistent with a decrease
in the oxidation state [37,54]. From the deconvoluted results in Figure 5c, the contents
of [Mn3+] and [Mn4+] are similar for all samples: 55.05% and 44.95% for LMO-W, 54.90%
and 45.10% for LMO-E, 54.95% and 45.05% for LMO-G, respectively. Therefore, from the
deconvoluted results, it can be concluded that the total amount of carbon used in the
synthesis was insufficient to change the oxidation state of the Mn ions. Moreover, the
[Mn4+] and [Mn3+] content ratio ([Mn4+]/[Mn3+]) of the samples is similar at 1.22, 1.23, and
1.23 for LMO-W, LMO-E, and LMO-G, respectively, which indicates that the J–T distortion
was uniform in all samples [37].
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Figure 5. XPS spectra for LMO samples: (a) full spectra; (b) Mn 2p peaks of LMO samples; (c) decon-
voluted profiles of Mn 2p3/2 XPS spectra.

2.4. Electrochemical Characterization

The electrochemical intercalation/deintercalation behaviors of the spinel LMO samples
were examined through differential capacity curves (dQ/dV) and are shown in Figure 6a.
In the dQ/dV curves for all the samples, two pairs of separated redox peaks can be clearly
observed at 4.01 V and 4.15 V, in describing the way that Li-ions are extracted from 8a
tetrahedral sites and inserted into the spinel phase in a two-step transition [11,12,36,55]: the
first step can be expressed as LiMn2O4 → Li(1−x)Mn2O4 + xLi+ + 0.5e− (x < 0.5), and the
second as Li(1−x)Mn2O4→ 2MnO2 + (1 − x)Li+ + (1 − x)0.5e− (x > 0.5) is a fully delithiated
system (MnO2) [56–58]. The highly symmetrical redox peaks indicate high reversibility in
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the two-step oxidation or reduction process [9] and the results for all synthesized samples
are in good agreement with those reported in the literature. In comparison, the separation
of redox peak potentials (∆φp) for all samples showed similar characteristics, and the peak
intensity of LMO-G was slightly higher than that of the other samples, indicating higher
electrochemical activity [56]. Figure 6 shows the charge/discharge profiles of LMO-W,
LMO-E, and LMO-G between 3.0 V and 4.35 V at a current density of 0.5 C. The profiles for
all three samples exhibit two similar consecutive plateaus at approximately 4.05/4.11 V and
4.19/4.15 V (Figure 6b–d). The plateaus are attributed to the two-step cubic phase transfor-
mations of LiMn2O4/Li0.5Mn2O4 and Li0.5Mn2O4/λ-MnO2 during oxidation and reduction,
which is in good agreement with the differential capacity curves [59]. Figure 6 shows that
the charge/discharge profiles of all three samples are in good agreement with the reported
LMOs [10,60,61]. The samples differed in reversible initial charge/discharge: LMO-W,
LMO-E, and LMO-G exhibited values of 122.8/121.3 mAh/g, 129.1/126.6 mAh/g, and the
relatively high 143.7/141.6 mAh/g, respectively, along with corresponding Coulombic effi-
ciencies of 98.78%, 98.05%, and 98.58%, respectively. For all samples, the initial Coulombic
efficiency initially decreased owing to material dissolution and side reactions [51,62,63], but
increased directly from the second cycle, reaching values of 99.21%, 98.68%, and 99.11%,
respectively, indicating that the cycling stabilized. The LMO-W sample exhibited a rela-
tively high initial Coulombic efficiency compared to LMO-E and LMO-G because of its
larger particle size and lower specific surface area, which resulted in less Mn dissolution
and a stable cycling performance, while the LMO-E and LMO-G samples exhibited larger
electrode polarization [39]. Figure 6e shows the cyclic performance for all the samples
at 0.5 C for 100 cycles. All three samples experienced severe capacity reduction owing
to the well-known phenomenon of J–T distortion in spinel LMOs [51]. In terms of cycle
performance, LMO-W was the most stable, with a capacity retention of 82% after the 100th
cycle, whereas LMO-E and LMO-G experienced more noticeable capacity loss, with capac-
ity retentions of 79% and 70%, respectively, at the 100th cycle [51,64]. Small particles can
improve the electrochemical performance by enhancing the Li+ ion diffusion kinetics [41];
however, their high surface areas lead to a more unstable cycle life and capacity degradation
after a limited number of cycles. This makes them more susceptible to phenomena such
as grain growth, shrinkage, dissolution, and phase change owing to their high surface
reactivity [65,66]. In addition, the Li+ ions are more tightly placed at the (100) and (110)
planes than at the (111) planes, indicating that the exposed (100) and (110) planes on the
surface are more favorable for facilitating Li+ transport kinetics [41]. Therefore, the higher
capacities of LMO-G and LMO-E may also be supported by the dominance of the (100)
crystal plane.

EIS analysis was performed to determine the electrochemical polarization and resis-
tance of the cells and to harmonize it with the electrochemical performance of the samples.
The Nyquist plots were investigated in the frequency range of 1 MHz to 10 MHz at 3.0 V
after 100 cycles of the Galvanostatic charge–discharge tests (Figure 7). An equivalent circuit
was used to analyze the EIS data. The semicircle is usually attributed to the combination
of the solid/electrolyte interface film resistance and charge transfer impedance in the
high-frequency region at the electrode surface, whereas an inclined line at low frequencies
is described as a Warburg-type element reflecting the solid-state diffusion of Li into the
bulk of the active materials [9,63,67]. The Nyquist plot shows a suppressed semicircle in
the high-to-medium frequency region and an inclined line in the low frequency region. The
curve shows that the solution resistance (Rs) ranges from zero to the beginning of the semi-
circle and the charge transfer resistance (Rct) up to the end of the semicircle [63]. In terms
of charge transfer resistance, LMO-W had the lowest resistance value of 167.8 Ω, which
indicates the lowest electrochemical polarization, leading to a higher cycle performance [68].
It can be seen that the value for LMO-E (180.6) is larger than that for LMO-W. LMO-G
exhibited the largest resistance value of 190.3 Ω, indicating the highest electrochemical
polarization values, which resulted in a relatively lower cyclic performance [68]. The EIS
results are in good agreement with the cycle performance results. Furthermore, owing
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to the higher surface area of the LMO-G sample compared to the LMO-W and LMO-E
samples because of its smaller, more uniformly distributed particles, a higher number of
defects occurred, such as the formation of a solid/electrolyte interface film, grain growth,
shrinkage, dissolution, and phase change after cycling. This may be because the charge
transfer resistance of LMO-G increased. Therefore, it can be seen here that the LMO-W and
LMO-E samples have significantly fewer Li+ ion diffusion sites than the LMO-G sample.
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Figure 6. (a) dQ/dV plots of LMO-W, LMO-E, and LMO-G powders. Charge/discharge capacity
profiles of (b) LMO-W, (c) LMO-E, and (d) LMO-G. (e) Discharge cycling performance of LMOs after
100 cycles over a cut-off voltage range of 3.0 V to 4.35 V at 0.5 C.
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3. Discussion

The purity; shape; crystal size; crystal plane orientation; agglomeration of particles;
presence of Li, Mn (Mn3+ and Mn4+), and O atoms; and the valence state of Mn ions are all
critical characteristics that can influence the electrochemical performance of LMO cathode
materials. Optimizing these characteristics can lead to improved battery performance, such
as a higher capacity, better rate capability, and improved cycling stability. According to our
results, using crosslinking agents in a polymer-like gel structure to react with the cations in
the stoichiometric ratio has a positive effect on the structural properties of LMOs owing
to uniform cation distribution at the matrix level. In the case of the samples synthesized
using the sol-gel method under the same conditions, all samples exhibited similar LMO
purity and contained Li, Mn (Mn3+ and Mn4+), and O atoms, but the uniformity and
homogeneity of the particle size and crystal plane direction slightly differed. Based on
the electrochemical results, it was found that modifying the sol-gel structure increased
the surface area and improved the electrochemical properties of the sample by producing
small homogenous LMO particles that were uniformly distributed throughout the highly
structured gel structure (the difference in the sol-gel structures based on the mechanism of
sol-gel synthesis is described in Section 2.2). However, from the XPS analysis, all samples
suffered capacity loss during the cycles owing to J–T distortion by the dominant [Mn3+]
ions. To reduce the J–T distortion effect, methods such as the doping strategy [69–71] or
coating strategy [72,73] have been used, and our research also proves that the J–T distortion
effect cannot be reduced by modifying the structure of the gel [51,74]. Therefore, the
most successful effect of the modified sol-gel was its influence on the particle size and
improvement of the homogeneity and uniformity of the LMO particles.

4. Materials and Methods
4.1. Materials

Spinel LMO active materials were prepared using the sol-gel method. Lithium acetate
dihydrate (CH3COOLi 2H2O) and manganese acetate tetrahydrate ((CH3COO)2Mn 4H2O)
(99.99%, Seohaean-ro Siheung-si, Gyeonggi-do Republic of Korea) were used as cations.
Citric acid C3H4OH(COOH)3 (99.99%, Nihonbashihoncho, Chuoku, Tokyo Japan), ethy-
lene glycol (HOCH2CH2OH) (99.99%, Seohaean-ro Siheung-si, Gyeonggi-do Republic of
Korea), and ethanol (CH3CH2OH) (99.99%, South Korea) were used as chelating agents
and polymerization monomers. Li foil and coin cells (CR 2032) were purchased from
Wellcos Corporation, Ltd. (Toegye-dong, Chuncheon-si, Gangwon-do Republic of Korea)
for assembling the battery. A solution of 1 M LiPF6 in ethylene carbonate (EC):diethyl
carbonate (DEC) (1:1 vol. %), purchased from Soulbrain Co., Ltd. (Bundang-Gu, Seongnam,
Gyeonggi-do Republic of Korea), was used as the electrolyte.
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4.2. Synthesis of Spinel LMO Active Materials

In this study, three types of samples were synthesized from the solutions acquired
using water, ethanol, and ethylene glycol as the starting solutions, and the resulting
powders were labeled as LMO-W, LMO-E, and LMO-G, respectively (Figure 8). To prepare
LMO-W, lithium acetate and manganese acetate were dissolved in DI water just before
saturation at a stoichiometric ratio of 1 mol and 2 mol, respectively. The solution was then
added dropwise to a separately prepared 30% citric acid solution in water, such that the
mol ratio of citric acid to total cations was 1:1. The mol ratio of total reagents is Li:Mn:citric
acid = 1:2:3. The solution medium was buffered to approximately pH~4 with [OH−] ions
using NH4OH, while the pH of the starting solution was approximately 3 owing to the
citrate ions occurring mainly in presence of citric acid (pKa1 = 3.14) [24,75] as shown in the
following reaction:

Ka =
[C 6H7O7]

−[H]+

[C 6H8O7]
(17)
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The second sample, LMO-E, was mixed with a solution prepared by dissolving cations
in water (just before saturation) and then adding an aqueous solution of citric acid (30%
concentration of solution) and ethanol, similar to the LMO-W sample. Cations and citric
acid were used in the same amounts as in the LMO-W system, and 6 mol of ethanol was
used based on the corresponding stoichiometric ratio. The mol ratio of total reagents is
Li:Mn:citric acid:ethanol = 1:2:3:6. The prepared solution was initially buffered to pH 4. For
LMO-G, the cations were dissolved in DI water and added to a citric acid solution dissolved
in ethylene glycol at a mol ratio of 1:3. The mol ratio of total reagents is Li:Mn:citric
acid:ethylene glycol = 1:2:3:9. The following steps of the sample sol-gel extraction process
were performed under identical conditions. In the first step, lithium and manganese chelate
compounds were formed in the solution. In the second step, the solution was further
heated to 120 ◦C with stirring, and the esterification and polymerization processes were
continued until a transparent viscous gel was obtained. However, in the case of LMO-
W, the compound with water, the esterification reaction did not occur, owing to which
the reaction temperature was maintained at approximately 60 ◦C. The resulting sol-gel
was dried at 120 ◦C in an oven for 12 h, then ground. The calcination process was then
continued at a temperature of 400 ◦C for 5 h, and at 800 ◦C for 10 h. The product was
naturally cooled and ground, producing a final spinel LMO active material. There are
several factors that can affect the sol-gel synthesis of high-quality products, such as the
solvent type, concentration of the solution, precursor selection, pH, drying and calcination
temperatures, catalysts, agitation, contents of a chelating agent, and time; other factors
depend on the recipe for synthesis. Therefore, it is important to note that while the sol-gel
synthesis method is a useful way to synthesize pure spinel LMO, the final product can
be affected by many factors, and appropriate optimization of the synthesis conditions is
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therefore necessary. Sol-gel formation is highly sensitive to the reaction conditions, and it is
necessary to develop a recipe that is convenient for our purposes.

4.3. Characterization of Materials

The morphologies and compositions of the powders were investigated using field
emission scanning electron microscopy (FE-SEM; JSM-6701F, JEOL) and energy dispersive
spectrometry (EDS) using an Ultim@MAX (OXFORD Instrument, UK) operated at 20 kV
and samples were coated with a carbon thin film. X-ray diffraction (XRD; Miniflex, Rigaku;
Cu Kα 1.5406 nm as radiation source) was used to characterize the phase structures with
a scanning range 2θ of 10–90◦ and a scanning rate of 2◦ per min. X-ray photoelectron
spectroscopy (XPS) measurements were performed with a Kratos Axis Ultra spectrometer
to determine the balance states of Mn ions. The spectra of −5–1195 eV in the regions were
measured with the pass energy of 187.35 eV and the step-width of 1.6 eV. The enlarged
spectra in the Li1s, Mn2p, Mn3p, O1s, and C1s regions were measured with the pass
energy of 20 eV and the step width of 0.125 eV. Fourier transform infrared (FT-IR—Nicolet,
IS50, Thermo Fisher, Waltham, Massachusetts USA) spectra were used to determine the
bonding nature of the sol-gels. The gels of the samples were collected before calcination at
450 ◦C and analyzed. The electrochemical performance of the powders was tested using
two-electrode coin cells (CR 2032) with Li metal foil as the counter and reference electrodes.
The working electrode was prepared by mixing 80 wt. % active material, 10% conductive
carbon black (Imerys’s Ensaco 350P, Yeoksam-dong, Gangnam-gu, Seoul), and 10% binder
(polyvinylidene fluoride, PVdF) in N-methyl pyrrolidone (NMP) solvent, and the obtained
slurry was coated onto the AI foil current collector by casting. The coated slurry was dried
at 110 ◦C for 12 h, and the electrode disks were punched and weighed. The active mass
of the electrode was ~0.36 mg/cm2. The assembly process was performed in an Ar-filled
glove box. A microporous polypropylene (PP) membrane was used as the separator, and a
1 M solution of LiPF6 in EC:DEC (1:1, vol. %) was used as the electrolyte. Galvanostatic
charge–discharge tests (WDCS3000s, Won A-Tech, Yeogsam2-Dong, Kangnam-Ku Seoul
Republic of Korea) were carried out at 0.5 C (theoretical capacity of 1 C is 148 mAh
g−1) in a voltage range of 3.0 V to 4.35 V to investigate the electrochemical properties of
the electrodes. Electrochemical impedance spectroscopy (EIS) was used to analyze the
interfacial properties; EIS scans were conducted between 1 MHz and 10 MHz with a cut-off
of 3.0 V after 100 cycles of the Galvanostatic charge–discharge tests.

5. Conclusions

Cubic spinel LMO with an Fd-3m space group was successfully synthesized from
two types of sol-gels (modified and unmodified metal complexes)—chelate and organic
polymeric gels—without any contamination, and their synthesis mechanism, physical
parameters, and electrochemical properties were investigated. This study highlights that
synthesizing spinel LMO using a polymer-like gel structure made of ethylene glycol, as one
part of the polymerization monomer, has several benefits including improved homogeneity.
That is, the polymer-like gel structure can provide uniform distribution of Li, Mn, and
O precursors, thereby leading to better homogeneity in the final product. Furthermore,
modifying the polymerization process can help control the size of the particles formed
during synthesis, thereby leading to more consistent particle sizes and better control over
the final product. The polymer-like gel structure can provide a larger surface area for the
reaction to occur, thereby increasing the overall reaction rate and improving the yield of
the final product. Electrochemical results show that the LMO-G exhibits higher capacities
for the initial cycles, approaching the expected high energy density due to the improved
particle size and improvement of the homogeneity and uniformity of powder. Compared
to LMO-E and LMO-G, LMO-W has a more stable cycle life, suggesting that LMO can
provide an advantage in market demand without additional energy density improvements.
However, for further developments of LMO, such as increasing the energy density, stable
cycle life, and voltage, it is important to obtain pure phase and initially higher capacity
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LMO nanoparticles with uniform size distribution and high surface area; in this context,
the proposed strategy of LMO-G is optimal.
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Appendix A

Table A1. LiMn2O4 powder synthesized by a citric acid chelate agent of sol-gel method.

No.
Precursors Synthesis Conditions Particles

Characteristics Electrochemical Properties Ref

Gel
Structure Calcination Parameters Morphology Particle

Size C-Rate Voltage
Range

Initial
Discharge Q

Capacity
Retention

Testing
Temperature

Temperature
(◦C)

Duration
(h) (nm) (C) (V) (mAh g−1) (mAhg−1/n−1) (◦C)

LiAC
MnAC W 800 10 octahedral 419 0.5 3.0–4.35 121.3 82/100 RT our

LiAC
MnAC ET 800 10 octahedral 305 0.5 3.0–4.35 126.6 79/100 RT our

LiAC
MnAC EG 800 10 octahedral 253 0.5 3.0–4.35 141.6 70/100 RT our

LiAC
MnAC W 750 10 agglomerate 200–600 1 3.5–4.30 117.5 93.4/100 25 [76]

LiAC
MnAC W 750 12 - - 0.1 - 57.57 30.92/60 - [77]

LiAC
MnAC W 850 15 spherical 150 0.5 3.0–4.50 135.0 81.0/100 30 [60]

LiAC
MnAC W 750 12 octahedral 200 1 3.4–4.50 127.0 115/100 RT [78]

LiAC
MnAC W 850 15 - - 1 3.0–4.50 125.0 69.0/100 RT [79]

LiAC
MnAC W 800 12 cubic

facets 400 0.2 3.5–4.30 121 55.00/80 RT [80]

LiAC
MnAC W 800 16 - - 0.2 3.0–4.50 126.6 98.75/70

(1C) RT [81]

LiAC
MnAC W 850 7 polyhedral 100–300 1 3.0–4.30 110 72.00/50 RT [82]

LiAC
MnAC W 800 10 grains - 1 0.3–1.05 103 - RT [83]

LiAC
MnAC W 799 10 irregular 100–500 1 3.0–4.50 83.7 75.0/100 RT [84]

LiAC
MnAC W 800 12 - 300–400 0.5 3.0–4.50 - 85/35 25 [10]

LiAC
MnAC W 300–800 - - <100 - - - - - [85]

LiAC
MnAC W 600 5 - 500–1000 0.1 3.0–4.30 132 125/50 RT [86]

LiNO3
Mn(NO3)2

W 750 5 grains 50 0.2 4.30 120 87/300
(1C) - [56]

LiNO3
Mn(NO3)2

W 800 10 - - - 3.6–4.30 127.4 105.63/6 RT [13]
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Table A1. Cont.

No.
Precursors Synthesis Conditions Particles

Characteristics Electrochemical Properties Ref

Gel
Structure Calcination Parameters Morphology Particle

Size C-Rate Voltage
Range

Initial
Discharge Q

Capacity
Retention

Testing
Temperature

Temperature
(◦C)

Duration
(h) (nm) (C) (V) (mAh g−1) (mAhg−1/n−1) (◦C)

LiOH
MnAC W 780 12 - - 0.5 3.1–4.40 - 93.7/100 RT [87]

LiAC
MnAC ET 300 24 Some ag-

glomerate 30–50 1 3.0–4.30 111.4 88.1/100 25 [88]

LiAC
MnAC EA 850 14 - 520–1240 0.5 3.5–4.20 47.00 33.00/40 25 [89]

LiOH
MnAC ET 750 18

Serious
agglomer-

ate
200 0.5 3.2–4.35 134.0 108.5/30 RT [61]

LiAC
MnAC ET 300 24 - 30–50 1 3.0–4.50 110 90.3/100 RT [90]

LiNO3
Mn(NO3)2

ET 700 12 irregular 100 0.5 3.3–4.50 114 - RT [91]

LiAC
MnAC ET 800 24 - - - 3.5–4.20 105 84/15 RT [11]

LiAC
MnAC EG 450–700 - grains 100–200 - - - - - [92]

LiNO3
Mn(NO3)2

EG 800 22 - 10–100 - 3.0–4.20 130 98/50 RT [93]

C—148 (mAhg−1); RT—room temperature; ET—ethanol; W—water; EG—ethylene glycol; EA—2-
ethylhexanoic acid.
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5. Jugović, D.; Uskoković, D. A review of recent developments in the synthesis procedures of lithium iron phosphate powders.

J. Power Source 2009, 190, 538–544. [CrossRef]
6. Priyono, S.; Hardiyani, S.; Syarif, N.; Subhan, A.; Suhandi, A. Electrochemical performanceof LiMn2O4 with varying thickness of

cathode sheet. In Proceedings of the Journal of Physics: Conference Series, Ningbo, China, 1–3 July 2019; p. 012022.
7. Yi, T.-F.; Zhu, Y.-R.; Zhu, X.-D.; Shu, J.; Yue, C.-B.; Zhou, A.-N. A review of recent developments in the surface modification of

LiMn 2 O 4 as cathode material of power lithium-ion battery. Ionics 2009, 15, 779–784. [CrossRef]
8. Tyagi, R.; Lanjan, A.; Srinivasan, S. Co-Doping Strategies to Improve the Electrochemical Properties of LixMn2O4 Cathodes for

Li-Ion Batteries. ChemElectroChem 2022, 9, e202101626. [CrossRef]
9. Deng, Y.; Zhou, Y.; Shi, Z.; Zhou, X.; Quan, X.; Chen, G. Porous LiMn2O4 microspheres as durable high power cathode materials

for lithium ion batteries. J. Mater. Chem. A 2013, 1, 8170–8177. [CrossRef]
10. Hashem, A.; Abdel-Ghany, A.; Abuzeid, H.; El-Tawil, R.; Indris, S.; Ehrenberg, H.; Mauger, A.; Julien, C. EDTA as chelating agent

for sol-gel synthesis of spinel LiMn2O4 cathode material for lithium batteries. J. Alloys Compd. 2018, 737, 758–766. [CrossRef]
11. Hon, Y.-M.; Fung, K.-Z.; Lin, S.-P.; Hon, M.-H. Electrochemical properties of LiMn2O4 nano-particles synthesized by citric acid

gel process. J. Ceram. Soc. Jpn. 2001, 109, 986–991. [CrossRef]
12. Yi, T.-F.; Hao, C.-L.; Yue, C.-B.; Zhu, R.-S.; Shu, J. A literature review and test: Structure and physicochemical properties of spinel

LiMn2O4 synthesized by different temperatures for lithium ion battery. Synth. Met. 2009, 159, 1255–1260. [CrossRef]
13. Zhang, P.; Fan, H.; Fu, Y.; Li, Z.; Dend, Y. Synthesis and electrochemical properties of sol-gel derived LiMn2O4 cathode for

lithium-ion batteries. Rare Met. 2006, 25, 100–104. [CrossRef]
14. Ando, K.; Matsuda, T.; Imamura, D. Degradation diagnosis of lithium-ion batteries with a LiNi0.5Co0.2Mn0.3O2 and LiMn2O4

blended cathode using dV/dQ curve analysis. J. Power Source 2018, 390, 278–285. [CrossRef]
15. Chand, P.; Bansal, V.; Singh, V. Effect of pH values on structural, optical, electrical and electrochemical properties of spinel

LiMn2O4 cathode materials. J. Sci. Adv. Mater. Devices 2019, 4, 245–251. [CrossRef]
16. Zhang, J.; Shen, J.; Wei, C.; Tao, H.; Yue, Y. Synthesis and enhanced electrochemical performance of the honeycomb TiO2/LiMn2O4

cathode materials. J. Solid State Electrochem. 2016, 20, 2063–2069. [CrossRef]
17. Qiu, B.; Wang, J.; Xia, Y.; Wei, Z.; Han, S.; Liu, Z. Enhanced electrochemical performance with surface coating by reactive

magnetron sputtering on lithium-rich layered oxide electrodes. ACS Appl. Mater. Interfaces 2014, 6, 9185–9193. [CrossRef]
18. Zhao, H.; Nie, Y.; Li, Y.; Wu, T.; Zhao, E.; Song, J.; Komarneni, S. Low-cost and eco-friendly synthesis of octahedral LiMn2O4

cathode material with excellent electrochemical performance. Ceram. Int. 2019, 45, 17183–17191. [CrossRef]

https://doi.org/10.1002/ese3.95
https://doi.org/10.1016/j.mattod.2014.10.040
https://doi.org/10.1016/j.egyr.2022.06.110
https://doi.org/10.1002/smll.202107048
https://www.ncbi.nlm.nih.gov/pubmed/35229459
https://doi.org/10.1016/j.jpowsour.2009.01.074
https://doi.org/10.1007/s11581-009-0373-x
https://doi.org/10.1002/celc.202101626
https://doi.org/10.1039/c3ta11563a
https://doi.org/10.1016/j.jallcom.2017.12.153
https://doi.org/10.2109/jcersj.109.1276_986
https://doi.org/10.1016/j.synthmet.2009.02.026
https://doi.org/10.1016/S1001-0521(07)60053-9
https://doi.org/10.1016/j.jpowsour.2018.04.043
https://doi.org/10.1016/j.jsamd.2019.04.005
https://doi.org/10.1007/s10008-016-3197-4
https://doi.org/10.1021/am501293y
https://doi.org/10.1016/j.ceramint.2019.05.273


Molecules 2023, 28, 3489 19 of 21

19. Guo, Y.G.; Hu, J.S.; Wan, L.J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater.
2008, 20, 2878–2887. [CrossRef]

20. Wang, Y.; Cao, G. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater.
2008, 20, 2251–2269. [CrossRef]

21. Gonçalves, R.; Sharma, P.; Ram, P.; Ferdov, S.; Silva, M.M.; Costa, C.M.; Singhal, R.; Sharma, R.K.; Lanceros-Mendez, S. Improved
electrochemical performance of LiMn1.5M0.5O4 (M=Ni, Co, Cu) based cathodes for lithium-ion batteries. J. Alloys Compd. 2021,
853, 157208. [CrossRef]
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