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Abstract: The Aspergillus genus, the etiological agent of aspergillosis, is an important food contami-
nant and mycotoxin producer. Plant extracts and essential oils are a source of bioactive substances
with antimicrobial potential that can be used instead of synthetic food preservatives. Species from
the Lauraceae family and the Ocotea genus have been used as traditional medicinal herbs. Their
essential oils can be nanoemulsified to enhance their stability and bioavailability and increase their
use. Therefore, this study sought to prepare and characterize both nanoemulsion and essential oil
from the Ocotea indecora’s leaves, a native and endemic species from the Mata Atlântica forest in
Brazil, and evaluate the activity against Aspergillus flavus RC 2054, Aspergillus parasiticus NRRL 2999,
and Aspergillus westerdjikiae NRRL 3174. The products were added to Sabouraud Dextrose Agar at
concentrations of 256, 512, 1024, 2048, and 4096 µg/mL. The strains were inoculated and incubated
for up to 96 h with two daily measurements. The results did not show fungicidal activity under
these conditions. A fungistatic effect, however, was observed. The nanoemulsion decreased the
fungistatic concentration of the essential oil more than ten times, mainly in A. westerdjikiae. There
were no significant changes in aflatoxin production.

Keywords: Flavi section; fungistatic; aflatoxin; natural products; sesquirosefuran; sesquiterpenes

1. Introduction

One of the most critical problems reported in human history is hunger. Even with
all the breakthroughs and innovations since the implementation of agriculture, it was not
enough to free us from this malady. In 2022, almost 830 million people, about 10% of the
global population, suffered from hunger [1].

The Food and Agriculture Organization (FAO) estimates that up to 25% of the world’s
cereal grains are contaminated by fungi and/or mycotoxins in the field or during stor-
age [2,3], leading to a mass wastage of food.

Members of the genus Aspergillus spp. have the strongest ecological link to the human
food supply [4]. The genus presents a worldwide distribution, with 339 species [5], divided

Molecules 2023, 28, 3437. https://doi.org/10.3390/molecules28083437 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28083437
https://doi.org/10.3390/molecules28083437
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-9411-9819
https://orcid.org/0000-0002-5332-9972
https://orcid.org/0000-0002-6611-6722
https://orcid.org/0000-0002-2550-696X
https://orcid.org/0000-0003-0484-1918
https://orcid.org/0000-0002-3857-593X
https://doi.org/10.3390/molecules28083437
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28083437?type=check_update&version=1


Molecules 2023, 28, 3437 2 of 18

into sections and clades. The clade A. flavus, in section Flavi, is important for containing
the most common agents of superficial and invasive aspergillosis [6].

The species of the A. flavus clade are still linked to the production of mycotoxins,
secondary metabolites with harmful toxic effects on animals and humans [7]. The main
mycotoxins produced by fungi of the genus Aspergillus spp. are aflatoxins (AF) and
difuranocoumarins, with rigid and flat structures that form the four major substances: B1,
B2, G1, and G2 [8]. This chemical stability gives them high resistance to heat treatments,
extreme pH values, high pressures, and food-grade chemical treatments [9], making them
also detectable at various levels of the production chain [7].

The ingestion of AFB1 can lead to acute conditions associated with cellular damage and
metabolism disruption. Chronic conditions can cause damage to the metabolization organs,
especially those related to nephrotoxicity and hepatotoxicity, including oncogenesis [10,11].

Such hazardous substance, as expected, has a strict limit for concentrations in each
medium, particularly for food supplies. The limits are determined by legislation worldwide
and vary for each country. The Brazilian legislation, aligned with the MERCOSUL designa-
tions, established similar limits to the most accepted international recommendations, the
ones in the Codex Alimentarius [12]. The limits range from 5 to 20 µg/kg, except for those
outlined for children, with a limit of 1 µg/kg [13].

Inhibiting the growth and mycotoxin production of the food-related strains, therefore,
shows itself as an essential strategy to combat worldwide hunger and is a matter of public
health. These issues interconnect with the United Nations 17 Sustainable Development
Goals for 2030, principally goals 2 and 3, respectively, “Zero Hunger” and “Good Health
and Well-Being” [14].

Fungal and aflatoxin contamination can occur before, during, or after harvest, espe-
cially during storage and processing. Methods for preventing contamination can be divided
into pre-harvest, harvest, and post-harvest strategies [15].

Pre-harvest factors include seed and cultivation conditions and the prevention of
fungal infestations, considering environmental factors that influence infection [16]. Most
of the threats, however, are post-harvest factors. These range from harvesting patterns to
transport to the consumer, with a particular focus on storage [15]. About 25% of harvested
fruits and vegetables are lost due to diseases, mainly caused by fungi. Although more
severe in developing countries, it is not insignificant in developed countries, as the annual
economic loss of the United States is around US$ 1 billion [16].

The usual method to prevent fungal contaminations in pre- and post-harvest is using
chemical additives. The environmental and human health impact and the possible devel-
opment of new resistant strains have forced the industry to seek new strategies as “clean
label” alternatives [17].

Products extracted from plants and their formulations are classified mainly by the
Food and Drug Administration (FDA) as Generally Recognized as Safe (GRAS) [18]. These
products can be used in Europe and the USA as antimicrobial agents in pre- and post-
harvest and food and feed additives, with a wide acceptance by consumers [19].

Among the plant-based products that can be obtained, essential oils (EO) are an option
with proven methodologies and recognized potential, aiming to isolate the volatile chemi-
cals found in low concentrations in plants. EOs stand out among plant derivatives because
they often present biological activity [20]. In addition, they can be used in formulations
such as nanoemulsions (NE), that may enhance their properties.

Nanoemulsions, like traditional emulsions, are dispersions of one immiscible liquid in
another. Both are kinetically stable, but thermodynamically unstable systems. To reduce
the natural tendency of phase separation by creaming, flocculation, coalescence, or Ostwald
ripening, surfactants are ordinarily used to decrease the interfacial tension and improve
the long-term stability of the nanodispersions [21].

The principal difference between nanoemulsion and traditional emulsion is that na-
noemulsion droplets are on a nanometer scale, between 20 and 200 nm. Another difference
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is the translucid monophasic appearance, often with the bluish color of the Tyndall optical
effect of light dispersion [22].

The conventional applicability of nanoemulsions is to enable oily phases, such as
essential oils, in aqueous matrices. Recently, nanoemulsified essential oils have been
spotlighted for developing new antimicrobial products [23]. They are a promising tool
for antimicrobial delivery, and among the advantages are bioavailability enhancement,
increased stability, a larger surface area, and improved bioactivity, allowing more effective
interactions with microorganisms [24,25].

Ocotea indecora (Lauraceae) is a native endemic plant from Brazil. Species from this
family and genus have been used as traditional medicinal herbs. Regarding Ocotea genus,
they present several groups of secondary metabolites recognized in the literature, especially
steroids, terpenoids, and alkaloids [26]. This plant species is found in the remaining Mata
Atlântica forest in Brazil’s south and southeast regions, especially in the sandbank areas
of Rio de Janeiro state [27]. However, the coastal ecosystem where most of the current
population resides is the highest deforested biome in the country, having less than 7% of
its original area [28]. The devastation associated with the endemic nature of the species
highlights the urgency and importance of its study.

The main metabolite related to the Ocotea indecora’s essential oil from leaves is the fu-
ranosesquiterpene sesquirosefuran. Even though most of the reports are about insecticidal
effects [29–31], furanosesquiterpenes have several activities recognized in the literature
as antioxidant, herbicidal, antibacterial, chemo-preventive agents, and principally for
this study, antifungal [32,33]. Thus, essential oils and their possible effects are important
research proposals for the biotechnological development of sustainable products.

The objectives of this work were to evaluate the effectiveness of the O. indecora leaves’
essential oil and nanoemulsion on the growth of A. flavus (RC 2054), A. parasiticus (NRRL
2999), and A. westerdjikiae (NRRL 3174), and the inhibition of aflatoxins.

2. Results
2.1. Essential Oil Extraction and Chemical Characterization

The EO yielded 0.4% and allowed the identification of three substances, totaling 91.93%
of the oil (Table 1). The sesquirosefuran (86.13%) was widely predominant, followed by the
sesquiterpenes hydrocarbons: (Z)-β-farnesene (3.33%) and allo-aromadendrene (1.55%).

Table 1. Chemical characterization of the EO by GC-MS and GC-FID.

RT AIexp AI Substances %

1 26.970 1448 1440 (Z)-β-Farnesene a 3.33965
2 27.323 1457 1458 allo-Aromadendrene a 1.55898
3 30.802 1545 1549 Sesquirosefuran b 86.13331

Total identified 91.03194
Sesquiterpene hydrocarbons 4.89863
Sesquiterpene oxygenated 86.13331

RT: retention index; AI: arithmetic index; AIexp arithmetic index calculated. a Identified from Adams [34].
b Identified from Pherobase (El- Sayed) [35].

2.2. Nanoemulsion Preparation, Characterization, and Thermal Stress Stability

The NE presented a white-bluish coloration (Figure 1), and the dynamic light scattering
(DLS) analysis showed a mean droplet size (nm) of 103.4 ± 0.9. The polydispersity index
(PdI) was 0.268 ± 0.010, and the zeta potential was −32.83 ± 0.8208 after preparation at
room temperature (25 ◦C). The thermal stress stability of the nanoemulsion was realized
initially at room temperature (25 ◦C) and increased to 65 ◦C at 10 ◦C/analysis. The size
distribution by intensity represented in Figure 2 shows no relevant alterations in the
nanoemulsion’s stability, while the droplet size and PdI values at each temperature can be
seen in Table 2, showing statistical differences above 35 ◦C. After the thermal stress, no
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macroscopic changes were observed and the droplet size was 89.38 ± 2.153, the PdI was
0.246 ± 0.003, and the zeta potential was −34.85 ± 0.5284.
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Table 2. NE mean size and PdI values from the thermal stress stability study (25–65 ◦C).

Temperature (◦C) Average Size (nm) Polydispersity Index

25 103.40 ± 0.90 0.239 ± 0.010
35 102.90 ± 0.519 0.247 ± 0.015
45 98.97 ± 0.312 * 0.241 ± 0.018
55 91.58 ± 0.515 * 0.252 ± 0.009
65 89.38 ± 2.15 * 0.246 ± 0.003

* The values were recognized as statistically significant at a confidence interval of 95%.

2.3. Inhibitory Effects on Aspergillus Strains
2.3.1. Aspergillus flavus

The effects of the EO at 4096 µg/mL and the NE at 256, 512, 1024, and 2048 µg/mL on
the growth of the A. flavus strain are presented in Table 3.
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Table 3. Diameter (mm) of A. flavus colonies in the presence of EO and NE at 48, 72, and 96 h.

Bioproduct 48 h 72 h 96 h

Control 20.90 ± 1.838 32.75 ± 3.942 43.35 ± 3.470
EO 4096 µg/mL 17.20 ± 3.960 32.90 ± 0.990 42.30 ± 2.121
NE 256 µg/mL 20.00 ± 1.212 31.90 ± 2.402 43.30 ± 1.900
NE 512 µg/mL 18.50 ± 1.769 30.60 ± 1.200 42.30 ± 1.513
NE 1024 µg/mL 16.50 ± 0.854 28.50 ± 1.114 40.00 ± 1.682
NE 2048 µg/mL 15.00 ± 2.287 * 28.50 ± 2.921 37.80 ± 3.651

* The values were recognized as statistically significant at a confidence interval of 95%.

The colonies developed in the presence of the EO and the NE, demonstrating no
fungicidal activity at the tested concentrations. The EO also showed no significant reduction
(p > 0.05) compared to the control groups, evidencing no fungistatic activity.

As seen in Table 3, there was only a significant reduction up to 48 h (df = 5; F = 4.11;
p = 0.021), but only for the NE in the concentration of 2048 µg/mL (p = 0.020). The statistical
analysis for the 48 h incubation is shown in Table 4. No statistical significance was observed
for the 72 h (p = 0.210) and 96 h (p = 0.135) incubations.

Table 4. One-way ANOVA between A. flavus colonies with or without the EO and the NE.

Comparison Diff of Means p q p

Control 48 h vs. EO 3.700 6 3.055 0.322
Control 48 h vs. 2048 ppm 5.900 6 5.524 0.020 *
Control 48 h vs. 1024 ppm 4.400 6 4.119 0.104
Control 48 h vs. 512 ppm 2.400 6 2.247 0.620
Control 48 h vs. 256 ppm 0.900 6 0.843 0.989

* The values were recognized as statistically significant at a confidence interval of 95%.

The percentages of reductions are shown in Figure 3, demonstrating the intensity and
duration of the effects correlated to the tested concentrations. The highlight is the only
significant inhibition that reached a 28.2% reduction in the colony diameter.
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Figure 4 compares the control colony and the colony with NE at 2048 µg/mL, showing
a significant result. The photos were taken with a 48 h growth time and no difference was
observed in either the macroscopic or microscopic morphology.
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The mycotoxicological analysis, on average, showed that the production in all concen-
trations of the bioproduct did not show a difference with the control groups. The results
are shown in Table 5.

Table 5. AFB1 production by A. flavus colonies in the presence of EO and NE at 48, 72, and 96 h.

Bioproduct Concentration *

Control 9.06 ± 1.50 µg/kg
EO 4096 µg/mL 9.81 ± 1.09 µg/kg
NE 256 µg/mL 9.79 ± 1.07 µg/kg
NE 512 µg/mL 9.55 ± 1.61 µg/kg
NE 1024 µg/mL 9.48 ± 1.72 µg/kg
NE 2048 µg/mL 9.38 ± 1.52 µg/kg

* No significant difference observed in the Tukey’s test (p > 0.05) for the different concentrations.

2.3.2. Aspergillus parasiticus

The trials’ results are shown in Table 6, demonstrating the effects of the EO at
4096 µg/mL and the NE at 256, 512, 1024, and 2048 µg/mL on the A. parasiticus’ growth.
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Table 6. Diameter (mm) of A. parasiticus colonies in the presence of the EO and the NE at 48, 72, and
96 h.

Bioproduct 48 h 72 h 96 h

Control 21.75 ± 2.453 35.60 ± 4.510 45.30 ± 6.056
EO 4096 µg/mL 18.20 ± 0.141 31.40 ± 2.828 41.30 ± 3.110
NE 256 µg/mL 19.20 ± 1.852 32.30 ± 3.676 43.10 ± 3.105
NE 512 µg/mL 17.10 ± 3.804 28.20 ± 4.518 42.40 ± 1.952
NE 1024 µg/mL 16.20 ± 1.735 * 28.10 ± 2.797 38.50 ± 2.835
NE 2048 µg/mL 13.30 ± 1.873 * 27.90 ± 3.579 37.90 ± 1.411

* The values were recognized as statistically significant at a confidence interval of 95%.

The colonies showed growth in the presence of the EO at 4096 µg/mL, and compared
to the control groups, showed no significant difference (p > 0.05). This demonstrates the
essential oil concentration’s lack of fungicidal and fungistatic activity.

The growth of colonies in the presence of the NE showed no fungicidal activity and no
significant effects were observed at both 72 h (p = 0.093) and 96 h (p = 0.164) of incubation.
However, inhibition was observed in the first 48 h (df = 5; F = 9.96; p < 0.001).

While the NE concentrations of 256 and 512 µg/mL showed no effects even at 48 h, in
the 1024 and 2048 µg/mL concentrations, a significant reduction in colonies’ growth was
observed in the timeframe (p = 0.003 and p < 0.001, respectively), as shown in Table 7.

Table 7. One-way ANOVA between A. parasiticus colonies after 48 h of incubation with the EO and
the NE.

Comparison Diff of Means p q p

Control 48 h vs. EOOi 0.392 6 2.932 0.361
Control 48 h vs. 2048 ppm 1.017 6 8.627 <0.001 *
Control 48 h vs. 1024 ppm 0.844 6 7.159 0.003 *
Control 48 h vs. 512 ppm 0.333 6 2.827 0.396
Control 48 h vs. 256 ppm 0.280 6 2.373 0.569

* The values were recognized as statistically significant at a confidence interval of 95%. The duration and intensity
of the effects are shown in Figure 5, especially the NE at 1024 µg/mL and 2048 µg/mL, which reached, respectively,
25.5% and 38.9% of inhibition.
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The macroscopic and microscopic comparisons of the control colonies with the colonies
in the presence of the NE at 2048 µg/mL at 48 h are shown in Figure 6, but no relevant
morphological differences could be seen.
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The AFB1 detection for all concentrations of the bioproduct again showed no activity
compared to the controls. The quantification is shown in Table 8.

Table 8. AFB1 production by A. parasiticus colonies in the presence of EO and NE at 48, 72, and 96 h.

Bioproduct Concentration *

Control 31.71 ± 4.67 µg/kg
EO 4096 µg/mL 36.24 ± 5.35 µg/kg
NE 256 µg/mL 33.81 ± 4.28 µg/kg
NE 512 µg/mL 33.67 ± 3.64 µg/kg

NE 1024 µg/mL 31.88 ± 2.36 µg/kg
NE 2048 µg/mL 30.14 ± 3.64 µg/kg

* No significant difference observed in the Tukey’s test (p > 0.05) for the different concentrations.

2.3.3. Aspergillus westerdjikiae

Table 9 shows the effects on the growth of the A. westerdjikiae strain caused by the EO
at 4096 µg/mL and the NE at 256, 512, 1024, and 2048 µg/mL.
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Table 9. Diameter (mm) of A. westerdjikiae colonies in the presence of the EO and the NE at 48, 72,
and 96 h.

Bioproduct 48 h 72 h 96 h

Control 11.90 ± 0.779 20.20 ± 1.922 31.00 ± 1.858
EO 4096 µg/mL 9.80 ± 0.990 20.20 ± 1.556 29.20 ± 1.273
NE 256 µg/mL 6.60 ± 1.735 * 16.50 ± 2.227 25.10 ± 3.509
NE 512 µg/mL 6.40 ± 1.682 * 16.30 ± 1.744 24.20 ± 3.064
NE 1024 µg/mL 6.30 ± 1.539 * 15.60 ± 1.800 * 21.80 ± 2.987 *
NE 2048 µg/mL 3.70 ± 2.894 * 11.20 ± 3.764 * 18.70 ± 4.414 *

* The values were recognized as statistically significant at a confidence interval of 95%.

The growth of the control groups and the EO at 4096 µg/mL showed no significant
difference (p > 0.05) in the tested strain, indicating no fungicidal or fungistatic effect caused
by the concentration of the tested EO. The NE in all concentrations also demonstrated a
lack of fungicidal activity, but it did show fungistatic activity, as seen in Table 10.

Table 10. One-way ANOVA between A. westerdjikiae colonies with the EO and the NE in all incubation
periods.

Comparison

48 h 72 h 96 h

Diff of
Means p q p Diff of

Means p q p Diff of
Means p q p

Control vs. EOOi 2.100 6 1.989 0.723 3.553 × 10−15 6 2.506 × 10−15 1.000 1.775 6 0.947 0.982
Control vs. 2048 ppm 8.200 6 8.805 <0.001 * 9.000 6 7.198 0.003 * 12.275 6 7.422 0.002 *
Control vs. 1024 ppm 5.600 6 6.013 0.011 * 4.600 6 3.679 0.035 * 9.175 6 5.548 0.019 *
Control vs. 512 ppm 5.500 6 5.906 0.013 * 3.900 6 3.119 0.303 6.775 6 4.097 0.107
Control vs. 256 ppm 5.300 6 5.691 0.016 * 3.700 6 2.959 0.352 5.875 6 3.552 0.195

* The values were recognized as statistically significant at a confidence interval of 95%.

In the first 48 h, all concentrations led to a significant reduction (df = 5; F = 9.53;
p < 0.001), approximately 44% to 48%, except the concentration of 2048 µg/mL that reached
69% inhibition. The reduction by NE at 512 and 256 µg/mL decreased to nearly 20% after
48 h, while the 1024 µg/mL and 2048 µg/mL concentrations remained significant at 72 h
(df = 5; F = 6.28; p = 0.004) and 96 h (df = 5; F = 7.03; p = 0.003), when they decreased to,
respectively, 29.6% and 39.7% inhibition. All the reductions are graphically demonstrated
in Figure 7.
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The photos in Figure 8 compare the colonies after 48 h of incubation in the presence
of the NE at 2048 µg/mL with the control colonies. The macroscopic and microscopic
morphological comparison showed no observable difference.
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Figure 8. Macroscopic and microscopic comparison between the colonies with or without the NE at
2048 µg/mL at 48 h: (a) A. westerdjikiae colony, (b) A. westerdjikiae colony in the presence of the NE at
2048 µg/mL, (c) microscopy of A. westerdjikiae, and (d) microscopy of A. westerdjikiae in the presence
of the NE at 2048 µg/mL.

As for the production of mycotoxins, the average of each strain in the presence of
the products had no observable effects compared to the control production. The analysis
outcome is demonstrated in Table 11.

Table 11. AFB1 production by A. westerdjikiae colonies in the presence of EO and NE at 48, 72,
and 96 h.

Bioproduct Concentration *

Control 15.79 ± 3.18 µg/kg
EO 4096 µg/mL 16.09 ± 2.86 µg/kg
NE 256 µg/mL 15.59 ± 2.54 µg/kg
NE 512 µg/mL 14.83 ± 2.73 µg/kg

NE 1024 µg/mL 13.92 ± 2.54 µg/kg
NE 2048 µg/mL 13.52 ± 2.48 µg/kg

* No significant difference observed in the Tukey’s test (p > 0.05) for the different concentrations.

3. Discussion

The essential oil from the leaves of O. indecora showed approximately 86% of sesquirose-
furan, corroborating with the O. indecora chemical profile and sesquirosefuran amount
(88–92%) described previously by other authors [29,31].

The sesquirosefuran is a furanosesquiterpene registered under CAS number 39007-
93-7, with the molecular formula C15H22O and a molecular weight of around 218 u [36].
It has a log p of 5.847 and a TPSA equal to 13.140; then, according to the Pfizer Rule, it is
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likely to be toxic, especially as an inhibitor of some CYP family enzymes and a probable
human hepatotoxic substance. The sesquirosefuran, however, is unlikely to cause severe
skin, respiratory, and eye damage [37].

In this way, it is possible that the bioproduct can be used as an external preservative,
as long as it does not involve direct consumption, and reinforcing that it is important to
choose carefully where to use it in order not to cause unwanted damage to fauna, flora,
and workers.

The sesquirosefuran has few reports about the molecule bioactivity, mainly insecticide
activity [29,31], and none related to its antifungal potential. Sesquiterpenes and fura-
nosesquiterpenes, in turn, have several recognized activities, and among them, Marongiu
et al. [33] demonstrated activity against several Aspergillus sp. by essential oils rich in
furanosesquiterpenes.

The furansesquiterpenes action mechanisms are not yet fully elucidated, but several
studies describe antifungal effects related to the furan group in natural molecules [38,39].
Loi et al. [40], however, describe sesquiterpenes isolated from different plants capable of
altering the mitochondrial function of mammals. The mitochondrial membrane potential
is maintained in healthy individuals by an electrochemical gradient. The mechanism of
action is not clearly understood, but it is theorized that a disturbance in the protons of the
osmotic balance affects the electrochemical potential. As ATP levels decrease, metabolism
and functions reduce until cell death, thus explaining the observed fungistatic effect.

The effect observed in mammal mitochondria is possibly similar in fungal mitochon-
dria, as Campbell et al. [41] related similarities between both. This would explain the
fungistatic effect and the absence of morphological alteration, as the inhibition could be a
decrease in the metabolism caused only by the reduction in the ATP concentration.

Despite this report, O. indecora’s EO did not demonstrate a fungicidal or fungistatic
effect at 4096 µg/mL and could not inhibit the aflatoxin production in the three Aspergillus
strains tested. However, when the EO is nanoemulsified, the results are promising. The NE
at 2048 µg/mL showed a fungistatic effect in the three strains, at least at 48 h, while the EO
at a concentration two times higher did not show the same capacity.

The production of the EO nanoemulsion is an exciting tool to enable these lipophilic
matrices into viable products and has been widely used in pharmaceutical and food
industries [23]. In this study, the O. indecora’s EO was nanoemlusified by a low-energy
approach to maintain the chemical profile since it does not use heat treatment in the
nanoemulsification process, which avoids thermal degradation and volatilization of the
terpenoids present in the EO [42].

There are two prevailing forces crucial to the stability of nanoemulsified systems:
the gravitational (droplet size and weight) and the electrostatic repulsion (zeta poten-
tial). Together, they influence the physicochemical maintenance of a nanodispersion’s
collective parameters [21,43]. The prepared nanoemulsion showed a bluish-white appear-
ance consistent with the Tyndall effect, a reduced droplet diameter of 103.4 ± 0.9, and
a 0.268 ± 0.010 PdI. As for the surface charge, one of the parameters related to the nan-
odroplets’ stability, the NE zeta potential, was −32.83 ± 0.8208, indicating good short-term
stability, with coulombic repulsion between the negatively charged nanodroplets, and in
that way, favoring the droplets’ Brownian motion [43]. Due to all these parameters, the
product was characterized as a conventional monodispersed nanoemulsion [22].

The different nanoemulsion physicochemical properties, such as the reduced droplet
diameter, may justify the higher effect of the NE in comparison to the EO. The increased
fungistatic effect may be associated with higher bioavailability of the substances present in
the EO. Furthermore, the increase of hydrophilicity and the nanoscale of the particles can
lead to higher dispersion and stability in the medium [24] and may facilitate the absorption
and metabolization of the substances present in the bioproduct [25]. The activity of the
EO can be optimized in this way, by increasing the contact between the metabolites in the
essential oil and the fungal cells.
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Comparing the reduction pattern, a dose-dependent response of the NE against the
strains was observed (Figures 3, 5 and 7). The fungistatic effect for the A. flavus strain was
not significant below 2048 µg/mL but became significant upon reaching this concentration.
The turning point for the A. parasiticus strain was even lower, as at 1024 µg/mL it had
already shown a significant difference.

The comparison was even wider for the A. westerdjikiae strain, as all concentrations
showed significant activity in the first 48 h, and the higher ones up to 96 h. The greater
susceptibility of A. westerdjikiae to bioproducts was already reported in other studies, such
as those of Rodrigues et al. [44] and Schlösser and Prange [45].

Even though all concentrations of the NE were active against the A. westerdjikiae
strain, the dose-dependent effect was still visible. The NE showed activity that the OE in
a concentration 16 times higher did not, therefore endorsing the potential caused by the
nanoemulsification process.

The observed correlation between dosage and effect, and the NE showing a better
result than the EO, even though it was in lower concentrations, indicate how the formulation
can trigger and potentiate effects, whether expected or not, as observed in the study by Do
Carmo Silva [46].

However, despite the potential, no concentration of the NE showed fungicidal activity
in any of the strains. A concentration higher than 2048 µg/mL may be necessary to increase
the bioavailability of the molecule even more to cause a proper fungicidal effect.

Another limitation observed was the drastic decrease in activity after 48 h of incubation
as, after this point, only a fungistatic effect was observed in the colonies of the A. westerdjikiae
strain and only with the NE at 1024 and 2048 µg/mL. This behavior may be due to the
consumption of all the present NE by the fungal colonies, and only the residual effect
was observed afterward. Another possibility is degradation over time in the incubation
temperature and/or medium.

However, in the thermal stress stability study of the O. indecora nanoemulsion, only
temperatures from 35 ◦C slightly reduced the droplet size (nm). As the incubation temper-
ature was 25 to 30 ◦C, it is unlikely that a significant degradation occurred. The droplet
reduction is probably associated with the increased solubility of essential oil terpenoids
due to the higher temperature in the aqueous phase [47].

Regarding the size homogeneity of the nanodroplets, there was no statistical signif-
icance (p < 0.05) in the polydispersity index between all temperatures analyzed (25 to
65 ◦C). The zeta potential after the thermal stress was −34.85 ± 0.5284, suggesting no
relevant alteration in the nanodroplets’ surface charge [43]. Both parameters reassured the
improbability of degradation.

While the bioproduct showed a short period of a fungistatic effect and no fungicidal
effect, it was still significant. The activity was seen in the exponential phase of growth for
the three strains and, even though it did not establish a stationary range, the reduction in
the log phase points to a potential for concomitant use with other antifungal products. The
promising potential in associated substances of plant origin and commercial products was
also described by Chagas [48].

Another point worth noting is that high-complexity food matrices can lead to re-
duced effectiveness of antimicrobials. Therefore, a larger amount of preservative than
the one used in vitro tends to be necessary to achieve the same results. Higher concentra-
tions, however, can impair the organoleptic properties of foods. To avoid this problem,
lower concentrations of bioproducts with fungistatic effects can be used [39]. This high-
lights the use of nanoemulsions as food preservatives, as long as they are obtained from
safe plant derivatives, since the present work demonstrated that they have exactly this
desired capacity.

As for the quantification of AF, the variations were considered insignificant, according
to statistical results, regardless of the concentration. However, there are reports of the
chemical properties of the AFs being modified in different ways after incubation with plant
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extracts, including removal of the furan double bond in AFB1 and modification of the
lactone ring, resulting in a significant decrease in cytotoxicity and carcinogenicity [49].

About the variations, considering the high sensitivity of the AF production [50], the
oscillation may be due to the alteration in the fungal metabolism and its metabolites [51].

When comparing the results obtained with other descriptions in the literature, it is
observed that this is the first study to report the antifungal properties of Ocotea indecora
and its major substance, sesquirosefuran. Other studies on the genus have been carried out,
however, few species have a chemical composition similar to the O. indecora. Furthermore,
most trials are on the clinically important leviduriform fungal species.

Focusing only on species with a high content of sesquiterpenes in their EO and their
activities on filamentous fungi, the studies by Prieto et al. [52] stand out, where Ocotea
macrophylla is observed with 70% of the constituents being sesquiterpenes, and this oil
demonstrates antifungal activity against species of the genus Fusarium. Another significant
trial is that carried out by Mezzomo et al. [53], who observed Ocotea puberula’s EO with 17%
of sesquiterpenes and reported weak antifungal activity in two Aspergillus species, alternate
and flavus.

The low antifungal effect was, therefore, concordant with the literature. However,
the potentiation demonstrated by the nanoemulsification of the O. indecora essential oil
qualifies the nanoemulsion as a fungistatic agent for the tested strains. Combined with
their biodegradation and metabolization properties, the nanoemulsion was demonstrated
as an appropriate option for pre-harvest treatment that, if well-used, will not compromise
the environment or the workers’ and consumers’ health.

4. Materials and Methods
4.1. Plant Material

The fresh leaves of O. indecora were collected in the Restinga of Jurubatiba National
Park, Carapebus, RJ, Brazil (“22◦12.683′ S”, “41◦35.283′ O”, “22◦12.703′ S”, and “41◦35.336′

O”). The obtention and research of the plant material were authorized by SisBio/ICMBio
(13659-14) and SisGen (A0D648D). The species was identified, and a voucher specimen
was deposited at Universidade Estadual do Rio de Janeiro—Faculdade de Formação de
Professores (UERJ—FFP) herbarium, under registration number RFFP: 16.873.

4.2. Essential Oil Extraction and Chemical Characterization

Fresh leaves of O. indecora (250 g) were crushed into a blender with distilled water,
transferred to a 5.0 L round-bottom flask, and subjected to hydrodistillation in a Clevenger-
type apparatus for 4 h. After that, the essential oil was dried over anhydrous sodium
sulfate and stored in an amber glass vial at 4 ◦C.

The essential oil was analyzed in a GC-MS QP2010 (Shimadzu) gas chromatograph
equipment coupled with a mass spectrometer and a GC-2014 (Shimadzu) gas chromato-
graph equipped with a flame ionization detector (FID). The chromatographic conditions
were: a 260 ◦C injector temperature, with the carrier gas helium, the flow rate was
1 mL/min, and the split ratio was 1:40. Initially, the oven temperature began at 60 ◦C
and then increased to 290 ◦C (3 ◦C/min rate). The essential oil (1 µL) was dissolved in
dichloromethane (1:100 µL) and injected into a DB-5 column for MS (0.25 mm ID, 30 m
in length, 0.25 µm film thickness). The mass spectrometry conditions were 70 eV electron
ionization and a 1 scan/s scan rate. The GC-FID analysis was similar to the MS, except for
the injection in a DB-5 column (0.25 mm ID, 30 m in length, 0.25 µm film thickness) and
the FID temperature at 290 ◦C. The arithmetic index (AI) was calculated by interpolating
the retention times of a mixture of aliphatic hydrocarbons (C7–C40) and analyzed under
the same chromatographic methods. Substances were identified by comparing their reten-
tion indices and mass spectra with those reported in the literature [34,35]. Compounds’
mass spectra fragmentation pattern was also compared with NIST mass spectrum libraries.
GC-FID performed the relative abundance of the chemical constituents under the same
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conditions as GC-MS. The FID peak area normalization method obtained the percentages
of these compounds.

4.3. Nanoemulsion Preparation, Characterization, and Thermal Stress Stability

The formulation of the nanoemulsion of O. indecora was previously described by
Machado et al. [29]. The nanoemulsion was prepared by the low-energy method. The NE
aqueous phase was 96% (w/w) of distilled water, and the oil phase was made up of 2% (w/w)
of EO, and 2% (w/w) of the surfactants polysorbate 20 and sorbitan monooleate 80 in a 4:1
proportion, respectively. The oil phase was homogenized in a vortex for 1 min, and then
the aqueous phase was slowly dripped into the oil phase in continuous agitation.

The droplet size (nm), zeta potential (ZP), and polydispersity index (PdI) from the NE
diluted with distilled water (1:40) were characterized by dynamic light scattering (DLS) in
a Zetasizer Advance Lab Blue (Malvern Instruments®, Worcestershire, UK).

The O. indecora nanoemulsion was submitted to thermal stress after preparation to
assess the trend of the nanoemulsion droplet size, zeta potential, and polydispersity index
with a temperature increment from 25 to 65 ◦C, with an increase of 10 ◦C between analyses.
The characterization was realized under the same conditions described above.

4.4. Fungal Strains

The strains used were A. flavus RC 2054, A. parasiticus NRRL 2999, and A. westerdjikiae
NRRL 3174, all reference strains known to produce aflatoxin B1 (AFB1).

4.5. Inoculation and Incubation Conditions

The methodology was adapted from Rodrigues et al. [54], with the direct addition of
the bioproduct in the medium and then needle-inoculating the strains.

The EO samples were diluted with 10% dimethylsulfoxide (DMSO) and tested at a
4096 µg/mL concentration in the culture medium. As for the NE, the concentrations of 256,
512, 1024, and 2048 µg/mL were tested in the medium.

The medium used was Kasvi’s Sabouraud Dextrose Agar (SDA), with a standardized
volume of 25 mL being used for each culture, thus allowing control of the study concen-
trations [55]. The EO and the NE samples were added to the SDA in sufficient volume to
reach the determined concentrations.

The Petri plates with the bioproducts were needle-inoculated centrally with 10 µL of
the spore suspension. The plates were incubated at 25–30 ◦C for 96 h, with daily observation
and diameter measurement.

Plates containing SDA medium without essential oil were used as a control group
(Control 1), and the diluents, DMSO, and a nanoemulsion without the EO were used as a
second control group (Control 2).

4.6. Growth Assessment

The diameter of the growing colonies was measured daily for four days. The percent-
ages of inhibition of diameter growth (PIDG) values were determined according to the
equation below:

PIDG(%) = 100× (Diameter of control−Diameter of sample)
Diameter of control

(1)

4.7. Microscopic Evaluation

A 1 mm piece of the colonies was collected for each plate of the three strains for the
observed points. The pieces were then placed in proper slides for the optical microscope
with one drop of distilled water and then set with the coverslip. The slides were observed
in a Nikon ALPHAPHOT-2 YS2-H at 1000×magnification.
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4.8. Aflatoxin Analyzes

The detection and quantification of aflatoxins was performed based on Geissen [56],
taking a three-point sample for each plate with fungal growth and placing it in microtubes in
duplicates. Later, 0.5 mL of chloroform was added to each microtube and then centrifuged
at 4000 rpm for 10 min. After precipitation, the extract was removed and transferred to
another microtube to dry and the contents were resuspended with 70% methanol. The
quantification was realized by HPLC.

4.9. Statistical Analyses

Data evaluations were performed by analysis of variance (ANOVA). Data were trans-
formed using the logarithmic function, log10 (x + 1), before ANOVA, and when necessary,
the data were transformed with a root square to obtain a homogeneous data distribution.
Tukey’s test was used to compare the enumeration data of the different concentrations
of the evaluated products, the different presentations of the tested products, and the
variations in incubation and growth times. All analyses were based on evaluating these
substances’ fungicidal or fungistatic potential. Analyses were conducted using the PROC
GLM computer program in SAS (SAS Institute, Cary, NC, USA).

5. Conclusions

The O. indecora essential oil did not show fungicidal potential at the concentrations
tested against A. flavus RC 2054, A. parasiticus NRRL 2999, and A. westerdjikiae NRRL 3174.
However, the O. indecora nanoemulsion showed fungistatic potential in Aspergillus strains.
At 256 and 512 µg/mL, the EO affected the growth of the A. westerdjikiae strain for 48 h. At
1024 µg/mL, the EO inhibited the growth in both A. parasiticus and A. westerdjikiae for 48
and 96 h. The higher concentration, 2048 µg/mL, showed activity in all three strains up to
48 h, and up to 96 h for the A. westerdjikiae.

The nanoemulsion of the Ocotea indecora can be considered a fungistatic agent for the
tested strains, and the formulation of the essential oil in the nanoemulsion triggered and
potentiated effects that otherwise would not be significant.

The aflatoxin evaluation indicated that the products in the tested concentration had
no significant effect on the production of secondary metabolites by the studied strains.

The study indicated an exciting line of research not only in the prospection of natural
products but also for the application of nanoemulsions as a bioactive carrier, especially
those that have, by nature, hydrophobic properties, and the results should be applied to
other promising plant derivatives.
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