

Article **Crystal Structures of Xenon(VI) Salts:** $XeF_5Ni(AsF_6)_3$, XeF_5AF_6 (A = Nb, Ta, Ru, Rh, Ir, Pt, Au), and $XeF_5A_2F_{11}$ (A = Nb, Ta)

Zoran Mazej * D and Evgeny Goreshnik D

Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova Cesta 39, SI-1000 Ljubljana, Slovenia; evgeny.goreshnik@ijs.si

* Correspondence: zoran.mazej@ijs.si

Abstract: Experiments on the preparation of the new mixed cations $XeF_5M(AF_6)_3$ (M = Cu, Ni; A = Cr, Nb, Ta, Ru, Rh, Re, Os, Ir, Pt, Au, As), $XeF_5M(SbF_6)_3$ (M = Sn, Pb), and $XeF_5M(BF_4)_x(SbF_6)_{3-x}$ (x = 1, 2, 3; M = Co, Mn, Ni, Zn) salts were successful only in the preparation of $XeF_5Ni(AsF_6)_3$. In other cases, mixtures of different products, mostly XeF_5AF_6 and $XeF_5A_2F_{11}$ salts, were obtained. The crystal structures of $XeF_5Ni(AsF_6)_3$, XeF_5TaF_6 , XeF_5RhF_6 , $XeF_5Nb_2F_{11}$, $XeF_5Ta_2F_{11}$, and $[Ni(XeF_2)_2](IrF_6)_2$ were determined for the first time on single crystals at 150 K by X-ray diffraction. The crystal structures of XeF_5NbF_6 , XeF_5PtF_6 , XeF_5RuF_6 , XeF_5RhF_6 represents a new structural type in the family of XeF_5AF_6 salts, which crystal structure of XeF_5RhF_6 represents a new structural type in the family of XeF_5AF_6 salts, which crystal structure of $[Ni(XeF_2)_2](IrF_6)_2$ is a first example of a coordination compound in which XeF_2 is coordinated to the Ni²⁺ cation.

Keywords: metal; fluorine; xenon; crystal structure; Raman spectroscopy; photochemistry

Citation: Mazej, Z.; Goreshnik, E. Crystal Structures of Xenon(VI) Salts: XeF₅Ni(AsF₆)₃, XeF₅AF₆ (A = Nb, Ta, Ru, Rh, Ir, Pt, Au), and XeF₅A₂F₁₁ (A = Nb, Ta). *Molecules* **2023**, *28*, 3370. https://doi.org/10.3390/ molecules28083370

Academic Editors: Sergey A. Adonin and Artem L. Gushchin

Received: 20 March 2023 Revised: 7 April 2023 Accepted: 9 April 2023 Published: 11 April 2023

Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

1. Introduction

The synthesis of XeF_6 was first described in 1962 [1]. It was prepared by the reaction between xenon and fluorine (molar ratio 1:20) at 700 °C and a pressure of ~200 bar F₂. Later systematic studies showed that XeF₆ can be prepared under milder conditions (molar ratio 1:10; 200 °C; and a total pressure of 33 bar) [2]. In general, XeF₆ is prepared by heating a mixture of Xe and F_2 (molar ratio 1:20) at 300 °C and a total pressure of ~50 bar [3]. In the presence of a NiF₂ catalyst, XeF₆ forms explosively from the gaseous mixture of xenon and fluorine in a molar ratio of 1:5 already at 120 $^\circ$ C [4]. An alternative method with high yield for the preparation of high-purity XeF_6 is the reaction between Xe and F₂ at low pressure and high filament temperature in a "hot wire" reactor [5]. At room temperature, XeF₆ is solid ($T_{m.p.}$ = 49.48 °C, $T_{b.p.}$ = 75.57 °C) with a vapor pressure of about 0.03 bar at 23 °C [6]. The color of solid XeF₆ has been reported to range from colorless to intense yellow. An explanation for these color variations of solid XeF_6 is not apparent to date [7]. Liquid XeF₆ and its vapors are yellow-green [6]. There are six, possibly seven, different modifications of solid XeF₆ [7]. In CF₂Cl₂/SO₂ClF solution, XeF₆ exists as a tetramer (XeF₆)₄ [8], while in the gas phase XeF₆ exists as a monomer [9–11]. The presence of a sterically active free valence electron pair on Xe leads to the XeF₆ molecule being fluxional [12]. Consequently, the structure of monomeric XeF_6 has been a major challenge for theoretical computational chemistry [12–17]. Experiments have clearly shown that XeF_6 is not octahedral ($O_{\rm h}$) but most likely has the shape of a slightly distorted octahedron (C_{3v}), naturally in a dynamical form [18]. Both conformers are energetically very close to each other [15]. Because of the low barrier of interconversion, XeF₆ is a highly fluoxinal molecule that rapidly converts between the 8-fold degenerate C_{3v} structures via the octahedral minimum even at low temperatures [15]. In further studies, XeF_6 was theoretically shown to exhibit a genuine quantum mechanical fluorine tunneling rearrangement, where it "jumps" rapidly between isomers even near 0 K [16]. In solid argon and neon matrices, there are significant interactions between isolated XeF₆ monomers and the noble gas host [15]. The results of infrared spectroscopy of XeF₆ in Ne matrix, supported by theoretical calculations, agreed with the C_{3v} conformer [15].

Shortly after the first report on the synthesis of XeF₆, it was found that XeF₆ is a good fluoride ion donor that reacts with Lewis acids AF₅ (A = As, Sb, Pt, V, P) to form $nXeF_6 \cdot AF_5$ adducts [19–23]. Crystal structure determination of XeF₆·PtF₅ revealed a molecular geometry consistent with the ionic formula [XeF₅]⁺[PtF₆]⁻ [24]. The compounds XeF₆·2AF₅ are also [XeF₅]⁺ salts [25], while the compounds 2XeF₆·AF₅ are [Xe₂F₁₁]⁺ salts [26–28]. The next step was the discovery that XeF₅AF₆ salts can bind neutral molecules as XeF₂ [29–31]. Later, this was extended to HF [32], XeOF₄ [33], and even KrF₂ [32]. Recently, the XeF₅SbF₆ salt was also found to react with other MSbF₆ and M(SbF₆)₂ salts to give XeF₅M(SbF₆)₂ (M = NO₂⁺, Rb⁺, Cs⁺) [28,34], XeF₅M(SbF₆)₃ (M²⁺ = Mg, Mn, Co, Ni, Cu, Zn, Pd), and (XeF₅)₃[M(HF)₂](SbF₆)₇ (M = Hg) [34,35] or even more complex salts (H₃O)(XeF₅)₂M₂(SbF₆)₇·nHF (M = Ca, Cd) [36] and (O₂)(XeF₅)₂Sr₄(SbF₆)₁₁·8HF [36] with three different cations. In addition, mixed anion salts Cs[XeF₅][Bi_xSb_{1-x}F₆] [28] and [XeF₅][As_{1-x}Sb_xF₆) (x~0.5 and 0.7) [37] have also been reported.

XeF₆ is a stronger oxidizing and fluorinating agent than XeF₂ and XeF₄. Theoretically, XeF₆ could be used as a fluorinating agent. Unfortunately, XeF₆ and its XeF₅⁺ salts are very sensitive to moisture. When they are exposed to water, they hydrolyze and eventually form XeO₃. The latter is an unstable compound that is extremely sensitive to impact and poses a dangerous explosion hazard when in contact with organic materials. For this reason, XeF₆ and its XeF₅⁺ salts currently have no practical significance.

This contribution reports the results of experiments on the preparation of XeF₅M(SbF₆)₃ (M = Sn, Pb), XeF₅M(BF₄)_x(SbF₆)_{3-x} (x = 1, 2, 3; M = Co, Mn, Ni, Zn), and XeF₅M(AF₆)₃ salts (M = Cu, Ni; A = Cr, Nb, Ta, Ru, Rh, Re, Os, Ir, Pt, Au, As). The experiments were successful only in the preparation of XeF₅Ni(AsF₆)₃, and many other phases were obtained in other experiments. The crystal structures of XeF₅Nb₂F₁₁, XeF₅TaF₆, XeF₅Ta₂F₁₁, XeF₅RhF₆, XeF₅IrF₆, and Ni(XeF₂)₂(IrF₆)₂ were determined for the first time. The crystal structures of XeF₅NbF₆ [30], XeF₅PtF₆ [24], XeF₅RuF₆ [38], XeF₅AuF₆ [39], and (Xe₂F₁₁)₂(NiF₆) [40] were redetermined with higher accuracy than previously reported.

2. Results

2.1. Attempted Preparation of the Salts $XeF_5M(AF_6)_3$ (M = Cu, Ni; A = Cr, Nb, Ta, Ru, Rh, Re, Os, Ir, Pt, Au, As), $XeF_5M(SbF_6)_3$ (M = Sn, Pb), and $XeF_5M(BF_4)_x(SbF_6)_{3-x}$ (x = 1, 2, 3; M = Co, Mn, Ni, Zn)

The proposed synthetic methods lead to a mixture of substances. The work carried out is an X-ray diffraction study of some crystal phases of these mixtures. In addition, some of the products were also confirmed by Raman spectroscopy (Supplementary Materials).

Reactions between XeF₂, MF₂ (M = Cu, Ni), AsF₅, and UV-irradiated F_2 in anhydrous hydrogen fluoride (aHF) resulted in clear colorless (Cu) and yellow (Ni) solutions (Table S1). In the case of nickel, single crystals of $XeF_5Ni(AsF_6)_3$ were obtained upon crystallization (Table 1), while in the case of copper a mixture of single crystals of XeF_5AsF_6 [41] and $CuFAsF_{6}$ [42] was observed in the crystallization product. In all other experiments where mixtures of XeF_2/MF_2 (M = Ni, Cu) with addition of AF₃ (A = Cr, Au), AF₅ (A = Nb, Ta), or metal powder A (A = Re, Ru, Rh, Os, Ir, Pt) were treated with UV-irradiated F_2 (Table S1), the insoluble material did not disappear even after several days. For crystallization, the clear supernatant, which contained no visible sediments, was decanted into the side arm of the double-arm crystallization vessel. Only single crystals of XeF_5AF_6 (A = Nb, Ta, Ru, Rh, Ir, Pt, Au) and $XeF_5A_2F_{11}$ salts (A = Nb, Ta) were grown from the corresponding solutions (Table S1). In the case of Ru and Pt, traces of O_2AF_6 salts (A = Ru, Pt) [43,44] were also present. Although the remaining insoluble solids were not characterized, it can be assumed that they probably consisted of $M(AF_6)_2$ salts (M = Ni, Cu; A = Nb, Ta, Ru, Rh, Ir, Pt, Au). Of these, only $Cu(AuF_6)_2$ and $Ni(AuF_6)_2$ [45] are known, while the others have not yet been synthesized. Similar to the $M[AuF_6]_2$ salts, unlike the $M(AF_6)_2$ salts (A = As, Sb) [46], they are probably not well soluble or they are insoluble in anhydrous HF. For the $M(AF_6)_2$ salts (M = Ni, Cu; A = Nb, Ta, Ru, Rh, Os, Ir, Pt), their lattice energy appears to overcome the solvation energy. This would explain their insolubility in aHF and the preferential formation of mixtures of $M(AF_6)_2$ (insoluble in aHF) and XeF₅AF₆ (soluble in aHF) instead of XeF₅M(AF₆)₃ salts (M = Cu, Ni; A = Nb, Ta, Ru, Rh, Ir, Pt, Au).

Table 1. Summary of crystal data and refinement results for XeF₅AF₆ (A = Nb, Ta, Ru, Rh, Ir, Pt, Au).

Formula	XeF5NbF6	XeF5TaF6	XeF5RuF6	XeF ₅ RhF ₆		
<i>T</i> (K)	150	150	150	150		
Crystal System	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic		
Space Group	Pnma	Pnma	Pnma	Pbca		
a (Å)	16.8078 (10)	16.8312 (12)	16.6197 (12)	9.0028 (4)		
b (Å)	8.2491 (6)	8.2399 (6)	8.0530 (6)	8.8181 (4)		
c (Å)	5.6064 (3)	5.6488 (4)	5.6373 (4)	18.2581 (8)		
V (Å ³)	777.32 (8)	783.41 (10)	754.49 (9)	1449.47 (11)		
Ζ	4	4	4	8		
D _{calcd} (g/cm ³)	3.702	4.419	3.886	4.062		
λ (Å)	0.71073	0.71073	0.71073	0.71073		
μ (mm $^{-1}$)	5.988	18.436	6.652	7.118		
GOF ^a	1.091	1.052	1.109	1.044		
R_1^{b}	0.0253	0.0355	0.0244	0.0226		
wR ₂ ^c	0.0503	0.0757	0.0521	0.0430		
Formula	XeF ₅ IrF ₆	XeF ₅ IrF ₆	XeF5PtF6	XeF ₅ AuF ₆		
<i>T</i> (K)	150	285	150	150		
Crystal System	Orthorhombic	Orthorhombic	Orthorhombic	Monoclinic		
Space Group	Pnma	Pnma	Pnma	<i>P</i> 2 ₁ / <i>c</i>		
a (Å)	16.5720 (10)	16.7456 (14)	16.5286 (13)	5.8447 (5)		
b (Å)	7.9954 (5)	8.1444 (8)	7.9642 (5)	16.6324 (10)		
c (Å)	5.7412 (4)	5.6998 (6)	5.7779 (5)	8.0536 (5)		
β (^o)				90.781 (6)		
V (Å ³)	760.71 (8)	777.35 (13)	760.58 (10)	782.82 (9)		
Ζ	4	4	4	4		
D _{calcd} (g/cm ³)	4.650	4.550	4.675	4.559		
λ (Å)	0.71073	0.71073	0.71073	0.71073		
μ (mm $^{-1}$)	22.088	21.615	22.986	23.202		
GOF ^a	1.081	1.174	1.078	1.064		
R_1 b	0.0267	0.0398	0.0247	0.0364		
wR ₂ ^c	0.0491	0.0815	0.0445	0.0798		

^a GOF = $[\Sigma w (F_o^2 - F_c^2)^2 / (N_o - N_p)]^{1/2}$, where N_o = no. of refins and N_p = no. of refined parameters. ^b $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$. ^c $w R_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma (w (F_o^2)^2)]^{1/2}$.

In the XeF₂/NiF₂/Ir/UV-irradiated F_2/aHF system single crystals of XeF₅IrF₆ and Ni(XeF₂)₂(IrF₆)₂ were found in the same batch after crystallization (Table S1). This means that either the F₂ concentration was too low to oxidize all of the Xe(II) to Xe(VI), or that partial reduction of Xe(VI) occurred during crystallization.

In the XeF₂/NiF₂/Re/UV-irradiated F₂ system, few single crystals of (Xe₂F₁₁)₂(NiF₆) were detected as crystallization product (Table S1). When pure Re powder is treated with UV-irradiated F₂ in aHF, it oxidizes to volatile ReF₆ [47]. The latter does not react in aHF even with a very good fluorine ion donor such as CsF [47]. In the XeF₂/NiF₂/Re/UV-irradiated F₂/aHF system, all the Re is oxidized to inert gaseous ReF₆. When the NiF₂/F₂ reaction mixture in aHF is irradiated with UV light, the particles of pale yellow-green NiF₂, which is insoluble in aHF, turn black. This indicates that NiF₂ is first fluorinated to NiF_{2+x} ($x \le 1$) [47]. When only XeF₂ (Xe^{II}) is present without other compounds, XeF₂ is oxidized to Xe^{IV} (XeF₄) by elemental fluorine under UV light in aHF [47]. Our experiment has shown

that in the presence of Ni(II) and Xe(II) as reagents, oxidation to Ni(IV) and Xe(VI) occurs, giving $(Xe_2F_{11})_2(NiF_6)$ [40]. The A'_2NiF_6 salts (A' = Li, Na, K, Cs) can also be prepared by oxidation of NiF₂ at about 20 °C by sunlight or UV-irradiated F₂ in liquid aHF containing dissolved alkali metal fluorides (LiF, NaF, KF, CsF) [48].

In the XeF₂/CuF₂/Os/UV-irradiated F_2 /HF system, a colorless solution was observed over white insoluble material. Upon cooling the reaction vessel to 77 K, a strong yellow coloration of the solid aHF was observed, indicating the presence of yellow OsF₆ [49]. When crystallized from the decanted clear solution, only two small colorless crystals were formed. One of them was detected as XeF₄ by Raman spectroscopy, while the other exploded on the diffractometer goniometer.

An attempt to prepare XeF₅Cu(CrF₆)₃ or to detect the formation of XeF₅CrF₆ salt was unsuccessful. Crystallization yielded only single crystals of (XeF₅CrF₅)₄·XeF₄ [50]. Although A'CrF₆ salts (A' = Na, K, Rb, Cs) are known [51], the salt XeF₅⁺CrF₆⁻ is not. The reaction between CrF₅ and XeF₆ proceeds at room temperature in aHF with release of fluorine and formation of XeF₅CrF₅ [52]. In the presence of XeF₄, the very stable (XeF₅CrF₅)₄·XeF₄ is formed [50].

Attempts to prepare XeF₅M(SbF₆)₃ salts (M = Sn, Pb) failed (Table S1). The crystals grown from clear decanted solutions corresponded mainly to XeF₅Sb₂F₁₁ [25] and XeF₅SbF₆ [25]. Various approaches to prepare XeF₅M(BF₄)_x(SbF₆)_{3-x} salts (x = 1, 2, 3; M = Co, Mn, Ni, Zn) also failed. In the case of Co and Mn, oxidation of M(II) to M(III) occurred, while only crystals of XeF₅SbF₆ and XeF₅Sb₂F₁₁ were found between powdered material. In an attempt to prepare (XeF₅)Ni(BF₄)₃, only single crystals of XeF₅BF₄ [28] were found (Table S1).

2.2. Crystal Structures of the Salts XeF_5AF_6 (A = Nb, Ta, Ru, Rh, Ir, Pt, Au), $XeF_5A_2F_{11}$ (A = Nb, Ta), $(Xe_2F_{11})_2(NiF_6)_2$, and $Ni(XeF_2)_2(IrF_6)_2$

Crystal structures were determined on single crystals by X-ray diffraction. Details of the data acquisition parameters and other crystallographic information for the salts XeF₅AF₆ (A = Nb, Ta, Ru, Rh, Ir, Pt, Au), XeF₅A₂F₁₁ (A = Nb, Ta), and (Xe₂F₁₁)₂(NiF₆)₂ and Ni(XeF₂)₂(IrF₆)₂ are given in Tables 1 and 2. The crystal structures of XeF₅NbF₆ [30], XeF₅PtF₆ [24], XeF₅RuF₆ [38], XeF₅AuF₆ [39], and (Xe₂F₁₁)₂(NiF₆) [40] were redetermined at low temperature with higher accuracy than previously reported.

Table 2. Summary of crystal data and refinement results for $XeF_5A_2F_{11}$ (A = Nb, Ta), $XeF_5Ni(AsF_6)_3$, $(Xe_2F_{11})_2(NiF_6)_2$, and $Ni(XeF_2)_2(IrF_6)_2$.

Formula	$XeF_5Nb_2F_{11}\\$	$XeF_5Ta_2F_{11}$	XeF5Ni(AsF6)3	$(Xe_2F_{11})_2(NiF_6)_2$	$Ni(XeF_2)_2(IrF_6)_2$
<i>T</i> (K)	150	150	150	150	150
Crystal System	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space Group	P2 ₁	I2/a	$P2_1/n$	I2/c	P21/c
a (Å)	5.2717 (2)	8.9972 (5)	10.2200 (3)	17.2498 (11)	5.43790 (10)
b (Å)	14.1920 (5)	9.3302 (5)	10.1973 (3)	5.3239 (3)	14.6396 (5)
c (Å)	7.6489 (2)	14.0691 (8)	14.5606 (4)	21.0164 (11)	9.1039 (3)
β(°)	92.412 (3)	99.281 (5)	90.072 (2)	102.510 (6)	92.003 (2)
V (Å ³)	571.75 (3)	1165.58 (11)	1517.45 (8)	1884.3 (2)	724.31 (4)
Ζ	2	4	4	4	2
$D_{\rm calcd}~({\rm g/cm^3})$	3.608	4.543	3.728	3.934	4.630
λ (Å)	0.71073	0.71073	0.71073	0.71073	0.71073
$\mu ({\rm mm}^{-1})$	5.115	21.814	10.216	8.358	24.375
GOF ^a	1.056	1.057	1.062	1.045	1.072
R ₁ ^b	0.0205	0.0273	0.0269	0.0214	0.0429
wR ₂ ^c	0.0427	0.0665	0.0563	0.0463	0.1305

^a GOF = $[\Sigma w (F_o^2 - F_c^2)^2 / (N_o - N_p)]^{1/2}$, where N_o = no. of refins and N_p = no. of refined parameters. ^b $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma ||F_o||$. ^c $w R_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma (w (F_o^2)^2)]^{1/2}$. The crystal structures of XeF₅AF₆ (A = Nb, Ta, Ru, Ir, Pt, Sb) are isotypic. The crystal structures of XeF₅AsF₆ and XeF₅AuF₆ are also isotypic, but differ from the previous structures. The crystal structure of XeF₅RhF₆ is a unique representative of a new type of structure. Some geometric parameters of the XeF₅AF₆ salts are listed in Tables 3 and 4.

Table 3. Geometric parameters (Å) of the $[XeF_5]^+$ cations, secondary Xe…F contacts (Å), and A–F bond lengths (Å) in the crystal structures of isotypic XeF₅AF₆ (A = Nb, Ta, Ru, Ir, Pt, Au) and literature data for XeF₅SbF₆.

	Nb ^a	Ta ^a	Ru ^a	Ir ^a	Pt ^a	Sb ^b					
Orthorhombic Pnma											
	150 K										
Xe-Fax	1.808 (3)	1.803 (7)	1.807 (3)	1.809 (5)	1.809 (5)	1.804 (3)					
Xe-F _{eq}	1.839 (2)	1.839 (5)	1.843 (2)	1.835 (3)	1.838 (3)	1.841 (2)					
-	1.839 (2)	1.839 (5)	1.843 (2)	1.835 (3)	1.838 (3)	1.841 (2)					
	1.842 (2)	1.843 (5)	1.846 (2)	1.843 (3)	1.839 (3)	1.844 (2)					
	1.842 (2)	1.843 (5)	1.846 (2)	1.843 (3)	1.839 (3)	1.844 (2)					
Xe…F	2.540 (3)	2.562 (6)	2.562 (3)	2.602 (5)	2.604 (5)	2.617 (3)					
	2.535 (2)	2.560 (6)	2.587 (3)	2.616 (4)	2.646 (4)	2.638 (3)					
	2.887 (2)	2.894 (5)	2.856 (2)	2.822 (3)	2.817 (3)	2.860 (2)					
	2.887 (2)	2.894 (5)	2.857 (3)	2.822 (3)	2.817 (3)	2.860 (2)					
A–F	1.835 (3)	1.849 (7)	1.820 (3)	1.841 (5)	1.857 (4)	1.857 (3)					
	1.852 (3)	1.873 (7)	1.823 (3)	1.861 (5)	1.871 (4)	1.859 (3)					
	1.886 (2)	1.880 (5)	1.854 (3)	1.879 (3)	1.884 (3)	1.882 (2)					
	1.886 (2)	1.880 (5)	1.854 (3)	1.879 (3)	1.884 (3)	1.882 (2)					
	1.925 (3)	1.930 (6)	1.878 (3)	1.892 (4)	1.894 (4)	1.895 (3)					
	1.941 (3)	1.939 (6)	1.885 (3)	1.906 (5)	1.897 (4)	1.898 (3)					

^a This work. ^b Ref. [25].

Table 4. Geometric parameters (Å) of the $[XeF_5]^+$ cations, secondary Xe…F contacts (Å), and A–F bond lengths (Å) in the crystal structures of XeF_5AF_6 (A = Rh, Au) and literature data for XeF_5AsF_6 (monoclinic and orthorhombic phase).

	Rh ^a	Au ^a	As ^b	As ^c
	Orthorhombic Pbca	Monoclinic P2 ₁ /c	Monoclinic P2 ₁ /c	Orthorhombic Ama2
	150 K	150 K	150 K	100 K
				Xe (2)/Xe (1)
Xe–Fax	1.814 (2)	1.804 (5)	1.794 (3)	1.815 (7)/1.800 (8)
Xe–F _{eq}	1.833 (2)	1.823 (6)	1.826 (3)	1.844 (5)/1.840 (6)
1	1.841 (2)	1.834 (6)	1.828 (3)	1.833 (8)/1.838 (6)
	1.842 (2)	1.835 (5)	1.833 (3)	1.833 (8)/1.838 (6)
	1.842 (2)	1.836 (5)	1.836 (3)	1.832 (8)/1.840 (6)
Xe…F	2.603 (2)	2.575 (6)	2.643 (3)	2.705 (5)/2.615 (6)
	2.664 (2)	2.746 (5)	2.722 (3)	2.705 (5)/2.615 (6)
	2.761 (2)	2.785 (6)	2.782 (3)	2.767 (6)/2.796 (6)
	2.844 (2)			2.767 (6)/3.451 (7)
				As (2)/As (1)
A–F	1.871 (2)	1.872 (6)	1.688 (3)	1.709 (5)/1.657 (7)
	1.873 (2)	1.876 (5)	1.696 (3)	1.709 (5)/1.657 (7)
	1.874 (2)	1.884 (5)	1.696 (3)	1.741 (6)/1.699 (6)
	1.879 (2)	1.903 (5)	1.738 (3)	1.749 (5)/1.699 (6)
	1.799 (2)	1.910 (5)	1.744 (3)	1.749 (5)/1.712 (6)
	1.815 (2)	1.911 (5)	1.750 (3)	1.710 (7)/1.712 (6)

^a This work. ^b Ref. [37]. ^c Ref. [53].

The crystal structures of $XeF_5Nb_2F_{11}$ and $XeF_5Ta_2F_{11}$ are not isotypic and they also differ from the previously known crystal structure of $XeF_5Sb_2F_{11}$ [25]. Some geometric parameters are listed in Table 5.

Table 5. Geometric parameters (Å) of the $[XeF_5]^+$ cations, secondary Xe…F contacts (Å), and A–F (A = Nb, Ta) bond lengths (Å) and A–F_b–A angles (°) in the crystal structures of XeF₅A₂F₁₁ (A = Nb, Ta) and literature data for XeF₅Sb₂F₁₁.

	Nb ^a	Ta ^a	Sb ^b
	Monoclinic P2 ₁	Monoclinic I2/a	Triclinic $P \overline{1}$
	150 K	150 K	200 K
Xe–F _{ax}	1.801 (3)	1.802 (6)	1.883 (3)
Xe-F _{eq}	1.826 (3)	1.838 (3)	2.019 (3)
1	1.836 (3)	1.838 (3)	2.029 (3)
	1.837 (3)	1.839 (4)	1.837 (3)
	1.838 (4)	1.839 (4)	1.838 (3)
Xe…F	2.582 (3)	2.666 (4)	2.915 (3)
	2.633 (3)	2.872 (3)	2.848 (3)
	2.667 (3)	2.872 (3)	2.775 (3)
			2.814 (3)
A (1)–F _t	1.823 (3)	1.824 (4)	1.838 (3)
	1.840 (4)	1.849 (4)	1.846 (3)
	1.846 (4)	1.855 (4)	1.853 (3)
	1.847 (4)	1.900 (4)	1.866 (3)
	1.918 (3)	1.910 (4)	1.883 (3)
A (1)–F _b	2.096 (3)	2.0657 (6)	2.019 (3)
		2.0657 (6)	
A (2)–F _t	1.821 (4)		1.837 (3)
	1.832 (3)		1.838 (3)
	1.833 (4)		1.843 (3)
	1.910 (3)		1.870 (3)
	1.923 (3)		1.878 (3)
A (2)–F _b	2.038 (3)		2.029 (3)
A-F _b -A	155.63 (19)	169.6 (3)	145.09 (16)

^a This work. ^b Ref. [25].

The crystal structure of XeF₅Ni(AsF₆)₃ is isotypical to the previously reported crystal structures of XeF₅M(SbF₆)₃ ($M^{2+} = Mg$, Mn, Co, Ni, Cu, Zn, Pd) [34,35]. Some geometric parameters are given in Table 6.

Table 6. Experimental geometric parameters (Å) of the two crystallographically independent Ni⁺ cations, geometric parameters (Å) of the $[XeF_5]^+$ cations, and secondary Xe…F contacts in the crystal structures of XeF₅Ni(AsF₆)₃ and literature data for XeF₅Ni(SbF₆)₃.

	XeF ₅ Ni (AsF ₆) ₃ ^a	XeF ₅ Ni (SbF ₆) ₃ ^b
	P2	P_1/n
	15	0 K
Ni (1)–F	2.000 (2)	2.002 (1)
	2.000 (2)	2.002 (1)
	1.994 (2)	1.989 (1)
	1.994 (2)	1.989 (1)
	2.006 (2)	2.013 (1)
	2.006 (2)	2.013 (1)

	XeF ₅ Ni (AsF ₆) ₃ ^a	XeF5Ni (SbF6)3 ^b
	P2	1/n
	150) K
Ni (2)–F	1.999 (2)	1.991 (1)
	1.999 (2)	1.991 (1)
	2.006 (2)	1.979 (1)
	2.006 (2)	1.979 (1)
	2.010 (2)	2.006 (1)
	2.010 (2)	2.006 (1)
Xe–F _{ax}	1.782 (2)	1.800 (2)
Xe-F _{eq}	1.818 (2)	1.825 (2)
	1.819 (2)	1.828 (2)
	1.820 (2)	1.826 (2)
	1.822 (2)	1.832 (2)
Xe…F	2.903 (2)	2.866 (2)
	2.919 (3)	2.928 (2)
	2.931 (2)	2.944 (2)
	2.971 (3)	2.898 (2)

Table 6. Cont.

^a This work. ^b Ref. [35].

The crystal structure of $[Ni(XeF_2)_2](IrF_6)_2$ is isotypical of crystal structure of $[Cu(XeF_2)_2](SbF_6)_2$ reported previously [54]. Some geometric parameters are listed in Table 7.

Table 7. Experimental geometric parameters (Å) in the crystal structure of $[Ni(XeF_2)_2](IrF_6)_2$ and
literature data for $[Cu(XeF_2)_2](SbF_6)_2$.

	[Ni (XeF ₂) ₂] (IrF ₆) ₂ ^a	[Cu (XeF ₂) ₂] (SbF ₆) ₂ ^b
		2 ₁ /c
	150 K	200 K
$M-F_{b}$ (AF ₆)	2.016 (6)	2.090 (5)
	2.016 (6)	2.090 (5)
	2.023 (7)	2.123 (5)
	2.023 (7)	2.123 (5)
$M-F_{h}$ (XeF ₂)	1.938 (6)	1.857 (5)
2/	1.938 (6)	1.857 (5)
Xe-F _t	1.920 (7)	1.906 (5)
Xe-F _b	2.078 (6)	2.102 (5)
A-F _b	1.921 (7)	1.891 (5)
U	1.934 (7)	1.917 (5)
A-F _t	1.843 (8)	1.841 (6)
-	1.852 (8)	1.843 (6)
	1.858 (8)	1.861 (6)
	1.861 (8)	1.870 (6)

^a This work. ^b Ref. [54].

3. Discussion

3.1. Crystal Structures of XeF_5AF_6 (A = Nb, Ta, Ru, Rh, Os, Ir, Pt, Au, As, Sb)

Prior to this study, the crystal structures of XeF₅NbF₅ (293 K) [30], XeF₅RuF₅ (RT; room temperature) [38], XeF₅PtF₅ (RT) [24], XeF₅AuF₅ (RT) [39], XeF₅AsF₆ (80 K, 100 K, 150 K, 298 K) [37,41,53], XeF₅SbF₆ (150 K, 296 K) [25,37], and mixed anion [XeF₅][As_{0.3}Sb_{0.7}F₆] (200 K, 295 K) and [XeF₅][As_{0.5}Sb_{0.5}F₆] (150 K, 295 K) salts [37] were known. X-ray powder diffraction (XPD) images showed that XeF₅AF₆ (A = Os, Ir, Pt, and Ru) are isotypic [39].

The crystal structures of XeF_5AF_5 (A = Nb, Ru, Pt, Au) determined at 150 K are the same as at room temperature. The crystal structure of XeF_5IrF_5 agrees with the XPD data [39], while the crystal structures of XeF_5TaF_6 and XeF_5RhF_6 have been determined for the first time. Based on the results of this study and the data known from the literature, the crystal structures of the XeF_5AF_6 salts (A = Nb, Ta, Ru, Rh, Os, Ir, Pt, Au, As, Sb) can be classified into four types of structures (type I, II, III, and IV).

3.1.1. Type I; XeF₅AF₆ (A = Nb, Ta, Ru, Os, Ir, Pt, Sb) Salts

The crystal structure of XeF₅PtF₆ was described as the first example of type I [24]. The crystal structures of the salt XeF₅AF₆ (A = Nb, Ta, Ru, Os, Ir, Sb) are isotypic to this type (Tables 1 and 3). The members of type I crystallize in the orthorhombic Pnma space group, in which the asymmetric structural unit consists of a crystallographically unique [XeF₅]⁺ cation and [AF₆]⁻ anion (Figure 1).

Figure 1. Two different views of the packing of $[XeF_5]^+$ cations and $[IrF_6]^-$ anions in the crystal structure of $[XeF_5][IrF_6]$ (type I).

Each $[XeF_5]^+$ cation exhibits the typical geometry, i.e., a pseudo-octahedral AX_5E VSEPR arrangement of the bond pairs (X) and the lone pair (E). The Xe– F_{ax} bonds are shorter than the other four Xe– F_{eq} distances (Table 4, Figure 2). Each XeF₅ unit forms four secondary contacts with the fluorine atoms of four AF₆ groups (Figure 2). Each $[AF_6]^-$ anion participates in four secondary contacts with four different XeF₅ groups (Figure 2).

Figure 2. Secondary contacts between the $[XeF_5]^+$ cations and $[IrF_6]^-$ anions in the crystal structure of $[XeF_5][IrF_6]$ (type I).

3.1.2. Type II; XeF_5AF_5 (A = As, Au) Salts

The crystal structures of XeF₅AuF₆ and the monoclinic form of XeF₅AsF₆ are examples of type II (Tables 1 and 4). They crystallize in the monoclinic space group $P2_1/c$. The asymmetric structural unit of type II consists of a crystallographically equivalent [XeF₅]⁺ cation and an [AF₆]⁻ anion (Figure 3).

Figure 3. Two different views of the packing of $[XeF_5]^+$ cations and $[AuF_6]^-$ anions in the crystal structure of $[XeF_5][AuF_6]$ (type II).

The geometry of the $[XeF_5]^+$ in the salts of type II is the same as in type I $[d(Xe-F_{ax}) < d(Xe-F_{eq});$ Table 4, Figure 4), while the number of secondary contacts between $[XeF_5]^+$ cations and $[AF_6]^-$ anions is different. In type II, each $[XeF_5]^+$ cation forms three secondary contacts with the fluorine atoms of two AF₆ groups and each $[AF_6]^-$ anion participates in three secondary contacts with two different XeF₅ groups (Figure 4).

Figure 4. Secondary contacts between the $[XeF_5]^+$ cations and $[AuF_6]^-$ anions in the crystal structure of $[XeF_5][AuF_6]$ (type II).

3.1.3. Type III; XeF_5AF_5 (A = Rh) Salts

The crystal structure of XeF₅RhF₆ is the only representative of type III (Tables 1 and 4). It crystallizes in the orthorhombic space group *Pbca*. The asymmetric structural unit of type III consists of a crystallographically equivalent $[XeF_5]^+$ cation and an $[AF_6]^-$ anion (Figure 5).

Figure 5. Two different views of the packing of $[XeF_5]^+$ cations and $[RhF_6]^-$ anions in the crystal structure of $[XeF_5][RhF_6]$ (type III).

The geometry of the $[XeF_5]^+$ in the type III salts is similar to that in the type I and II compounds ($d(Xe-F_{ax}) < d(Xe-F_{eq})$; Table 4, Figure 6), while the nature of the secondary interaction contacts between the $[XeF_5]^+$ cations and the $[AF_6]^-$ anions is different. In type III, each $[XeF_5]^+$ cation forms four secondary contacts with the fluorine atoms of three AF₆ groups, while each $[AF_6]^-$ anion participates in four secondary contacts with three different XeF₅ groups (Figure 6).

Figure 6. Secondary contacts between the $[XeF_5]^+$ cations and $[RhF_6]^-$ anions in the crystal structure of $[XeF_5][RhF_6]$ (type III).

3.1.4. Type IV; Orthorhombic XeF₅AsF₆ and Mixed Anionic [XeF₅][As_{0.3}Sb_{0.7}F₆) and [XeF₅][As_{0.5}Sb_{0.5}F₆) Salts

The crystal structure of XeF₅AsF₆ was first determined at room temperature [41] and later redetermined at 150 K [37]. When the crystal first measured at 150 K was cooled to 80 K and data were collected, no phase transition was observed [37]. In both cases, only a monoclinic phase was obtained (150 K; $P2_1/c$, Z = 4, a = 5.8222 (6) Å, b = 16.3566 (15) Å, c = 7.9247 (8) Å, $\beta = 90.729$ (9) °). However, single crystals of orthorhombic XeF₅AsF₆ (Table 8) crystallized from aHF solution between 22 and -30 °C [53]. The corresponding aHF solution was prepared by redox decomposition of [FKrFXeF][AsF₆]·0.5KrF₂·2HF heated stepwise and four different times, from -65 °C to 22 °C. The asymmetric structural unit consists of two crystallographically nonequivalent [XeF₅]⁺ cations and two [AsF₆]⁻ anions [53].

Compound	Crystal System	Space Group	Ζ	a /Å	b /Å	c /Å	Т /К
XeF ₅ AsF ₆ ^a	orthorhombic	Ama2	8	9.796 (2)	13.272 (10)	11.578 (2)	100
[XeF ₅][As _{0,3} Sb _{0,7} F ₆] ^b	orthorhombic	Ama2(00 γ)s0s	8	10.031 (1)	13.362 (1)	11.808 (1)	200
β -[XeF ₅][As _{0.5} Sb _{0.5} F ₆] ^b	orthorhombic	Ama2(00 γ)s0s	8	10.1196 (5)	13.4517 (6)	11.8999 (5)	295
α -[XeF ₅][As _{0.5} Sb _{0.5} F ₆] ^b	orthorhombic	Pca2 ₁	16	9.9738 (2)	13.2492 (4)	23.3701 (7)	150

Table 8. Summary of crystal data for the orthorhombic XeF_5AsF_6 and mixed anion $[XeF_5][As_{0.3}Sb_{0.7}F_6)$ and $[XeF_5][As_{0.5}Sb_{0.5}F_6)$ salts.

^a Ref. [53]. ^b Ref. [37].

Similar unit cell parameters (Table 8) were determined for orthorhombic [XeF₅][As_{0.3}Sb_{0.7}F₆] (100–295 K) and β -[XeF₅][As_{0.5}Sb_{0.5}F₆] (295 K), both of which have a (3 + 1)-dimensional incommensurately modulated crystal structure (superspace group *Ama2(00\gamma)s0s*) [37]. At 150 K, the α -[XeF₅][As_{0.5}Sb_{0.5}F₆] salt is also orthorhombic, but not modulated (space group *Pca2₁*) and with doubled *c*-axis (Table 8) [37]. In [XeF₅][As_{0.3}Sb_{0.7}F₆] and β -[XeF₅][As_{0.5}Sb_{0.5}F₆] there are two crystallographically nonequivalent [XeF₅]⁺ cations and two crystallographically independent sites for pnictogen atoms, while in α -[XeF₅][As_{0.5}Sb_{0.5}F₆] there are four crystallographically nonequivalent [XeF₅]⁺ cations and four crystallographically different sites for pnictogen atoms.

All the compounds listed in Table 8 are structurally related, as indicated by the similar packing in their crystal structures (Figure 7). It is practically identical in the orthorhombic XeF₅AsF₆, [XeF₅][As_{0.3}Sb_{0.7}F₆], and β -[XeF₅][As_{0.5}Sb_{0.5}F₆] and slightly different in α -[XeF₅][As_{0.5}Sb_{0.5}F₆] due to the different inclination of some AF₆ (A = As, Sb)octahedra.

Figure 7. Packing of $[XeF_5]^+$ cations and $[AF_6]^-$ anions (A = As, Sb) in the crystal structures of (**a**) orthorhombic $[XeF_5][AsF_6]$; (**b**) α - $[XeF_5][As_{0.5}Sb_{0.5}F_6]$; (**c**) average structure of $[XeF_5][As_{0.3}Sb_{0.7}F_6]$. The last figure is reproduced from Ref. [37] and published under the terms and conditions of the Creative Commons Attribution 4.0 International License CC BY 4.0.

In the orthorhombic [XeF₅][AsF₆] [53] each [Xe(1)F₅]⁺ cation forms three shorter (<3 Å) and one longer secondary contact (3.451 (7) Å) with the fluorine atoms of four AsF₆ groups. The sum of the Xe····F van der Waals radii is 3.63 Å [55]. The other [Xe(2)F₅]⁺ cation is also involved in four secondary interactions (<3 Å), but only with three AsF₆ groups. Each [As(1)F₆]⁻ anion interacts with four [XeF₅]⁺ cations and each [As(2)F₆]⁻ anion interacts with only three [XeF₅]⁺ cations (Figure 8).

Figure 8. Secondary contacts between the $[XeF_5]^+$ cations and the $[AsF_6]^-$ anions in the crystal structure of orthorhombic $[XeF_5][AsF_6]$ (type IV).

In α -[XeF₅][As_{0.5}Sb_{0.5}F₆] [37], the cations [Xe(1)F₅]⁺ and [Xe(2)F₅]⁺ each form four secondary contacts (<3 Å) with the fluorine atoms of three AF₆ groups (A = As, Sb), while [Xe(3)F₅]⁺ and [Xe(4)F₅]⁺ have three shorter (<3 Å) and one longer (3.437(7) Å and 3.420(7) Å, respectively) contact with four AF₆ groups (Figure 9). Each of the crystallographically unique [A(1)F₆]⁻ and [A(2)F₆]⁻ anions forms four interactions with three [XeF₅]⁺ cations, while the [A(3)F₆]⁻ and [A(4)F₆]⁻ anions form four interactions with four [XeF₅]⁺ cations, (Figure 10).

Figure 9. Secondary contacts between the $[XeF_5]^+$ cations and the surrounding $[AF_6]^-$ anions (A = As, Sb) in the crystal structure of α -[XeF₅][As_{0.5}Sb_{0.5}F₆].

Figure 10. Secondary contacts between the $[AF_6]^-$ (A = As, Sb) anions and the surrounding $[XeF_5]^+$ cations in the crystal structure of α -[XeF₅][As_{0.5}Sb_{0.5}F₆].

3.1.5. General Considerations for XeF_5AF_6 Salts (A = Nb, Ta, Ru, Rh, Os, Ir, Pt, Au, As, Sb)

Table 9 lists the effective ionic radii $r(A^{5+})$ (A = Nb, Ta, Ru, Rh, Os, Ir, Pt, Au, As, Sb) for coordination number six [56], the formula units (molecular) volumes V_{FU} of LiAF₆, CsAF₆, and XeF₅AF₆, and the average A–F bond lengths in LiAF₆ and XeF₅AF₆. The molecular volumes of LiAF₆, CsAF₆, and XeF₅AF₆ are shown in Figure 11. The crystal structures of LiAF₆ (A = Nb, Ta, Ru, Rh, Os, Ir, Pt, and Au) were determined by synchrotron X-ray powder diffraction at 299 K [57]. The crystal structures of LiAsF₆ and LiSbF₆ were determined by X-ray diffraction on powdered material and single crystals, respectively, at room temperature (RT) [58,59]. With the exception of CsAsF₆ and CsSbF₆, whose complete crystal structures were determined on single crystals at RT, only unit cells determined at RT are available for the other CsAF₆ salts [60]. The crystal structures of CsAF₆ (A = Rh, Pt, Ir, Os, and Au) were also determined on single crystals at 150 K [61]. The crystal structures of XeF₅AF₆ (A = Nb, Ta, Ru, Rh, Ir, Pt, Au, As [37], Sb [25]) were determined at 150 K and some of them also at RT (A = As [41], Au [39], Pt [24], Ru [38], Sb [37], Nb [30]).

Table 9. Effective ionic radii $r(A^{5+})$ (A = Nb, Ta, Ru, Rh, Os, Ir, Pt, Au, As, Sb) for coordination number six (Å), formula unit (molecular) volumes V_{FU} (Å³) of LiAF₆, CsAF₆, and XeF₅AF₆, and average A–F bond lengths $d_{av}[A-F]$ (Å) in LiAF₆ and XeF₅AF₆.

Α	As	Rh	Au	Pt	Ir	Ru	Os	Sb	Nb	Ta
<i>r</i> (A ⁵⁺) ^a	0.46	0.55	0.57	0.57	0.57	0.565	0.575	0.60	0.64	0.64
LiAF ₆										
$V_{\rm FU}$	94.6 ^b	98.64 ^c	99.12 ^c	99.61 ^c	100.77 ^c	100.5 ^c	102.41 ^c	105.3 ^d	110.92 ^c	111.26 ^c
$d_{\rm av}[A-F]$	1.74	1.855	1.874	1.887	1.879	1.851	1.872	1.877	1.863	1.859
CsAF ₆										
$V_{\rm FU}$ e	138.6	141.2	138.95	143.4	143.6	141.7	144.5	149	147.9	149.3
$V_{\rm FU}$ f		137.07		138.42	138.97	138.35	139.97			
XeF5AF6										
Туре	II	III	Π	Ι	Ι	Ι	Ι	Ι	Ι	Ι
$V_{\rm FU}$ g	196.15		203.03	196.35	194.34	193.26		199.42	200	
$V_{ m FU}$ h	188.67	181.18	195.71	190.15	190.18	188.62		195.11	194.33	195.85
$d_{av}[A-F]$	1.719	1.852	1.893	1.881	1.876	1.852		1.879	1.888	1.892

^a Ref. [56]. ^b Room temperature (RT); Ref. [58]. ^c 299 K; Ref. [57]. ^d RT; Ref. [59]. ^e RT; Ref. [60]. ^f 150 K; Ref. [61]. ^g 285 K for Ir salt (this work); others RT (Refs. [24,30,37–39,41]). ^h This work (150 K) except XeF₅AsF₆ (150 K) [37] and XeF₅SbF₆ (150 K) [25].

Although the formula unit volumes V_{FU} of the LiAF₆ and CsAF₆ salts (Figure 11) show a similar trend, this is not the case for the XeF₅AF₆ salts, with the V_{FU} of XeF₅RhF₆ and XeF₅AuF₆ being particularly prominent. For LiAF₆ and CsAF₆, the V_{FU} are smallest for the As, Rh, and Au salts and largest for the Sb, Nb, and Ta salts. For the [XeF₅]⁺ salts, the V_{FU} of XeF₅AuF₆ is almost identical to the V_{FU} of XeF₅TaF₆, while XeF₅RhF₆ has the smallest value V_{FU} of all XeF₅AF₆ salts (Table 9, Figure 11).

Figure 11. Formula unit volumes of LiAF₆ (for A = Rh, Au, Pt, Ir, Ru, Os, Nb, Ta at 299 K and for A = As, Sb at room temperature), CsAF₆ (all data at room temperature), and XeF₅AF₆ salts (all data at 150 K).

3.2. Crystal Structures of $XeF_5A_2F_{11}$ (A = Nb, Ta, Sb)

In the XeF₆–AF₅ (A = Nb, Ta) system, only the salts XeF₅AF₆ and Xe₂F₁₁AF₆ have been known so far [30,62,63]. The salts XeF₅Nb₂F₁₁ and XeF₅Ta₂F₁₁ were prepared for the first time in this study. As in the case of XeF₅Sb₂F₁₁ [25] (Figure 12) the crystal structures of XeF₅A₂F₁₁ (A = Nb, Ta) consist of discrete [XeF₅]⁺ cations and dimeric [A₂F₁₁]⁻ anions interacting through secondary fluorine bridge Xe…F–A contacts (Figures 13 and 14). Each crystal structure of the XeF₅A₂F₁₁ salts (A = Sb, Nb, Ta) represents a unique example (Tables 2 and 5).

Figure 12. Secondary contacts between the $[XeF_5]^+$ cations and the $[Sb_2F_{11}]^-$ anions in the crystal structure of $XeF_5Sb_2F_{11}$.

Figure 13. Secondary contacts between the $[XeF_5]^+$ cations and the $[Nb_2F_{11}]^-$ anions in the crystal structure of $XeF_5Nb_2F_{11}$.

Figure 14. Secondary contacts between the $[XeF_5]^+$ cations and the $[Ta_2F_{11}]^-$ anions in the crystal structure of $XeF_5Ta_2F_{11}$.

In XeF₅Nb₂F₁₁, each [XeF₅]⁺ cation forms three secondary contacts with the fluorine atoms of two Nb₂F₁₁ groups, whereas in XeF₅Sb₂F₁₁ and XeF₅Ta₂F₁₁, each [A₂F₁₁]⁻ anion (A = Nb, Ta) participates in four secondary contacts with three different A₂F₁₁ dimers (Figures 12–14). In all three salts, the Xe–F_{ax} bonds are shorter than the other four Xe–F_{eq} distances (Table 5). The A–F_b–A bridge (Table 5) in the dimeric [A₂F₁₁]⁻ anion (A = Sb, Nb, Ta) is not linear as in [A₂F₁₁]⁻ (M = Nb, Ta) salts of protonated 1,3-dimethoxybenzene but bent as in many other examples [64]. In XeF₅Sb₂F₁₁, the four F_{eq} atoms of the Sb(1)F₆ unit are in staggered position in respect to the four F_{eq} of the Sb(2)F₆ group with a torsion angle of ~37.5°, while in the corresponding Nb and Ta salts they are almost in an eclipsed position.

3.3. Crystal Structure of XeF₅Ni(AsF₆)₃

The crystal structure of XeF₅Ni(AsF₆)₃ (Figure 15) is isotypical to the crystal structure of XeF₅Ni(SbF₆)₃ [35]. The cation Ni²⁺ is coordinated by six fluorine atoms provided by six octahedral anions [AsF₆]⁻ forming almost regular NiF₆ octahedra. The Ni–F bond lengths in both salts are virtually identical (Table 6). They range from 1.989 (1) to 2.013 (1) Å. Due to the sharing of fluorine atoms, the NiF₆ and AsF₆ octahedra are connected to form a three-dimensional framework. The [XeF₅]⁺ cations are located inside the cavities. The geometry of the [XeF₅]⁺ cations is almost identical in both Ni salts (Table 5).

Figure 15. Part of the crystal structure of XeF₅Ni(AsF₆)₃.

3.4. Crystal Structures of the Salts $(Xe_2F_{11})_2(NiF_6)_2$ and $Ni(XeF_2)_2(IrF_6)_2$

The crystal structure of $(Xe_2F_{11})_2(NiF_6)_2$ determined at 150 K is the same as that at room temperature [40], which means that there is no phase transition in the 150–296 K range.

It has been reported that the reaction between $M^{n+}(AF_6)_n^-$ and XeF_2 in anhydrous aHF (aHF) leads to coordination compounds $[M^{n+}(XeF_2)_p](AF_6)_n^-$ (where XeF_2 is coordinated to a metal cation M^{n+}) only when the Lewis acidity of M^{n+} is not high enough to withdraw F^- ions from XeF_2 to form MF_n and $Xe_2F_3^+AF_6^-$ [65]. Since the reaction between Ni(AsF_6)_2 and XeF_2 in aHF gave NiF_2 and Xe_2F_3AsF_6, the preparation of $[Ni(XeF_2)_2](IrF_6)_2$ was a small surprise.

The crystal structure of $[Ni(XeF_2)_2](IF_6)_2$ is isotypical to the crystal structure of $[Cu(XeF_2)_2](SbF_6)_2$ [54]. In both structures, adjacent $[M(XeF_2)_2]^{2+}$ units are connected via two $[AF_6]^-$ units with bridging fluorine atoms in the cis position to form infinite chains that are parallel to the *x*-axis (Figure 16). These chains are interconnected by weak $F_2Xe\cdots F-AF_5$ contacts and form a three-dimensional network.

Figure 16. Part of the crystal structure of [Ni(XeF₂)₂](IrF₆)₂.

The metal cation Ni²⁺ is sixfold coordinated by fluorine atoms of two XeF₂ ligands and four [IrF₆]⁻ anions. In [Cu(XeF₂)₂](SbF₆)₂, the Cu²⁺ cation is coordinated by two XeF₂ molecules (Cu–F = 2 × 1.857 (5) Å) and four fluorine atoms provided by four [SbF₆] units with two shorter and two longer Cu–F bonds (2 × 2.090 (5) Å and 2 × 2.123 (5) Å) [54]. In contrast, the Ni–F(Ir) bonds in the Ni(XeF₂)₂(IrF₆)₂ salt are almost the same length (2 × 2.016 (9) Å and 2 × 2.023 (7) Å). The Ni–F(XeF₂) bonds are much longer (2 × 1.938(6) Å) than in the [Cu(XeF₂)₂](SbF₆)₂ salt (2 × 1.857 (5) Å), indicating a weaker M²⁺–FXeF interaction in the Ni salt. Consequently, Xe–F_b (F_b = bridging F atom) is shorter (2.078 (6) Å) in the Ni salt than in the Cu salt (2.102 (5) Å) and the opposite is true for Xe–F_t bonds [F_t = terminal fluorine atom; 1.920 (7) Å (Ni salt) and 1.906 (5) Å (Cu salt)].

4. Materials and Methods

CAUTION: Anhydrous HF and some fluorides are highly toxic and must be handled under a well-ventilated hood, and protective clothing must be worn at all times!

4.1. Apparatus, Techniques, and Reagents

The handling of volatile (anhydrous HF, F_2 , As F_5 , BF₃) and nonvolatile materials and the type of the reaction and crystallization vessels have already been reported [35,47,66]. Metallic Re powder (Alfa Aesar, Haverhill, MA, USA, 99.99%), Ru sponge (Alfa Aesar, 99.95%), Rh sponge (BDH, 99.9%), Os powder (Alfa Aesar, 99.8%), Ir sponge (Alfa Aesar, 99.95%), Pt powder (Aldrich, St. Louis, MO, USA, 99.9%), elemental F_2 (Solvay Fluor and Derivate GmbH, Hannover, Germany 99.98%), Cr F_3 (Messer Griesheim, Bad Soden, Germany, 99.9%), and BF₃ (Union Carbide Austria, GmbH, 99.5%) were used as supplied. Anhydrous HF (Linde AG, Pullach, Germany, 99.995%) was treated with K₂NiF₆ (Advance Research Chemicals Inc, Catoosa, OK, USA, 99.9%) for several hours before use. NiF₂ (Alfa Products, Bedford Park, IL, USA, 99.5%) and CuF₂ (Aldrich, 98%) were treated with elemental F₂ at 220 °C for several hours before use. NbF₅ (Alfa Aesar, 99.9%) and TaF₅ (Alfa Aesar, 99.9%) were sublimed before use. AuF₃ [66], XeF₂ [67], AsF₅ [68], XeF₅SbF₆ [34], Sn(SbF₆)₂ [69,70], Pb(SbF₆)₂ [69,70], and Zn(SbF₆)₂ [69,70] were synthesized as described previously.

Raman spectra were recorded at room temperature using a Renishaw Raman Imaging Microscope System 1000 or a Horiba Jobin Yvon LabRam-HR spectrometer [66].

4.2. Attempted Preparation of $XeF_5M(AF_6)_3$ (M = Cu, Ni; A = Cr, Nb, Ta, Ru, Rh, Re, Os, Ir, Pt, Au, As), $XeF_5M(SbF_6)_3$ (M = Sn, Pb), and $XeF_5M(BF_4)_x(SbF_6)_{3-x}$ (x = 1, 2, 3; M = Co, Mn, Ni, Zn)

The solid starting reagents were loaded into reaction vessels in a dry box (Table S1). The solvent HF and optionally BF₃, AsF₅, and SbF₅ were condensed at 77 K to solid reagents, and the reaction vessel was warmed to ambient temperature. Fluorine was slowly added to the reaction vessel at room temperature. A medium-pressure mercury lamp (Hg arc lamp, 450 W, Ace Glass, Vineland, NJ, USA) was used as the UV source. After several days of intensive stirring at room temperature, the volatiles were pumped off and the Raman spectra of the obtained solids were recorded (Figures S1–S11).

For crystallization, the clear supernatant, which contained no visible sediment, was decanted into the side arm of the crystallization vessel, which consisted of two tubes made of fluoropolymer. Evaporation of the solvent from the side arm was achieved by maintaining a temperature gradient of about 10–20 °C between the two tubes for several weeks. Slow distillation of aHF resulted in crystal growth.

Crystals were immersed in perfluorodecalin (melting point 263 K) in a dry box, selected under the microscope, and mounted on the goniometer head of the diffractometer in a cold nitrogen stream (265–273 K). Some of them were sealed in quartz capillaries used to record Raman spectra at several random positions (Figures S1–S11).

4.3. Crystal Structure Determination

Single-crystal X-ray diffraction data of reported crystal structures were acquired at 150 K (for XeF₅IrF₆ also at 285 K) with a Gemini A diffractometer equipped with an Atlas CCD detector using graphite monochromated MoK α radiation. The data were processed using the CrysAlisPro software suite program package [71]. Analytical absorption corrections were applied to all data sets. All structures were solved using the dual-space algorithm of the program SHELXT [72] implemented in the Olex crystallographic software [73]. Structure refinement for all structures was performed using the software SHELXL-2014 [74]. The crystals of the Ni(XeF₂)₂(IrF₆)₂ salt showed reproducible pseudo-merohedral twinning. This problem was solved at the data processing stage, and final refinement was performed using reflections from the main domain. The figures were created using the software Balls and Sticks [75]. The compound XeF₅Nb₂F₁₁ crystallizes in the acentric space group $P2_1$.

The very-close-to-zero value of the Flack's parameter (-0.031 (11)) confirms the correctness of the absolute structure.

The supplementary crystallographic data for this work are provided free of charge by the joint Cambridge Crystallographic Data Centre and the Fachinformationszentrum Karlsruhe Access Structures service www.ccdc.cam.ac.uk/structures (accessed on 10 March 2023): CSD-2246135 [$(Xe_2F_{11})_2NiF_6$], CSD-2246136 [$Ni(XeF_2)_2(IrF_6)_2$], CSD-2246137 [XeF_5AuF_6], CSD-2246138 [XeF_5IrF_6 , 150 K], CSD-2246139 [$XeF_5Nb_2F_{11}$], CSD-2246140 [XeF_5PtF_6], CSD-2246141 [XeF_5RuF_6], CSD-2246142 [XeF_5IrF_6 , 280 K], CSD-2246143 [$XeF_5Ta_2F_{11}$], CSD-2246144 [XeF_5NbF_6], CSD-2246145 [$XeF_5Ni(AsF_6)_3$], CSD-2246146 [XeF_5TaF_6], CSD-2246147 [XeF_5RhF_6]]

5. Conclusions

Although the experiments to prepare $XeF_5M(BF_4)_x(SbF_6)_{3-x}$ (x = 1, 2, 3; M = Co, Mn, Ni, Zn), $XeF_5M(SbF_6)_3$ (M = Sn, Pb), and $XeF_5M(AF_6)_3$ salts (M = Cu, Ni; A = Cr, Nb, Ta, Ru, Rh, Re, Os, Ir, Pt, Au, As) were successful only in the preparation of $XeF_5Ni(AsF_6)_3$, further valuable results were obtained:

- (a) In view of the successful preparation of XeF₅Ni(AsF₆)₃, we assume that it is reasonable to attempt the preparation of other compounds with other M²⁺ cations (M = Mg, Fe, Co, Zn, etc.).
- (b) Crystal structure determination of XeF₅RhF₆ reveals a new type of structure. Together with the crystal structures of XeF₅TaF₆ and XeF₅IrF₆, which were determined for the first time, and the redetermined crystal structures of XeF₅NbF₆, XeF₅PtF₆, XeF₅RuF₆, and XeF₅AuF₆, they contribute to the understanding of the possible crystal phases in the family of XeF₅AF₅ salts.
- (c) The crystal structures of the XeF₅Nb₂F₁₁ and XeF₅Ta₂F₁₁ salts were determined. These compounds were previously unknown, and for the XeF₅A₂F₁₁ salts, only the crystal structure of XeF₅Sb₂F₁₁ [25] was known. These three [A₂F₁₁]⁻ salts are not isotypic and each of them represents a unique structural type.
- (d) The crystal structure of XeF₅IrF₆ determined at 150 K and at room temperature is identical. The crystal structures of the salts XeF₅NbF₆, XeF₅PtF₆, XeF₅RuF₆, XeF₅AuF₆, XeF₅AsF₆ [37], and (Xe₂F₁₁)₂NiF₆ redetermined at 150 K are also identical to those determined at room temperature, indicating that there is no phase transition in the range from 150 K to 298 K.
- (e) All the new data on the XeF₅AF₆ and XeF₅A₂F₁₁ salts help to fill the gaps in our knowledge of the XeF₆-A^VF₅ system (Table 10).
- (f) The preparation of Ni(XeF₂)₂(IrF₆)₂ has shown that it is worthwhile to try the preparation of some other $[M^{n+}(XeF_2)_p](AF_6)_n^-$ salts (A = Rh, Ru, Os, Ir, Pt, Au, Nb, Ta) where attempts to stabilize such salts with $[AF_6]^-$ (A = As, Sb) have failed.

						1		·	5 0	0		
Formula		A ⁵⁺										
[Xe ₂ F ₁₁][AF ₆]	V ^a	Nb ^b	Ta ^c	Ru d	Ir ^e	Pt ^f	Au ^d	Ug	P ^h	As ⁱ	Sb ^j	Bi ^k
[XeF ₅][AF ₆]	V^1	Nb ^m	Ta ^c	Ru n Rh Os ^o	Ir ^e	Pt ^p	Au ^f	U ^r		As ^s	Sb ^t	Bi ^u
[XeF ₅][A ₂ F ₁₁]	V^{1}	Nb	Ta								Sb ^t	

Table 10. List of known xenon(VI) fluoridometallates including the determined crystal structures (letters in bold). Crystal structures reported in this work are highlighted in green.

^a Refs. [21,27], ^b Ref. [62], ^c Ref. [63], ^d Refs. [26,39], ^e Refs. [23,39], ^f Ref. [39], ^g Ref. [76], ^h Ref. [22], ⁱ Refs. [22,29], ^j Refs. [19,28], ^k Ref. [77], ¹ Ref. [78], ^m Refs. [30,62], ⁿ Ref. [38], ^o Ref. [39], ^p Ref. [24], ^r Ref. [79], ^s Refs. [20,22,41], ^t Refs. [19,25], ^u Ref. [80].

Supplementary Materials: The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/molecules28083370/s1, Table S1: Experimental conditions and observed products upon crystallization for the reactions between UV-irradiated F₂, XeF₂, MF₂ (M = Cu,

Ni) and metal A (A = Ru, Rh, Re, Os, Ir, Pt), MF₃ (A = Cr, Au), and AF₅ (M = Nb, Ta, As), respectively, in anhydrous HF. The products observed upon crystallization and the experimental conditions for the reactions between XeF₅SbF₆ and M(SbF₆)₂ (M = Sn, Pb) are also given.; Table S2: Experimental conditions and observed products upon crystallization in the experiments to prepare XeF₅M(BF₄)_x(SbF₆)_{3-x} (x = 1, 2, 3; M = Co, Mn, Ni, Zn) salts.; Figures S1–S10. Raman spectra of XeF₅NbF₆, XeF₅TaF₆, XeF₅RuF₆, XeF₅IrF₆, XeF₅TaF₆, XeF₅TaF₆, TaF₅Ta₂F₁₁, O₂PtF₆, and O₂RuF₆ recorded on a single crystal; Figure S11. Raman spectra of single crystals after crystallization of the reaction product between XeF₂, Os powder and UV-irradiated F₂ in anhydrous HF: XeF₄ and unknown product.

Author Contributions: Conceptualization, Z.M.; formal analysis, Z.M. and E.G.; investigation, Z.M. and E.G.; writing—original draft preparation; visualization, Z.M. All authors have read and agreed to the published version of the manuscript.

Funding: The authors gratefully acknowledge financial support of the Slovenian Research Agency (research core funding No. P1–0045; Inorganic Chemistry and Technology).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the authors.

References

- Slivnik, J.; Brčić, B.; Volavšek, B.; Marsel, J.; Vrščaj, V.; Šmalc, A.; Frlec, B.; Zemljič, Z. Über die syntheses von XeF₆. Croat. Chem. Acta 1962, 34, 253.
- Slivnik, J.; Šmalc, A.; Žemva, B.; Mosevič, A.N. On the synthesis of xenon di-, tetra-, and hexafluoride. Croat. Chem. Acta 1968, 40, 49–51.
- Chernick, C.L.; Malm, J.G. Xenon hexafluoride. In *Inorganic Synthesis*; Holtzclaw, F., Jr., Ed.; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1966; Volume 8, pp. 258–260.
- 4. Žemva, B.; Slivnik, J. On the xenon-fluorine-reactions. J. Inorg. Nucl. Chem. Suppl. 1976, 28, 173–178. [CrossRef]
- Nielsen, J.B.; Kinkead, S.A.; Purson, J.D.; Eller, P.G. New syntheses of xenon hexafluoride (XeF₆) and xenon tetrafluoride, (XeF₄). *Inorg. Chem.* 1999, 29, 1779–1780. [CrossRef]
- Bartlett, N.; Sladky, F.O. The Chemistry of Krypton, Xenon and Radon. In *The Chemistry of the Monoatomic Gases, Comprehensive Inorganic Chemistry*; Bailar, J.C., Jr., Emeléus, H.J., Nyholm, R., Trotman-Dickenson, A.F., Eds.; Pergamon Press Ltd.: Oxford, UK, 1975; pp. 213–330.
- 7. Hoyer, S.; Emmler, T.; Seppelt, K. The structure of xenon hexafluoride in the solid state. *J. Fluor. Chem.* **2006**, *127*, 1415–1422. [CrossRef]
- Schrobilgen, G.J.; Holloway, J.H.; Granger, P.; Brevard, C. Xenon-129 pulse Fourier-transfrom nuclear magnetic resonance spectroscopy. *Inorg. Chem.* 1978, 17, 980–987. [CrossRef]
- 9. Gavin, R.M., Jr.; Bartell, L.S. Molecular structure of XeF₆. I. Analysis of electron-diffrcation intensities. *J. Chem. Phys.* **1968**, *48*, 2460–2465. [CrossRef]
- Bartell, L.S.; Gavin, R.M., Jr. Molecular structure of XeF₆. II. Internal motion and mean geometry deduced by electron diffraction. J. Chem. Phys. **1968**, 48, 2466–2483. [CrossRef]
- 11. Gerken, M.; Hazendonk, P.; Nieboer, J.; Schrobilhen, G.J. NMR spectroscopic study of xenon fluorides in the gas phase and of XeF₂ in the solid state. *J. Fluor. Chem.* **2004**, *125*, 1163–1168. [CrossRef]
- 12. Dixon, D.A.; de Jong, W.A.; Peterson, K.A.; Christe, K.O.; Schrobilgen, G.J. Heats of formation of xenon fluorides and the fluoxionality of XeF₆ from high level electronic structure calculations. *J. Am. Chem. Soc.* **2005**, *127*, 8627–8634. [CrossRef]
- 13. Cheng, L.; Gauss, J.; Stanton, J.F. Relativistic coupled-cluster calculations on XeF₆: Delicate interplay between electron-correlation and basis-set effects. *J. Chem. Phys.* **2015**, *142*, 224309. [CrossRef]
- 14. Kaupp, M.; van Wüllen, C.; Franke, R.; Schmitz, F.; Kutzelnigg, W. The structure of XeF₆ and of compounds isoelectronic with it. A challenge to computational chemistry and to the qualitative theory of the chemical bond. *J. Am. Chem. Soc.* **1996**, *118*, 11939–11950. [CrossRef]
- Gawrilow, M.; Becker, H.; Riedel, S.; Cheng, L. Matrix-isolation and quantum-chemical analysis of the C_{3v} conformer of XeF₆, XeOF₄, and their acetonitrile adducts. *J. Phys Chem. A* 2018, 122, 119–129. [CrossRef]
- 16. Sedgi, I.; Kozuch, S. Heavy atom tunnelling on XeF₆ pseudorotation. Phys. Chem. Chem. Phys. 2020, 22, 17725–17730. [CrossRef]
- 17. Paschoal, D.F.S.; Dos Santos, H.F. Predicting the structure and NMR coupling constant ¹*J*(¹²⁹Xe-¹⁹F) of XeF₆ using quantum mechanics methods. *Phys. Chem. Chem. Phys.* **2021**, *23*, 7240–7246. [CrossRef]

- 18. Seppelt, K. Molecular hexafluorides. Chem. Rev. 2015, 115, 1296–1306. [CrossRef]
- 19. Gard, G.L.; Cady, G.H. Reactions of xenon hexafluoride with antimony pentafluoride, hydrogen chloride, and perfluorocyclopentane. *Inorg. Chem.* **1964**, *3*, 1745–1747. [CrossRef]
- 20. Selig, H. Xenon hexafluoride complexes. Sciece 1964, 144, 537.
- Moody, G.J.; Selig, H. Vanadium pentafluoride complexes with xenon fluorides. J. Inorg. Nucl. Chem. 1966, 28, 2429–2430. [CrossRef]
- 22. Pullen, K.E.; Cady, G.H. The systems xenon hexafluoride-arsenic pentafluoride and xenon hexafluoride-phosphorus pentafluoride. *Inorg. Chem.* **1967**, *6*, 2267–2268. [CrossRef]
- 23. Bartlett, N.; Sladky, F.O. The relative fluoride ion donor abilities of XeF₂, XeF₄, and XeF₆ and a chemical purification of XeF₄. *J. Am. Chem. Soc.* **1968**, *90*, 5316–5317. [CrossRef]
- 24. Bartlett, N.; Einstein, F.; Stewart, D.F.; Trotter, J. The crystal structure of [XeF₅]⁺[PtF₆]⁻. J. Chem Soc. A **1967**, 1190–1193. [CrossRef]
- Mazej, Z.; Goreshnik, E. Single-crystal structure determination of NO₂SbF₆, XeF₅SbF₆ and XeF₅Sb₂F₁₁. J. Fluor. Chem. 2015, 175, 47–50. [CrossRef]
- 26. Leary, K.; Zalkin, A.; Bartlett, N. Crystal structure of Xe₂F₁₁⁺AuF₆⁻ and the Raman spectrum of Xe₂F₁₁⁺. *Inorg. Chem.* **1974**, *13*, 775–779. [CrossRef]
- 27. Benkič, P.; Golič, L.; Koller, J. Žemva, B. Crystal structure of (Xe₂F₁₁⁺)(VF₆⁻). Acta Chim. Slov. **1999**, 46, 239–252.
- Mazej, Z.; Goreshnik, E. Crystal growth and characterization of the mixed-cation Rb⁺/[XeF₅]⁺ and Cs⁺/[XeF₅]⁺ salts. *Eur. J. Inorg. Chem.* 2017, 2800–2807. [CrossRef]
- 29. Bartlett, N.; Wechsberg, M. The xenon difluoride complexes XeF₂·XeOF₄; XeF₂·XeF₆·AsF₅ and XeF₂·2XeF₆·2AsF₅ and their relevance to bond polarity and fluoride ion donor ability of XeF₂ and XeF₆. *Z. Anorg. Allg. Chem.* **1971**, *285*, 5–17. [CrossRef]
- 30. Žemva, B.; Golič, L.; Slivnik, J. Concerning xenon difluoride interactions with XeF₅⁺MF₆, the existence of XeF₂·XeF₅⁺RuF₆⁻ and the absence of XeF₂·XeF₅⁺NbF₆⁻. *Vestn. Slov. Kem. Drus.* **1983**, *30*, 365–376.
- Žemva, B.; Jesih, A.; Tepleten, D.H.; Zalkin, A.; Chhetman, A.K.; Bartlett, N. Phases in the system XeF₂/XeF₅AsF₆ and structural and vibrational evidence for the following ionization pathway: XeF₂ XeF⁺ + F⁻. J. Am. Chem. Soc. 1987, 109, 7420–7427. [CrossRef]
- Lozinšek, M.; Mercier, H.P.A.; Schrobilgen, G.J. Mixed noble-gas compounds of krypton(II) and xenon(VI): [F₅Xe(FKrF)AsF₆] and [F₅Xe(FKrF)₂AsF₆]. *Angew. Chem. Int. Ed.* **2021**, *60*, 8149–8156. [CrossRef]
- 33. Pointner, B.E.; Suotamo, R.J.; Schrobilgen, G.J. Syntheses and X-ray crystal structures of α- and β-[XeO₂F][SbF₆], [XeO₂F][AsF₆], [FO₂XeFXeO₂F][AsF₆], and [XeF₅][SbF₆]·XeOF₄ and computational studies of the XeO₂F⁺ and FO₂XeFXeO₂F⁺ cations and related species. *Inorg. Chem.* 2006, 45, 1517–1534. [CrossRef]
- 34. Mazej, Z.; Goreshnik, E. [XeF₅]⁺/metal and [XeF₅]⁺/non-metal mixed-cation salts of hexafluoridoantimonate(V). *Eur. J. Inorg. Chem.* **2015**, *8*, 1453–1456. [CrossRef]
- 35. Mazej, Z.; Goreshnik, E. Influence of the increasing size of the M²⁺ cation on the crystal structures of XeF₅M(SbF₆)₃ (M = Ni, Mg, Cu, Zn, Co, Mn, Pd) and (XeF₅)₃[Hg(HF)]₂(SbF₆)₇. *Eur. J. Inorg. Chem.* **2016**, 2016, 3156–3364. [CrossRef]
- Mazej, Z.; Goreshnik, E. Mixed cation [H₃O]⁺/[XeF₅]⁺/M²⁺ (M = Ca, Cd), [O₂]⁺/[XeF₅]⁺/Sr²⁺ and [H₃O]⁺/Sr²⁺ fluoridoanti-monate(V) salts. *Z. Anorg. Allg. Chem.* 2022, 648, e202200173.
- 37. Goreshnik, E.; Akselrud, L.G.; Mazej, Z. Mixed-anion $[AsF_6]^-/[SbF_6]^-$ salts of Cs⁺ and $[XeF_5]^+$; incommensurately modulated crystal structures of $[XeF_5][As_{1-x}Sb_xF_6)$ (x \approx 0.5 and 0.7). *Cryst. Growth Des.* **2022**, 22, 2980–2988. [CrossRef]
- Bartlett, N.; Gennis, M.; Gibler, D.D.; Morrell, B.K.; Zalkin, A. Crystal structures of [XeF⁺][RuF₆⁻] and [XeF₅⁺][RuF₆⁻]. *Inorg. Chem.* 1973, 12, 1717–1721. [CrossRef]
- 39. Bartlett, N.; Leary, K. Quinquevalent gold salts. Rev. Chim. Minér. 1976, 13, 82–97.
- Jesih, A.; Lutar, K.; Leban, I.; Žemva, B. Synthesis and crystal structure of (Xe₂F₁₁⁺)₂NiF₆²⁻. *Inorg. Chem.* 1989, 28, 2911–2914. [CrossRef]
- Bartlett, N.; DeBoer, B.G.; Hollander, F.J.; Sladky, F.O.; Templeton, D.H.; Zalkin, A. Crystal structures of [Xe₂F₃⁺][AsF₆⁻] and [XeF₅⁺][AsF₆⁻]. *Inorg. Chem.* 1974, 13, 780–785. [CrossRef]
- Mazej, Z.; Arčon, I.; Benkič, P.; Kodre, A.; Tressaud, A. Compressed octahedral coordination in chain compounds containing divalent copper: Structure and magnetic properties of CuFAsF₆ and CsCuAlF₆. *Chem. Eur. J.* 2004, *10*, 5052–5058. [CrossRef]
- 43. Botkovitz, P.; Lucier, G.M.; Rao, R.P.; Bartlett, N. The crystal structure of O₂⁺RuF₆⁻ and the nature of O₂RhF₆. *Acta Chim. Slov.* **1999**, *46*, 141–154.
- 44. Ibers, J.A.; Hamilton, W.C. Crystal structure of O₂PtF₆: A neutron-diffraction study. J. Chem. Phys. 1966, 44, 1748–1752. [CrossRef]
- 45. Mazej, Z.; Goreshnik, E. Crystal growth and crystal structures of gold(V) compounds: Cu(AuF₆)₂, Ag(AuF₆)₂, and O₂(CuF)₃(AuF₆)₄·HF. *Eur. J. Inorg. Chem.* 2023, in press. [CrossRef]
- Mazej, Z. Fluoride ion donor ability of binary fluorides towards the Lewis acids AsF₅ and SbF₅. J. Fluor. Chem. 2023, 265, 110073.
 [CrossRef]
- Mazej, Z. Photochemical Syntheses of Fluoride. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds; Groult, H., Leroux, F., Tressaud, A., Eds.; Elsevier Inc.: London, UK, 2017; pp. 587–607.
- Whalen, J.M.; Lucier, G.M.; Bartlett, N. The room temperaure conversion of nickel difluoride to hexafluoronickelate(IV) salts of alkali cations. J. Fluor. Chem. 1998, 88, 107–110. [CrossRef]

- Higelin, A.; Riedel, S. High Oxidation States in Transition Metal Fluorides. In Modern Synthesis Processes and Reactivity of Fluorinated Compounds; Groult, H., Leroux, F., Tressaud, A., Eds.; Elsevier: London, UK, 2017; pp. 561–586.
- 50. Lutar, K.; Leban, I.; Ogrin, T.; Žemva, B. XeF₂·CrF₄ and (XeF₅⁺CrF₅[−])₄·XeF₄; syntheses, crystal structures and some properties. *Eur. J. Solid State Inorg. Chem.* **1992**, *29*, 713–727.
- Mazej, Z.; Goreshnik, E. Alkali metal (Li⁺–Cs⁺) salts with hexafluorochromate(V), hexafluorochromate(IV), pentafluorochromate(IV), and undecafluorodichromate(IV) anions. *Eur. J. Inorg. Chem.* 2008, 2008, 1795–1812. [CrossRef]
- Lutar, K.; Borrmann, H.; Žemva, B. XeF₂·2CrF₄ and XeF₅⁺CrF₅⁻: Syntheses, crystal structures, and some properties. *Inorg. Chem.* 1998, 37, 3002–3006. [CrossRef]
- 53. Bortolus, M.R.; Mercier, H.P.A.; Nguyen, B.; Schrobilgen, G.J. Syntheses and characterizations of the mixed noble-gas compounds, [FKr^{II}FXe^{II}F][AsF₆]·0.5Kr^{II}F₂·2HF, ([Kr^{II}₂F₃][AsF₆])₂·Xe^{IV}F₄, and Xe^{IV}F₄·Kr^{II}F₂. *Angew. Chem. Int. Ed.* **2021**, *60*, 23678–23686. [CrossRef]
- 54. Mazej, Z.; Goreshnik, E. Synthesis, Raman spectra and crystal structures of $[Cu(XeF_2)_n](SbF_6)_2$ (n = 2, 4). *Inorg. Chem.* **2008**, 47, 4209–4214. [CrossRef]
- 55. Bondi, A. van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441–451. [CrossRef]
- 56. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. *Acta Crystallogr. Sect. A* **1976**, *32*, 751–767. [CrossRef]
- 57. Graudejus, O.; Wilkinson, A.P.; Chacón, L.C.; Bartlett, N. M-F interatomic distances and effective volumes of second and third transition series MF₆⁻ and MF₆²⁻ anions. *Inorg. Chem.* **2000**, *39*, 2794–2800. [CrossRef]
- Röhr, C.; Kniep, R. Die kristalstrukturen von Li[PF₆] und Li[AsF₆]: Zur kristalchemie von verbindungen A[E^VF₆]. Z. Naturforsch. 1994, 49b, 650–654. [CrossRef]
- 59. Burns, J. The crystal structure of lithium fluoroantimonate(V). Acta Cryst. 1962, 15, 1098–1101. [CrossRef]
- 60. Mazej, Z.; Hagiwara, R. Hexafluoro-, heptafluoro-, and octafluoro-salts, and [M_nF_{5n+1}]⁻ (n = 2, 3, 4) polyfluorometallates of singly charged metal cations, Li⁺-Cs⁺, Cu⁺, Ag⁺, In⁺ and Tl⁺. J. Fluor. Chem. 2007, 128, 423–437. [CrossRef]
- 61. Mazej, Z.; Goreshnik, E. Photochemical preparation of CsMF₆ salts (M = Ru, Rh, Os, Ir, Pt); crystal structures and Raman spectra. *J. Fluor. Chem.* 2023, in press. [CrossRef]
- 62. Žemva, B.; Slivnik, J. On the syntheses of xenon(VI) fluoroniobates(V). J. Fluor. Chem. 1976, 8, 369–371. [CrossRef]
- 63. Aubert, J.; Cady, G.H. The systems xenon hexafluoride–tantalum pentafluoride, xenon hexafluoride–manganese fluoride, xenon hexafluoride–uranium pentafluoride. *Inorg. Chem.* **1970**, *9*, 2600–2602.
- 64. Marchetti, F.; Pampaloni, G.; Pinzino, C.; Zacchini, S. Stable [M₂F₁₁]⁻ (M = Nb, Ta) salts of protonated 1,3-dimethoxybenzene. *Eur. J. Inorg. Chem.* **2013**, 2013, 5755–5761. [CrossRef]
- 65. Tramšek, M.; Žemva, B. Synthesis, properties and chemistry of xenon(II) fluoride. Acta Chim. Slov. 2006, 53, 105–116. [CrossRef]
- 66. Mazej, Z.; Goreshnik, E. Crystal growth from anhydrous HF solutions of M²⁺ (M = Ca, Sr,. Ba) and [AuF₆]⁻, not only simple M(AuF₆)₂ salts. *Inorg. Chem.* 2022, *61*, 10587–10597. [CrossRef] [PubMed]
- Šmalc, A.; Lutar, K. Xenon difluoride (modification). In *Inorganic Syntheses*; Grimes, R.N., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1992; Volume 29, pp. 1–4.
- Mazej, Z. Žemva, Synthesis of arsenic pentafluoride by static fluorination of As₂O₃ in a closed system. J. Fluor. Chem. 2005, 126, 1432–1434. [CrossRef]
- 69. Mazej. Z. Recent achievements in the synthesis and characterization of metal hexafluorantimonates and hexafluoroaurates. *J. Fluor. Chem.* **2004**, *125*, 1723–1733. [CrossRef]
- Gantar, D.; Leban, I.; Frlec, B.; Holloway, J.H. Metal(II) hexafluoroantimonates: Preparation and characterization of MF₂·2SbF₅ (M = Mg, Ni, Zn, Fe, Co, Cu, Cr, Ag, Cd, or Pb) and the X-ray structure determination of AgF₂·2SbF₅. *J. Chem. Soc. Dalton Trans.* **1987**, *10*, 2379–2383. [CrossRef]
- 71. CrysAlisPro; Version 1.171.37.31. release 14 January 2014 CrysAlis171.NET; Agilent Technologies: Santa Clara, CA, USA, 2014.
- 72. Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. *Acta Crystallogr. Sect. A* 2015, *71*, 3–8. [CrossRef]
- 73. Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, *42*, 339–341. [CrossRef]
- 74. Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 2015, 71, 3-8. [CrossRef]
- 75. Ozawa, T.C.; Kang, S.J. Balls&Sticks: Easy-to-use structure visualization and animation program. J. Appl. Crystallogr. 2004, 37, 679.
- Slivnik, J.; Frlec, B.; Žemva, B.; Bohinc, M. Xenon hexafluoride-uranium pentafluoride complexes. J. Inorg. Nucl. Chem. 1970, 32, 1397–1400. [CrossRef]
- de Waard, H.; Bukspan, S.; Schrobilgen, G.J.; Holloway, J.H.; Martin, D. A Mössbauer study of xenon compounds. J. Chem. Phys. 1979, 70, 3247–3253. [CrossRef]
- Jesih, A.; Žemva, B.; Slivnik, J. Reactions in the system vanadium pentafluoride–xenon hexafluoride. J. Fluor. Chem. 1982, 19, 231–236. [CrossRef]

- 79. Frlec, B.; Bohinc, M.; Charpin, P.; Drifford, M. On the xenon hexafluoride–uranium pentafluoride XeF₆UF₅. *J. Inorg. Nucl. Chem.* **1972**, *34*, 2938–2941. [CrossRef]
- 80. Družina, B.; Žemva, B. On the synthesis of xenon(VI) hexafluorobismutathe(V). J. Fluor. Chem. 1988, 39, 309–315. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.