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Abstract: Vulgarin, an eudesmanolide sesquiterpene isolated from Artemisia judaica, was refluxed
with iodine to produce two derivatives (1 and 2), which were purified and spectroscopically identified
as naproxen methyl ester analogs. The reaction mechanism by which 1 and 2 were formed is explained
using a sigmatropic reaction with a 1,3 shift. The scaffold hopping via lactone ring opening enabled
the new derivatives of vulgarin (1 and 2) to fit well inside the COX-2 active site with ∆G of −7.73
and −7.58 kcal/mol, respectively, which was better than that of naproxen (∆G of −7.04 kcal/mol).
Moreover, molecular dynamic simulations showed that 1 was able to achieve a faster steady-state
equilibrium than naproxen. The novel derivative 1 showed promising cytotoxic activities against
HepG-2, HCT-116, MCF-7, and A-549 cancer cell lines compared to those of vulgarin and naproxen.

Keywords: vulgarin; scaffold hopping; sigmatropic; chemical transformation; cytotoxic; molecular
dynamic; anti-inflammatory

1. Introduction

The genus Artemisia is one of the most widely distributed of approximately 60 genera
in the tribe Anthemideae of the family Astraceae. This genus, with nearly 300 species, is
found predominantly in the northern temperate regions of the world [1] and is known
to contain many classes of terpenes, including sesquiterpenes. Sesquiterpene lactones
are one of the major and attractive bioactive classes due to their complex structures with
a wide range of biological activities such as cytotoxic, anti-inflammatory, and antiviral
properties [2–13]. Because of their structural complexity and biodiversity, they are potential
scaffolds for the development of new bioactive compounds [14–16]. The eudesmanolide
sesquiterpene vulgarin has been reported to occur in numerous Artemisia species, including
A. vulgaris L., after which it was named [17,18]. A. vulgaris has been reported to have been
used in traditional medicine by the tribal communities in the Western Himalayas to cure
rheumatism, stomach problems, hepatic, and sexual disorders [19]. Vulgarin has been
assigned other names such as judaicin from A. judaica L. [20] and barrelin from A. barrelieri
Besser. Additionally, it has been isolated from other species including A. rehan Chiov. [17],
A. abyssinica Sch.Bip. ex A.Rich. [21], A. canariensis (Besser) Less. [22], and A. ludoviciana
Nutt. [23]. In addition, vulgarin has been obtained by microbial transformation [24] as well
as chemical reduction [21] of peroxyvulgarin [24].

Vulgarin has been reported to be a cytotoxic agent, due to the presence of α,β-
unsaturated ketones [25], an anti-inflammatory agent [26], an oral hypoglycemic agent [27],
a cardiotonic agent [28], a powerful central nervous system stimulant, and a potent convul-
sant poison [20]. The multiple biological activities of vulgarin make it an attractive target
for chemo- and biotransformation studies. Previously, we have reported several microbial
metabolites of vulgarin [1].

It is known that inflammation acts as a key factor in the development and progression
of cancer, since it promotes carcinogenesis, proliferation, and metastasis [29]. Recently,
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some non-steroidal anti-inflammatory drugs, i.e., NSAIDs, were reported to also have
cytotoxic effects [30], with a good correlation between their selectivity and affinity and
inhibition of the COX-2 enzyme that results in decreasing prostaglandin E2 synthesis and
improvement of their cytotoxic activities [31,32]. Most of the FDA-approved anticancer
agents have shown many side effects because of either their ADMET properties or the
emergence of resistance. Thus, there is a high-demand need for safe, effective, and potent
new anticancer agents [33]. Lead optimization that aims at modifying ligands through
chemical and computational approaches to obtain drug-like leads that may have acceptable
ADMET properties is a promising technique in the field of drug discovery and development.
Among these approaches, scaffold hopping is an important strategy for fulfilling this aim.
It can be applied in lead optimization processes to design new chemical entities with better
chemical and biological properties [34].

The aim of this work is to develop a new vulgarin-derived scaffold that mimics
NSAIDs in their COX-2 affinity and aryl acetic acid scaffold properties with expected
cytotoxic activity. The hypothesis is to chemically modify vulgarin to obtain an opened con-
formation that resembles naproxen with better affinity towards COX-2, and consequently,
promising cytotoxic effect.

2. Results and Discussion

Computational tools such as docking and in silico screening have recently been used
for screening and predicting the cytotoxic activities of novel chemical entities that possess a
similar structure to COX-2 inhibitors. This is based on their binding free energy and affinity
towards this enzyme [35]. Many of the selective COX-2 inhibitors have been reported to
have potential cytotoxic activity against different cell lines [36,37]. The involvement of
COX-2 in tumorigenesis and its overexpression in many types of cancer have been the
rationale for testing COX-2 inhibitors and/or compounds with high affinity towards COX-2
against cancer cell lines [38]. From this perspective, we computationally investigated two
aromatized derivatives of vulgarin via calculating their binding free energy and affinity,
and comparing them to a reference COX-2 inhibitor, i.e., naproxen.

The use of molecular iodine to accomplish aromatization of sesquiterpene lactones,
with subsequent lactone hydrolysis, has been reported before, for example, santonin [15],
ionone [39], and perillaldehyde [40]. In the current report, we show that aromatization and
lactone opening of vulgarin using molecular iodine as a catalyst yields two derivatives
(1 and 2) that are naproxen analogs. This chemical transformation by ring opening is an
example of scaffold hopping [34].

The vulgarin used in this project was isolated from A. abyssinica and A. judaica, as
previously described [1]. The isolated vulgarin (132 mg) was refluxed with iodine for
8 h. Then, the reaction was completed and the products were isolated, purified, and
identified. The reaction yielded two main derivatives: derivative 1 (10.6 mg, 16.5% yield)
and derivative 2 (10.9 mg, 16.7% yield). The reaction was run in a mixture of toluene-MeOH
(9:1). This mixture has been reported to be the most efficient one for such a reaction [15].
Moreover, one equivalent of iodine was used, since it has previously been reported to be the
optimum quantity [15]. Since iodine also catalyzes esterification, the used methanol yielded
the methyl ester derivatives of the two compounds (1 and 2) rather than the free acids.

The final products were identified as new naproxen analogs. The structure of deriva-
tive 1 was established based on its spectroscopic data. Its molecular formula was deter-
mined as C16H18O3 on the basis of the ion peak at m/z 258.1256 [M]+ and 1H and 13C NMR
data (Table 1). The 13C NMR spectra (Supplementary Material S2) showed 16 resonances
distributed as six singlets, six doublets, and four quartets. When compared to those of
vulgarin, on the one hand, it could be observed that compound 1 lacked the two triplets,
resonating in vulgarin at δC 23.0 and 34.6, and the three aliphatic doublets, resonating in
vulgarin at δC 54.9, 79.9, and 52.7. On the other hand, compound 1 possessed two aromatic
doublets, δC 124.7 and 123.2, and three more aromatic singlets, δC 133.6, 122.7, and 138.6,
suggesting the aromatization of rings A and B and the opening of lactone ring, ring C. More-
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over, compound 1 showed two oxygenated quartet resonances at δC 52.3 and 55.7. Those
two carbons correlate, in the HSQC spectra (Supplementary Material S4), to two proton
singlets resonating at δH 3.89 and 3.59, respectively, indicating the presence of two methoxy
groups. The HMBC spectra (Supplementary Material S5) showed a correlation between the
methoxy group resonating at δH 3.59 and assigned to C-16, and C-12 of the carbonyl group
resonating at δC 175.3, proving the presence of a methyl ester group. The second methoxy
group, on C-14, resonating at δH 3.89 as a singlet, showed a cross peak correlation, in the
HMBC spectra, with an aromatic singlet carbon resonating at δC 154.3 which was assigned
to C-1. Other HSQC and HMBC data showed the absence of the angular methyl group on
C-14 in vulgarin.

The data suggested a concerted sigmatropic 1,3 shift of the methyl group on C-14,
from C-10 to the oxygen atom on C-1, during the dienone-phenol rearrangement, with the
subsequent aromatization of ring A. The 1H NMR spectra of 1 showed five resonances in
the aromatic region, one methine quartet in the aliphatic region (δH 3.84, H-11), in addition
to three methyl singlets (δH 2.52, 3.59, and 3.89, H-15, 16, and 14, respectively), and a methyl
doublet (δH 1.53, H-13).

Likewise, derivative 2 was assigned the molecular formula C16H20O3 as derived from
the molecular ion peak at m/z 260.1404 [M]+ and the NMR data (Table 1). The 13C NMR
spectra (Supplementary Material S9) revealed that compound 2 was similar to 1, except for
the presence of two triplet resonances, δC 24.4 and 21.0, which were assigned as C-8 and
C-9, respectively. These assignments were aided by the HMBC spectra (Supplementary
Material S12) that showed a correlation between C-8 (δC 24.4) and a proton resonating as
a quartet at δH 3.30 which was assigned as H-11. Consequently, H’s-8 were assigned at
δH 2.16. The COSY spectrum (Supplementary Material S14) showed coupling contours
between H-8 and the other two protons resonating at δH 2.68 and 2.74, which were assigned
as H’s-9. The C-9 (δC 21.0) assignment was concluded from the HMBC spectra. Other
carbon resonances of 2 were identical, or close to those of 1 (Table 1).
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Table 1. NMR spectroscopic data (600 MHz, CDCl3) of vulgarin and derivatives 1 and 2. 

 Vulgarin 1 2 
# δC, Type δH (J in Hz) δC, Type δH (J in Hz) δC, Type δH (J in Hz) 
1 202.1, C a - 154.3, C - 154.5, C - 
2 125.9, CH 5.86, d (10.4) 103.6, CH 6.61, d (7.8) 109.6, CH 6.58, d (8.4) 

Table 1. NMR spectroscopic data (600 MHz, CDCl3) of vulgarin and derivatives 1 and 2.

Vulgarin 1 2

# δC, Type δH (J in Hz) δC, Type δH (J in Hz) δC, Type δH (J in Hz)

1 202.1, C a - 154.3, C - 154.5, C -
2 125.9, CH 5.86, d (10.4) 103.6, CH 6.61, d (7.8) 109.6, CH 6.58, d (8.4)
3 152.2, CH 6.58, d (10.4) 126.8, CH 7.12, d (7.8) 128.3, CH 6.86, d (8.4)
4 70.4, C - 126.1, C - 125.8, C -
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Table 1. Cont.

Vulgarin 1 2

# δC, Type δH (J in Hz) δC, Type δH (J in Hz) δC, Type δH (J in Hz)

5 54.9, CH 2.40, d (11.5) 133.6, C - 133.4, C -
6 79.9, CH 4.15, dd (10.9, 10.9) 122.7, CH 7.72, d (1.2) 121.3, CH 6.43, dd (2.4, 1.2)
7 52.7, CH 1.67, dddd (12.6, 12.6, 12.6, 3.5) 138.6, C - 140.1, C -

8 23.0, CH2
1.96, m

1.46, dddd (12.9, 12.9, 12.9, 3.2) 124.7, CH 7.36, dd (8.4, 1.8) 24.4, CH2
2.16, m
2.16, m

9 34.6, CH2
1.99, m

1.56, ddd (13.6, 13.6, 3.5) 123.2, CH 8.17, d (8.4) 21.0, CH2
2.74, m
2.68, m

10 46.6, C - 125.0 C - 123.0, C -
11 40.9, CH 2.34, dq (13.7, 6.9) 46.1, CH 3.84, q (7.2) 47.1, CH 3.30, q (7.8)
12 178.7, C 175.3, C - 174.9, C -
13 12.8, CH3 1.22, d (6.9) 18.9 b, CH3 1.53, d (6.6) 15.9, CH3 1.31, d (7.2)
14 20.1, CH3 1.19, s 55.7, CH3 3.89, s 55.8, CH3 3.72, s
15 24.1, CH3 1.53, s 19.0 b, CH3 2.52, s 18.7, CH3 2.20, s
16 - - 52.3, CH3 3.59, s 52.1, CH3 3.62, s

a Carbon multiplicities were determined by DEPT 135◦; b assignments bearing the same superscript within the
same column are interchangeable.

The derivatives were produced via an iodine-catalyzed aromatization mechanism [41],
where molecular iodine (I2) decomposed to generate the acidic conditions (HI) needed
for dienone-phenol rearrangement to occur, with the successive aromatization. The used
protic solvent, MeOH, facilitated the formation of HI acid that protonated the oxygen of the
carbonyl group, resulting in the four-centered concerted reaction, 1,3-methyl sigmatropic
shift, that ended up with the formation a double bond between C-1 and C-10, as seen in the
reaction scheme (Scheme 1).
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Scheme 1. The proposed mechanism involved in the formation of derivatives 1 and 2. A concerted
sigmatropic reaction involving a 1,3 shift is proposed.

Additionally, the acid-catalyzed dehydration of the hydroxy group on C-4 led to the
aromatization of ring A. Simultaneously, the iodine-catalyzed lactone opening produced a
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double bond between C-6 and C-7 in ring B, followed by esterification to afford the methyl
ester as derivative 2 (Scheme 1). Furthermore, the intermediate iodirane may undergo
several iodination and dehydroiodination steps that lead to a complete aromatization,
followed by esterification to produce derivative 1 (Scheme 1).

Derivatives 1 and 2, vulgarin, and naproxen were subjected to a docking process in
the main active site at which naproxen was crystalized and the free energy of binding was
assessed by London ∆G, affinity ∆G, and GBVI/WSA ∆G scores (Table 2). The 2D pose of
derivative 1 showed the aryl acetic acid scaffold that mimics naproxen, as the element that
enabled derivative 1 to fit well in the active site of COX-2 via forming a hydrogen bond
with Arg120 (Figure 1A). Naproxen and derivative 1 both confirmed the same orientation
mode of the carboxylate towards interacting with Arg120 residue of the COX-2 active site
(Figure 1B).

Table 2. Computed docking results of the investigated compounds compared to naproxen using
pdb = 3NT1.

Compounds London ∆G (kcal/mol) GBVI/WSA ∆G Affinity ∆G

Vulgarin −6.74 −18.09 −7.87
Derivative 1 −7.73 −20.01 −10.13
Derivative 2 −7.58 −19.11 −8.20
Naproxen −7.04 −19.45 −9.82
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Figure 1. (A) 2D placement of derivative 1 inside the active site of COX-2; (B) similar orienta-
tion of naproxen in a 3D view (green) and derivative 1 (yellow), they are superimposed by their
docking poses.

Naproxen was subjected to a redocking process to evaluate its binding mode. It
showed two hydrogen bonds with Arg120 and Van der Waals interactions with Ala527
(Figure 2A). Docking of derivative 1 showed more pharmacodynamic interactions than
naproxen. The oxygen of the carboxylate group formed a hydrogen bond with Arg120,
the 16-methoxy group formed hydrophobic interactions with Trp387, and the 13α-methyl
group showed hydrophobic interactions with both Tyr355 and Val349 (Figure 2B). This
increase in the pharmacodynamic interactions can predict higher binding affinity, stability,
and better biological activity than naproxen itself.

The docking of vulgarin showed only one hydrogen bond with Ala527 (Figure 3) due
to its rigid structure that does not allow much flexibility, in particular, for the carbonyl
of the lactone to interact with Arg120 (the key interaction residue). Derivative 2 showed
a hydrogen bond with Arg120 and Van der Waals interactions between the 13α-methyl
group and Tyr355 (Figure 3B). Derivative 2 lacked the planarity of naphthalene due to the
absence of C=C between C-8 and C-9, which resulted in a different conformation than that
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of derivative 1. In addition, derivative 2 was not able to show a superimposition with
naproxen similar to that of derivative 1.
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The binding site of COX-2 is surrounded by many residues, namely, Arg120, Val523,
Ala523, Tyr385, Leu359, Gly526, Trp387, Val349, Ala527, Try348, Ser530, Ser353, Leu352,
Leu531, Tyr355, Met522, and Val344 (Figure 1A), however, the only reported interaction of
COX-2 inhibitors is the one between their carboxylate groups and Arg120 [42].
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The pharmacodynamic approach employed in this study is a widely used approach
among the optimization methods, in which the aim is to increase the ligand–enzyme
interactions. Derivative 1 achieved this aim by increasing the site interaction, as explained
previously, compared to naproxen. Moreover, the computed affinity ∆G score of 1 was
found to be close to that of naproxen (1.08 Å) (Table 2), whereas London ∆G (−7.73) and
GBVI/WSA ∆G (−20.01) of derivative 1 were more than that of naproxen.

According to the docking results, derivative 1 was the top ranked in all scores, with
more pharmacodynamic interactions. This encouraged us to perform a molecular dynamics
simulation study before testing its in vitro cytotoxic activity, to evaluate the binding stability
of this derivative and to compare it to that of naproxen since this can be used as a validation
for the docking results.

The main aim of the molecular dynamics study was to validate the binding stability
and strength of derivative 1 compared to those of naproxen. The molecular dynamics
simulation was conducted over a 40 ns period, and, on the one hand, showed that naproxen
exhibited standard oscillations started at 0.0 ns with an RMSD value of 0.6 Å from its
best docking pose, and then the RMSD value started to decrease gradually until the
equilibrium was achieved at 20 ns with an RMSD value of 0.5 Å, when the steady state
was observed (Figure 5A). On the other hand, derivative 1 started at an RMSD value of
0.8 Å and decreased until 0.5 Å, during the first 10 ns. Then, a slight increase was observed
(RMSD = 0.6 Å), followed by a decline at 15 ns, where the steady state was reached with an
RMSD value of 0.4 Å (Figure 5B).
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The molecular dynamics results confirmed that derivative 1 reached its steady-state
equilibrium after a shorter time (15 ns) than naproxen which reached its equilibrium
after 20 ns. In addition, at the point of equilibrium, derivative 1 conformation had an
RMSD = 0.4 Å, while naproxen showed an RMSD = 0.5 Å. For these reasons, derivative 1 is
considered to be more stable than naproxen.

Derivatives 1 and 2, as well as vulgarin were evaluated for their cytotoxic activities
against hepatocellular (HepG-2), colon (HCT-116), breast (MCF-7), and lung (A-549) carci-
noma cell lines. Derivatives 1 and 2 were shown to be more active than vulgarin against all
tested cell lines (Table 3). Derivative 1 showed the highest activity against the HepG-2 cell
line with CC50 values of 151 ± 11 µM. Likewise, it was the most potent derivative against
all tested cell lines (Table 3). The CC50 values obtained for derivative 1 were shown to be
lower, by approximately eight-fold, than those reported for naproxen against the same cell lines;
>1.5 mM vs. HCT-116 [43], 2.3 mM vs. MCF-7 [44], and >5 mM [45] and >10 mM [46] vs. A-549.

Table 3. CC50 values (mean ± SD) of vulgarin and derivatives 1 and 2.

Cell Lines
CC50 (µM)

Vulgarin 1 2

HepG-2 770 ± 23 151 ± 11 540 ± 23
HCT-116 723 ± 24 207 ± 11 310 ± 13
MCF-7 1061 ± 36 304 ± 13 925 ± 28
A-549 835 ± 27 264 ± 15 472 ± 16



Molecules 2023, 28, 3421 8 of 12

The high cytotoxic activities of 1 compared to those of the other compounds (derivative 2,
vulgarin, and naproxen) were in accordance with the computed high docking affinity with a
low RMSD and high molecular dynamics stability for this derivative. Moreover, derivatives
1 and 2 as well as vulgarin were shown to be more active against all tested cancer cells
compared to naproxen, results that were consistent with the computed docking affinity
and molecular dynamics stability for those compounds.

The anti-inflammatory activity of the tested compounds was predicted using the
InflamNat online platform which contains a database of 1351 compounds with reported
anti-inflammatory activity. The InflamNat platform also contains all data about cell-based
anti-inflammatory bioassays, assays in inflammatory cell models, and information about
the production of inflammatory factors and cell cytokines. According to the dataset model
implemented in InflamNat, a compound is considered to be active if its predicted IC50/EC50
values are <50 µM. An inactive compound has IC50/EC50 values >50 µM. Therefore,
InflamNat is a powerful tool for the prediction of anti-inflammatory activity. Here, we used
the SMILES of all tested compounds, and the results were very promising compared to
those of naproxen (Table 4). Derivative 1 showed an IC50 value of 0.34 µM which was very
close to that of naproxen (0.33 µM). All compounds showed predicted values <50 µM.

Table 4. InflamNat predicted IC50 values for the anti-inflammatory activity.

Compounds Predicted IC50 (µM)

Vulgarin 0.65
Derivative 1 0.34
Derivative 2 0.45
Naproxen 0.33

3. Materials and Methods
3.1. General Experimental Procedure

The IR spectra were recorded as a chloroform film using an FT/IR-4100 type A spec-
trophotometer. The 1H and 13C NMR spectra (Supplementary Materials) were obtained
on a Bruker Avance II-600 spectrometer operating at 600 and 150 MHz, respectively. The
1H and 13C NMR spectra were both recorded in CDCl3, and the chemical shift values
were expressed in d (ppm) relative to the internal standard TMS. For the 13C NMR spec-
tra, spectral editing was determined by using DEPT. The 2D NMR data (Supplementary
Materials) were obtained using the standard pulse sequence of the Bruker Avance II-600
for COSY, HSQC, and HMBC. The HREIMS analysis was carried out on a high-resolution
GC/MS-DFS (Double Focusing Sector). Column chromatography was carried out on silica
gel 60 (230–400 mesh ASTM, Merck, Darmstadt, Germany). The TLC analysis was carried
out on silica gel 60 F254 (Merck, Darmstadt, Germany) plates. Compounds were detected
by using UV and p-anisaldehyde/H2SO4 spraying reagent followed by heating at 105 ◦C
for 1–2 min.

3.2. Plant Material

The vulgarin used in this project was isolated, as reported before [21], from
A. abyssinica, and A. judaica which were collected from the Tabouk area, Saudi Arabia,
in December 2002. The plants were identified, and voucher specimens were deposited at
the herbarium of the Medicinal Aromatic and Poisonous Plants Research Center, College of
Pharmacy, King Saud University, Riyadh, Saudi Arabia.

3.3. Synthesis of Derivatives 1 and 2

A previously reported method [41] after slight modification was applied. Briefly,
vulgarin (0.132 g, 0.5 mmol) and iodine (0.379 g, 1.5 mmol) were mixed in 5 mL of toluene-
methanol (9:1). The mixture was refluxed for 8 h and monitored by TLC. Ethyl acetate
and water containing sodium thiosulfate (0.047 g, 3 mmol in 100 mL H2O) were used
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to terminate the reaction. The organic layer was collected, washed with water, passed
over anhydrous sodium sulfate, and finally evaporated in vacuo to give 103.2 mg of a
syrupy residue.

3.4. Purification of Derivatives 1 and 2

The obtained residue was chromatographed over a silica gel column (12 g, 17 × 1.5 cm)
using hexane/chloroform (1:1) as the eluting solvent. Fractions (4 mL each) were collected.
Similar fractions, based on their TLC appearance, were pooled together to give 7 fractions
(A–G). Fraction B (42 mg) was further purified over a silica gel column (6 g, 13 × 1.5 cm),
and eluted initially with 40% n-hexane/toluene, followed by a 100% toluene. Similar
fractions were pooled together to afford 10.6 mg of 1 and 10.9 mg of 2.

Derivative 1: colorless gummy residue; IR (neat) nmax 2950, 1734, and 1204 cm−1; 1H
NMR (CDCl3, 600 MHz) see Table 1; 13C NMR (CDCl3, 150 MHz) see Table 1; ESIMS m/z
258.28 [M]+ (98); HRESIMS m/z 258.1256 (calculated for C16H18O3, 258.1250).

Derivative 2: colorless gummy residue; IR (neat) nmax 2949, 1733, and 1204 cm−1; 1H
NMR (CDCl3, 600 MHz) see Table 1; 13C NMR (CDCl3, 150 MHz) see Table 1; ESIMS m/z
260.28 [M]+ [44]; HRESIMS m/z 260.1404 (calculated for C16H20O3, 260.1407).

3.5. Molecular Docking Studies

The molecular docking studies were conducted using the Molecular Operating Envi-
ronment package license (Molecular Operating Environment 2022.02, Chemical Computing
Group Inc., Montreal, QC, Canada). Triangle matcher was used as a placement method. Free
energy of binding was evaluated using London DG, affinity DG, and GBVI/WSA DG scores.
The crystal structure of COX-2 in complex with naproxen (pdb code = 3NT1) [42] was
downloaded from a protein data bank (https://www.rcsb.org, accessed on 30 November
2022). This protein was resolved by X-ray crystallography method with resolution = 1.73 Å
and R value = 0.186.

3.6. Molecular Dynamics Simulations

The docking of both naproxen and derivative 1 revealed a stable pose that was kept
in the active site. The protein geometries, electron density, and temperature-related fac-
tors were prepared. All hydrogens were added, and energy minimization was calcu-
lated. Any foreign solvent molecules in the system were deleted. Then, salt atoms were
added to the system to surround the biomolecular protein–ligand complex in a spherical
shape. Sodium chloride was added to a concentration of 0.1 M. The cell dimensions were
100.309 × 89.2061 × 81.4899 Å, and its shape was 90 × 90 × 90 Å. The total number of
solvent molecules within the system was 21269; 1.023 g/cm3. Assisted Model Building
with Energy Refinement 10: Extended Hückel Theory (AMBER 10: EHT) was selected
as a force field with an R-Field of 1:80/VdW. The heat was adjusted in order to increase
the temperature of the system from 0 to 300 ◦K, which was followed by equilibration and
production for 300 ps. Then, cooling was initiated until 0 ◦K was reached. The molecular
dynamics protocol used the Nose-Poincare-Andersen algorithm to solve the equation of
motion. The simulation was conducted over a 40 ns time period (40,000 ps) using Molecular
Operating Environment 2022.02.

3.7. Cytotoxicity Assay

This assay was conducted at the Regional Center for Mycology and Biotechnology,
Al-Azhar University, Cairo, Egypt, where cancer cells were grown on RPMI-1640 medium
supplemented with 10% inactivated fetal calf serum and 50 µg/mL of gentamycin. The cells
were maintained at 37 ◦C in a humidified atmosphere with 5% CO2 until they were used.

Vulgarin and its derivatives 1 and 2 were evaluated for their cytotoxic activities against
liver (HepG-2), colon (HCT-116), breast (MCF-7), and lung (A-549) carcinoma cell lines
using “cell viability assays” [47]. Cancer cells were suspended in media at a concentration
of 5 × 104 cell/well in 96-well plates, then incubated for 24 h before treatment with the

https://www.rcsb.org
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test compounds. Test compounds were added to the wells (triplicates) to achieve twelve
concentrations for each compound. Vehicle controls with media or 0.5% DMSO were used.
After 24 h of incubation, the numbers of viable cells were determined by MTT assay. Briefly,
the media were replaced with 100 µL of fresh RPMI-1640 medium, and 10 µL of 12 mM
MTT stock solution (5 mg of MTT in 1 mL of PBS) was added to the untreated control wells.
Then, the 96-well plates were incubated at 37 ◦C and 5% CO2 for 4 h; 85 µL aliquots of the
media was removed from the wells; 50 µL of DMSO was added to each well and mixed
thoroughly, and incubated at 37 ◦C for 10 min. Then, the optical density was measured
at 590 nm with the microplate reader (SunRise, TECAN Inc., Morrisville, NC, USA). The
viability percentage was calculated and the CC50 values (µM) were estimated from graphic
plots of the dose-response curve for each concentration (Table 3) using the GraphPad Prism
software (version 9.5.1.733, San Diego, CA, USA) [48].

3.8. Web-Based Prediction of the Anti-Inflammatory Activity

All compounds (vulgarin, derivatives 1 and 2, and naproxen) were drawn using MOE
2022.02, and their SMILES were copied and used in the InflamNat web [49]. The results
obtained were in IC50 (µM).

4. Conclusions

In this study, two novel vulgarin derivatives were synthesized through a four-centered
concerted reaction mechanism, where a 1,3-methyl sigmatropic shift was involved. These
two derivatives were found to be naproxen methyl ester analogs. These derivatives, particu-
larly derivative 1, were shown to possess an arylacetic acid scaffold that mimics NSAIDs in
their COX-2 affinity with possible biological activities. Derivative 1 showed better London
∆G, GBVI/WSA ∆G, and affinity ∆G scores when compared to naproxen. In addition, it
exhibited a higher cytotoxic activity against HepG-2, HCT-116, MCF-7, and A-549 cell lines
than those reported for naproxen. The scaffold-hopping ring opening of vulgarin produced
two novel derivatives yet to be investigated for more biological activities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28083421/s1, 1H, 13C, DEPT 45◦, DEPT 90◦, DEPT
135◦, HSQC, HMBC, and COSY spectra of vulgarin and derivatives 1 and 2.
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