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Abstract: Naproxen is widely used for anti-inflammatory treatment but it can lead to serious side
effects. To improve the anti-inflammatory activity and safety, a novel naproxen derivative containing
cinnamic acid (NDC) was synthesized and used in combination with resveratrol. The results showed
that the combination of NDC and resveratrol at different ratios have a synergistic anti-inflammatory
efficacy in RAW264.7 macrophage cells. It was indicated that the combination of NDC and resveratrol
at a ratio of 2:1 significantly inhibited the expression of carbon monoxide (NO), tumor necrosis factor
α (TNF-α), interleukin 6 (IL-6), induced nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2) and
reactive oxygen species (ROS) without detectable side effects on cell viability. Further studies revealed
that these anti-inflammatory effects were mediated by the activation of nuclear factor kappa-B (NF-
κB), mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase (PI3K)/protein kinase
B (Akt) signaling pathways, respectively. Taken together, these results highlighted the synergistic
NDC and resveratrol anti-inflammatory activity that could be further explored as a strategy for the
treatment of inflammatory disease with an improved safety profile.

Keywords: naproxen derivative; resveratrol; synergistic; anti-inflammatory; mechanism

1. Introduction

Inflammation produced by the self-defense system in humans and other living crea-
tures, as an immune response, is well connected with inflammatory diseases, including
metabolic and neurodegenerative diseases, as well as and peptic ulcers [1,2]. Furthermore,
uncontrolled inflammation (chronic inflammation) often damages tissues and this is as-
sociated with the increased risk of cancer, such as colon, gastric and lung cancer [3]. The
RAW264.7 cell line presents a typical phenotype of macrophage cells involved in processing
inflammatory antigens [4,5]. Once macrophages are activated by lipopolysaccharides (LPS),
a large number of inflammatory mediators and cytokines, including carbon monoxide
(NO), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6) and reactive oxygen species
(ROS), are induced to synthesize and release in macrophages [6–8]. It is confirmed that
the cytokines from macrophages are believed to be the key contributors to inflammatory
diseases [9,10]. Currently, non-steroidal anti-inflammatory drugs (NSAIDs), including
aspirin, ibuprofen and naproxen, are widely used to treat inflammatory diseases. However,
long term use of such drugs (in particular naproxen) can cause a series of side effects, such
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as hypertension, heart failure, acute myocardial infarction, kidney injury and gastroin-
testinal complications [11–15]. Thus, it is important to develop new, safe and effective
anti-inflammatory drugs.

Naproxen is one type of NSAID used for the treatment of inflammatory diseases,
such as inflammatory bowel and rheumatic diseases, as well as myocarditis [16]. Current
studies have revealed that naproxen combined with natural compounds, or structurally
modified naproxen with active compounds derived from natural products are beneficial
to enhance their bioactivity [17–20]. As shown in Figure 1a,b, it has been suggested that a
naproxen derivative containing curcumin or magnolol reduced phorbol-12-myristate-13-
acetate (TPA)-induced skin inflammation in a TPA-induced mouse ear edema model. The
mechanistic studies revealed that these compounds can inhibit the over-expression of pro-
inflammatory cytokines by blocking the NF-κB signaling pathway. In addition, naproxen
derivatives containing oleanolic acid have a wide range of bioactivities (Figure 1c). As
described in Figure 1d, the combination of naproxen and magnolol can effectively reduce
TPA-induced skin inflammation [20]. Therefore, the combination of naproxen and natural
compounds, or structurally modified naproxen with natural compounds are effective
strategies to treat inflammatory diseases.
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Figure 1. The reported naproxen derivatives and naproxen combined with magnolol. (a) naproxen
derivative containing curcumin, (b) naproxen derivative containing magnolol, (c) naproxen derivative
containing oleanolic acid, and (d) naproxen combined with magnolol.

Based on the biological diversification of resveratrol and cinnamic acid that is isolated
from its natural product [21,22], this study aims to investigate the anti-inflammatory activity
and mechanisms of NDC combined with resveratrol that contains cinnamic acid, and to
explore the potential therapy strategy. Firstly, NDC was synthesized, and then the effect
of NDC combined with resveratrol at different concentrations was determined by using
LPS-induced RAW264.7 cells. Finally, the mechanism of NDC combined with resveratrol
was studied.

2. Results and Discussion
2.1. NDC Design

As described in a previous publication, compound III was synthesized in two steps
using naproxen as the starting material [23]. As shown in Scheme 1, the NDC compound
was synthesized through the esterification of compound III and 3,4,5-trimethoxycinnamic
acid. As exhibited in Supplementary Figures S2–S4, The results have confirmed that NDC
compound contained naproxen and cinnamic acid. The anti-inflammatory activities and
mechanisms of NDC and resveratrol, as well as the combination of resveratrol and NDC,
were investigated in order to explore the novel bioactive compound with a high potency.
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Scheme 1. The synthetic route of NDC.

2.2. Effect of NDC and Resveratrol on the RAW264.7 Cell Viability

Prior to investigating the anti-inflammatory effect of NDC and resveratrol on LPS-
induced RAW264.7 cells, the cytotoxic effects of different concentrations of NDC and resver-
atrol were tested using a 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl-tetra-zoliumbromide
(MTT) assay model. It was indicated that treatment with NDC (at a concentration of
100 µM) and resveratrol (at a concentration of 80 µM and 100 µM) without LPS (2 µg/mL),
individually had an obvious cytotoxicity on the RAW264.7 cells (Figure 2a). Hence, the
concentrations of NDC and resveratrol were down to 40 µM and 80 µM, respectively, for
further investigation. As exhibited in Figure 2b,c, treatment with NDC (20–70 µM) and
resveratrol (10–35 µM) did not produce any obvious cytotoxicity on the RAW264.7 cells
with or without LPS stimulation. Moreover, treatment with the combination of NDC and
resveratrol did not significantly decrease the cell viability of the RAW264.7 cells with or
without LPS stimulation (Figure 2d). These results demonstrated that NDC and resveratrol,
individually or in combination, at the concentrations described above did not decrease the
cell viability of the RAW264.7 cells with or without LPS stimulation.
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Figure 2. Effect of NDC and resveratrol on the viability of the RAW264.7 cells, (a) NDC or resveratrol
(0–100 µM) without LPS, (b) NDC (0–70 µM) with or without LPS (2 µg/mL), (c) resveratrol (0–35 µM)
with or without LPS (2 µg/mL), and (d) NDC (0–70 µM) and resveratrol (0–35 µM) in combination
with or without LPS (2 µg/mL), n = 3.
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2.3. Effects of NDC and Resveratrol on LPS-Induced NO Production

It was indicated that once the RAW264.7 cells were stimulated by LPS, iNOS would be
released in the cells, and then a large amount of NO, that was mediated by iNOS, would
become synthesized in the cells, and cause severe inflammation [24]. Thus, blocking the NO
synthesis may be considered an effective strategy to improve the inflammatory reaction. In
the present study, the inhibition of NDC and resveratrol on the NO levels was investigated
using LPS-induced RAW264.7 cells as a model. As described in Figures S1 and Figure 3,
the NO levels of the RAW264.7 cells stimulated with LPS markedly increased. In addition,
NDC and resveratrol, individually or combined, dependently suppressed LPS-induced NO
production (Figure 3a,b). Interestingly, NDC combined with resveratrol provided a stronger
inhibition of LPS-induced NO production than NDC or resveratrol alone (Figure 3a,b).
The results demonstrated that pretreatment with NDC (70 µM) and resveratrol (35 µM)
individually, caused a 48.73% and 41.47% decrease in the NO levels, respectively. However,
pretreatment with a combination of NDC and resveratrol resulted in an 86.31% reduction
in LPS-induced NO production.
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Figure 3. Effect of NDC on LPS-induced NO in the absence and presence of resveratrol. (a) NDC and
a combination of NDC and resveratrol, (b) resveratrol and a combination of NDC and resveratrol.
Groups that do not share the same letter are significantly (p < 0.01) different from each other. The
letters are in order of average size, n = 3.

2.4. Synergistic Effect Analysis

In order to investigate whether NDC combined with resveratrol has a synergistic
inhibition effect on LPS-induced NO production, the data described above were analyzed
using CompuSyn software 2.0. As shown in Figure 4a, the combination index (CI) values of
NDC combined with resveratrol (molar ratio of 2:1) ranged from 0.54 to 0.82. Furthermore,
the results indicated that NDC (70 µM) combined with resveratrol (35 µM) had the lowest
CI value (0.54). As exhibited in Figure 3b, all of NDC combined with resveratrol achieved a
90% inhibition [fraction affected (Fa) == 0.9; green triangle], 75% inhibition (Fa == 0.75; red
square) and 50% inhibition (Fa == 0.5; blue circle) were below the respective lines. Taken
together, it was suggested that the combination of NDC and resveratrol had the strongest
synergistic inhibition effect on LPS-induced RAW264.7 cells.

Based on the results described above, NDC (70 µM) and resveratrol (35 µM) were
selected for the mechanistic studies. The inhibition of NDC (70 µM) and resveratrol (35 µM),
individually or in combination, against LPS-induced TNF-α, IL-6, ROS, iNOS, COX-2 and
NF-κB, MAPK and PI3K/Akt signaling pathways were further determined to interpret the
synergistic effect and the anti-inflammatory mechanism of NDC combined with resveratrol.
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2.5. Effects of NDC and Resveratrol on LPS-Induced IL-6 and TNF-α

It is well known that pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) induced by
LPS play an important role in the inflammatory process and in inflammatory diseases [7].
Thus, the effect of NDC and resveratrol on IL-6 and TNF-α in LPS-induced RAW264.7 cells
was determined using an enzyme-linked immunosorbent assay (ELISA). As shown in
Figure 5a,b, the individual treatments with NDC and resveratrol could inhibit the LPS-
induced over-expression of IL-6 and TNF-α with a value of 71.82%, 16.89%, 80.95% and
26.05%, respectively. However, treatment with NDC (70 µM) combined with resveratrol
(35 µM) (the molar ratio 2:1) had the best inhibitory effect on the expression of IL-6 and
TNF-α, and resulted in an 89.96% inhibition of IL-6 and a 39.77% inhibition of TNF-α
(p < 0.01).
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Figure 5. Effect of NDC and resveratrol on LPS-induced IL-6 (a) and TNF-α (b). Groups that do not
share the same letter are significantly (p < 0.01) different from each other. The letters are in order of
average size, n = 3.

2.6. Effects of NDC and Resveratrol on LPS-Induced ROS

Once stimulated by LPS, various ROS are released in inflammatory cells to activate
the inflammatory signaling pathway and cause cellular and tissue damage [25]. Thus,
the effect of NDC and resveratrol on LPS-induced ROS has been determined. As shown
in Figure 6, the fluorescence intensity of ROS on the LPS group is remarkably enhanced
in comparison to that in the control group. However, after pre-treatment with NDC and
resveratrol, individually or in combination (70 µM and 35 µM respectively), the fluorescence
intensity is significantly decreased in LPS-induced RAW264.7 cells. Furthermore, NDC
in combination with resveratrol (70 µM and 35 µM, respectively) showed stronger effects
(45.70%) than the individual treatment with NDC (37.57%) and resveratrol (26.97%) on
LPS-induced ROS.
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2.7. Effects of NDC and Resveratrol on iNOS and COX-2 Protein Expressions

It is confirmed that NO synthesized by iNOS, and prostaglandin E2 (PGE2) synthe-
sized by COX-2, are important inflammatory mediators in inflammatory responses [26,27].
Therefore, various stimuli, including LPS and ROS, induce the over-expression of iNOS
and COX-2. In order to investigate the effect of NDC and resveratrol on LPS-induced iNOS
and COX-2 in RAW264.7 cells, the protein expressions of iNOS and COX-2 were tested
using Western blotting. As described in Figure 7, the protein expression levels of iNOS and
COX-2 in LPS-induced RAW264.7 cells were remarkably higher than those in the control
group. When pretreated with NDC or resveratrol individually, the expression levels of
iNOS and COX-2 had a moderate decrease in LPS-induced RAW264.7 cells (66.55% and
13%, 52.18% and 13.10%, respectively). Moreover, pretreatment with NDC (70 µM) and
resveratrol (35 µM) in combination, respectively, caused an 80.06% and 36.42% decrease in
iNOS and COX-2 expressions.
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2.8. Effects of NDC and Resveratrol on the Activation of Side NF-κB, MAPK and PI3K/Akt
Pathway Proteins in LPS-Induced RAW264.7 Cells

It was indicated that once the RAW264.7 cells were induced by LPS, the NF-κB signal-
ing pathway was subsequently activated and caused the phosphorylation of p65 [28]. Fur-
thermore, the activation of the NF-κB signaling pathway could lead to the over-expression
of iNOS and COX-2 in LPS-induced RAW264.7 cells [29]. Therefore, the inhibition of the
NF-κB signaling pathway was a potent strategy for the treatment of inflammation and
inflammatory diseases. To assess whether NDC and resveratrol could modulate the NF-κB
activation, the protein expression of p65 and phosphorylated p65 (p-p65, the activated
form) were determined by Western blotting. As shown in Figure 8, the protein expression
level of phosphorylated p65 was significantly increased in LPS-induced RAW264.7 cells.
Pretreatment with NDC (70 µM) and resveratrol (35 µM), individually or in combination,
effectively decreased the LPS-induced p65 activation and phosphorylation. Furthermore,
the inhibition of the p-p65 protein expression in LPS-induced RAW264.7 cells by NDC
(70 µM) combined with resveratrol (35 µM) was up to 41.79%, which was significantly
stronger than that caused by the individual treatment with NDC and resveratrol (23.54%
and 23.71%, respectively).
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It was indicated that LPS could cause the phosphorylation of p38 and Akt by ac-
tivating MAPK and PI3K/Akt signaling pathways, which was associated with NF-κB
activity [30,31]. Hence, the levels of phosphorylated (p)-p38, p-Akt and p-PI3K were deter-
mined to evaluate the effect of NDC and resveratrol on MAPK and PI3K/Akt pathways. As
shown in Figures 9 and 10, the expressions of p-p38, p-Akt and p-PI3K were up-regulated
in LPS-induced RAW 264.7 cells. However, pretreatment with NDC (70 µM) and resveratrol
(35 µM), individually or in combination, significantly inhibited the expression of p-p38,
p-Akt and p-PI3K in LPS-induced RAW 264.7 cells. NDC (70 µM) combined with resvera-
trol (35 µM) had the strongest inhibition in the LPS-induced expression of p-p38, p-Akt
and p-PI3K.
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Groups that do not share the same letter are significantly (p < 0.01) different from each other. The
letters are in order of average size, n = 3.

Molecules 2023, 28, x FOR PEER REVIEW 9 of 14 
 

 

 
 

 
 

Figure 10. Effect of NDC and resveratrol on LPS-induced PI3K/Akt pathways in RAW264.7 cells. 

Groups that do not share the same letter are significantly (p < 0.01) different from each other. The 

letters are in order of average size, n = 3. 

It is well known that naproxen is widely used as a NSIAD for the treatment of in-

flammatory diseases, and it exerts anti-inflammatory activity by suppressing the 

over-expression of COX-2 [16]. Interestingly, the present study revealed that resveratrol 

and naproxen derivative had a synergistic anti-inflammatory effect in vitro. NDC (70 

μM) and resveratrol (35 μM) could effectively inhibit the expression of inflammatory 

mediators, including NO, IL-6, TNF-α, iNOS and COX-2, and the production of ROS by 

suppressing NF-κB activity and blocking MAPK and PI3K/Akt signaling pathways 

(Figure 11). 

 

Figure 11. Anti-inflammatory mechanism of NDC combined with resveratrol. 

Figure 10. Effect of NDC and resveratrol on LPS-induced PI3K/Akt pathways in RAW264.7 cells.
Groups that do not share the same letter are significantly (p < 0.01) different from each other. The
letters are in order of average size, n = 3.

It is well known that naproxen is widely used as a NSIAD for the treatment of in-
flammatory diseases, and it exerts anti-inflammatory activity by suppressing the over-
expression of COX-2 [16]. Interestingly, the present study revealed that resveratrol and
naproxen derivative had a synergistic anti-inflammatory effect in vitro. NDC (70 µM) and
resveratrol (35 µM) could effectively inhibit the expression of inflammatory mediators,
including NO, IL-6, TNF-α, iNOS and COX-2, and the production of ROS by suppressing
NF-κB activity and blocking MAPK and PI3K/Akt signaling pathways (Figure 11).
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3. Materials and Methods
3.1. Materials

NDC was synthesized and characterized in our laboratory; resveratrol and 3, 4, 5-
trimethoxycinnamic acid, were purchased from Aladdin (Shanghai, China). EDCI, DMAP,
S-(+)-naproxen, chlorotrimethylsilane (TMSCl) and 48% HBr solution were purchased from
Macklin (Shanghai, China). CH2Cl2 and CH3CH2OH were purchased from TitanChem
(Shanghai, China), Na2SO4 and CDCl3 were purchased from J&K Scientific (Beijing, China).
Fetal bovine serum (FBS) and Dulbecco’s modified eagle medium (DMEM) were obtained
from Gibco (Grand island, NY, USA). LPS (Escherichia coli O111:B4) and MTT dye were
supplied by Sigma-Aldrich (St. Louis, MO, USA). Griess reagent kit was purchased from
Biotium (Fremont, CA, USA). ROS assay kit was purchased from Thermo Fisher Scientific
(Waltham, MA, USA). PAGE gel preparation kit was purchased from Dingguochangsheng
(Beijing, China). Antibodies against COX-2, iNOS, NF-κB p65, MAPK p38, ERK, PI3K, Akt,
p-p65, p-p38, p-ERK, p-PI3K and p-Akt were obtained from Affinity Biosciences (Cincinnati,
OH, USA), respectively. RAW264.7 cell (p5–p9) line was obtained from Procell (Wuhan,
China). 1H nuclear magnetic resonance (NMR) and 13C NMR spectra were recorded using
tetramethylsilane (TMS) as an internal standard on a Bruker DPX-500 spectrometer. Mass
spectrometry analysis was performed on a liquid chromatography–mass spectrometer
(LC-MS, LCQTM) with an ESI source. The melting points were determined on a micro
melting point apparatus (Shanghai, China) and were not corrected.

3.2. Synthesis of NDC

As described in a previous publication, compound III was synthesized in two
steps [23]. The synthesis procedure of the NDC compound was shown as follows:
3,4,5-trimethoxycinnamic acid (238 mg, 1 mmol), compound III (230 mg, 1 mmol),
1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDCI, 230 mg, 1.2 mmol)) and
4-dimethylaminopyridine (DMAP, 12.2 mg, 0.1 mmol) were dissolved in 30 mL of CH2Cl2,
and the reaction was magnetically stirred at room temperature for 1 h. The synthesis
procedure of NDC was monitored by thin-layer chromatography. Once the reaction was
completed, the solution was extracted by CH2Cl2, then it was washed twice with saturated
NaHCO3 solution, and then dried over anhydrous Na2SO4. Following the removal of the
solvent, the crude product was obtained and recrystallized in absolute ethanol to offer
the NDC compound. NDC compound, white solid, yield: 53.3%, mp: 91.7 ◦C. 1H NMR
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(500 MHz, CDCl3) δ 7.90–7.84 (m, 2H, 2×Nap-H), 7.82 (d, J = 8.5 Hz, 1H, Nap-H), 7.78 (d,
J = 1.7 Hz, 1H, Nap-H), 7.64 (d, J = 2.3 Hz, 1H, Nap-H), 7.49 (dd, J = 8.5, 1.8 Hz, 1H, -CH=C),
7.33 (dd, J = 8.9, 2.4 Hz, 1H, Nap-H), 6.86 (s, 2H, 2×Ph-H), 6.62 (dd, J = 15.9, 0.7 Hz, 1H,
=CH-C=O), 3.94 (dd, J = 4.3, 0.7 Hz, 9H, 3×Ph-O-CH3), 3.91 (d, J = 7.1 Hz, 1H,-CH), 3.70
(d, J = 0.7 Hz, 3H,-C-O-CH3), 1.62 (d, J = 7.2 Hz, 3H, -CH3). 13C NMR (125 MHz, CDCl3) δ
174.93 (-C=O), 165.56 (=CH-C=O), 153.53 (-Ph-C-O), 148.48 (Nap-C-O), 146.72 (-CH=CH),
140.49 (Nap-CH), 137.94 (Nap-CH), 132.94 (Nap-C-C), 131.46 (Nap-C-C), 129.65 (Nap-C-C),
129.33 (Nap-CH), 128.15 (Nap-CH), 126.51 (Nap-CH), 126.08 (Ph-C-CH), 121.56 (Nap-CH),
118.40 (=CH-C=O), 116.44 (Nap-CH), 105.46 (Ph-CH), 61.05 (Ph-O-CH3), 56.21 (Ph-O-CH3),
52.16 (-O-CH3), 45.56 (-CH), 18.56 (-CH3). HRMS (ESI) m/z: calcd for C26H26O7, 451.1796
[M+ H]+; found, 451.1748.

3.3. Cell Culture

RAW264.7 cells were cultured in DMEM medium supplemented with 10% heat-
inactivated FBS and antibiotics (penicillin and streptomycin). Cells (p5–p9) were main-
tained at sub-confluence in a CO2 incubator at 37 ◦C.

3.4. Cell Viability Assay

The cytotoxicity of NDC and resveratrol was tested on RAW264.7 cells using an MTT
assay. Briefly, RAW264.7 cells in logarithmic growth stage were firstly seeded in 96-well
plates at a density of 5 × 103 cells/well. Following 24 h of culture, they were treated
with NDC (10 µM, 20 µM, 40 µM, 80 µM and 100 µM) and resveratrol (10 µM, 20 µM,
40 µM, 80 µM and 100 µM) alone or in combination in a dose range of NDC (0–70 µM)
and resveratrol (0–35 µM) for 2 h. Secondly, they were cultured for 24 h with or without
LPS (2 µg/mL), and the cells were directly added to each well 10 µL MTT (5 mg/mL),
and continued to incubate for 4 h. Finally, the supernatant was discarded after culture,
and 100 µL dimethylsulphoxide (DMSO) was added to each well to dissolve the formazan
crystal formed by the MTT reduction in the pore plate, and the absorbance was measured
at 570 nm with a microplate reader. The control group was treated with DMSO, and all
experiments were performed at least three times. Results are presented as a percentage of
the controls.

3.5. Measurement of NO in RAW264.7 Cells

The NO level was measured using a Griess assay. Briefly, RAW264.7 cells at the
logarithmic growth stage were seeded in 96-well plates at a density of 5 × 104 wells.
Following 24 h of culture, RAW264.7 cells were, respectively, incubated with NDC (10 µM,
20 µM, 30 µM, 40 µM, 50 µM, 60 µM and 70 µM) and resveratrol (10 µM, 15 µM, 20 µM,
25 µM, 30 µM and 35 µM), alone or their combination, in a dose range of NDC (10–70 µM)
and resveratrol (10–35 µM) for 2 h. All wells were treated with LPS (2 µg/mL) except for
the blank group. Twenty-four hours later, the supernatant was taken and the NO content
was measured according to the instructions of the Griess reagent kit.

3.6. Synergistic Effect Analysis

In order to evaluate the potential synergistic anti-inflammatory effects of NDC and
resveratrol at different concentrations with no toxic effects on RAW264.7 cells, the inhibitory
effects of NDC (10 µM, 20 µM, 30 µM, 40 µM, 50 µM, 60 µM and 70 µM) and resveratrol
(10 µM, 15 µM, 20 µM, 25 µM, 30 µM and 35 µM) on NO production in LPS-induced
RAW264.7 cells were measured in the present study. The isobologram curve CI values and
the synergistic inhibitory effects of NDC (10–70 µM) combined with resveratrol (10–35 µM)
on the NO levels were calculated and analyzed with Compusyn 2.0 software. In addition,
the strength and nature of drug-drug interaction could be quantitatively judged using
the value of CI (CI > 1 as antagonism, CI = 1 as additive, 0.7 < CI < 1 as slight synergy,
0.3 < CI < 0.7 as synergy, and CI < 0.3 as strong synergy) [32].
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3.7. ELISA Assay

RAW264.7 cells at the logarithmic growth phase were seeded at a density of 5 × 105 cells
per well in 96-well plates. Following 24 h of culture, RAW264.7 cells were, respectively,
incubated with NDC (10 µM, 20 µM, 30 µM, 40 µM, 50 µM, 60 µM and 70 µM) and resvera-
trol (10 µM, 15 µM, 20 µM, 25 µM, 30 µM and 35 µM), alone or in combination, in a dose
range of NDC (0–70 µM) and resveratrol (0–35 µM) for 2 h. All wells were treated with LPS
(2 µg/mL) except for the blank group. The content of IL-6 in the supernatant was measured
according to the instructions of the ELISA kit (Neobioscience, Shenzhen, China) after 6 h,
and the content of TNF-α in the supernatant was determined after 24 h.

3.8. Measurement of ROS

RAW264.7 cells at the logarithmic growth phase were seeded in 96-well plates at a
density of 5 × 105 cells/well. Following 24 h of culture, RAW264.7 cells were, respectively,
incubated with NDC (70 µM) or resveratrol (35 µM) alone, or NDC (70 µM) combined
with resveratrol (35 µM) for 2 h. All wells were treated with LPS (2 µg/mL) except for
the blank group. Following 24 h of induction, 2′,7′-dichlorodihydrofluorescein diacetate
(H2DCFH-DA) was diluted with serum-free DMEM to a final concentration of 10 µM,
incubated at 37 ◦C for 30 min without light, then washed six times with PBS, and finally the
fluorescence intensity was determined at an excitation wavelength of 488 nm and emission
wavelength of 525 nm with Bio-RAD.

3.9. Protein Extraction and Western Blot Analysis

RAW264.7 cells were seeded in a 6-well plate at a density of 1 × 106 cells per well.
Twenty-four hours later, the RAW264.7 cells were pretreated with NDC (70 µM) or resvera-
trol (35 µM) alone, or NDC (70 µM) combined with resveratrol (35 µM) for 2 h, and LPS
at a dose of 2 µg/mL was added to induce an inflammatory response. The total protein
was extracted by lysis of cells with a cell lysis reagent at 1 h (PI3K, Akt), 6 h (p-p38, p-p65)
and 12 h (iNOS, COX-2), respectively. The protein content in lysate was determined using
a BCA protein analysis kit. The total protein was separated by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to the polyvinylidene fluo-
ride membrane. Then, the sample was blocked with 5% (w/v) skim milk powder at 4 ◦C
overnight, and then shaken with specific primary antibodies for 2 h at room temperature,
followed by incubation with horseradish peroxidase (HRP) tagged secondary antibod-
ies for 1 h at room temperature. Finally, the imprinting was detected using enhanced
chemiluminescence (ECL) and automatic radiography.

3.10. Data and Statistical Analysis

All analyses were performed using the GraphPad software (San Diego, CA, USA).
These data were presented as the mean± SEM except where indicated, and were generated
from at least three independent experiments. The statistical analysis was conducted by
using the two-way ANOVA method followed by a Tukey test using Graphpad Prism.
Samples with p < 0.05 between the compound groups and LPS groups were considered
statistically significant.

4. Conclusions

In summary, the present study demonstrated that NDC and resveratrol (70 µM and
35 µM molar ratio, 2:1, respectively) could effectively inhibit the over-expression of NO,
IL-6 and TNF-α, as well as the release of ROS, iNOS and COX-2. It was found that the syn-
ergistic anti-inflammatory effect of NDC combined with resveratrol was associated with the
inhibition of NF-κB activity and the activation of MAPK and PI3K/Akt signaling pathways.
It was concluded that the combination of natural constituents and structural modifications
of drugs would be a potential strategy for the treatment of inflammatory diseases.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28083395/s1, Figure S1: The inhibition of different
compounds at 50 µ M on NO production. Figure S2: 1 H NMR spectra of NDC. Figure S3: 1 3 C NMR
spectra of NDC. Figure S4: HR MS spectra of NDC.
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