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Abstract: Heat stress is one of the most stressful events in livestock life, negatively impacting animal
health, productivity, and product quality. Moreover, the negative impact of heat stress on animal
product quality has recently attracted increasing public awareness and concern. The purpose of
this review is to discuss the effects of heat stress on the quality and the physicochemical component
of meat in ruminants, pigs, rabbits, and poultry. Based on PRISMA guidelines, research articles
were identified, screened, and summarized based on inclusion criteria for heat stress on meat safety
and quality. Data were obtained from the Web of Science. Many studies reported the increased
incidences of heat stress on animal welfare and meat quality. Although heat stress impacts can be
variable depending on the severity and duration, the exposure of animals to heat stress (HS) can
affect meat quality. Recent studies have shown that HS not only causes physiological and metabolic
disturbances in living animals but also alters the rate and extent of glycolysis in postmortem muscles,
resulting in changes in pH values that affect carcasses and meat. It has been shown to have a plausible
effect on quality and antioxidant activity. Acute heat stress just before slaughter stimulates muscle
glycogenolysis and can result in pale, tender, and exudative (PSE) meat characterized by low water-
holding capacity (WHC). The enzymatic antioxidants such as superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GPx) act by scavenging both intracellular and extracellular
superoxide radicals and preventing the lipid peroxidation of the plasma membrane. Therefore,
understanding and controlling environmental conditions is crucial to successful animal production
and product safety. The objective of this review was to investigate the effects of HS on meat quality
and antioxidant status.

Keywords: antioxidant status; biochemical properties; chemical composition; heat stress; meat quality

1. Introduction

Food quality is a very complex and broad concept that has changed rapidly in recent
years. Recently, it has represented the set of all food properties that are closely related
to physicochemical properties, texture, and taste that are acceptable and satisfying to
consumers. Previous studies showed that consumers’ concerns about food quality have
been increasing, in recent decades, particularly concerning the perceived healthiness of
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food [1–3]. Meat and various meat products are important sources of high-quality pro-
teins, fats, and minerals as essential nutrients [4,5]. As animal welfare concerns grow
and consumers become more conscious of food quality, there is an increasing focus on
improving the quality, safety, and nutritional value of meat. Based on current knowledge,
increasing global warming and climate change appear to pose a potential threat to food
security in the coming decades [6,7]. Heat stress (HS) is one of the major impacts of climate
change (CC) on livestock raised in both intensive and extensive production systems [8].
This is especially true given its negative impact on behavior, immune response, gut in-
tegrity, productivity, and meat quality [9]. Heat stress is a form of hyperthermia (elevated
body temperature) in which the body’s physiological systems are unable to regulate body
temperature within normal limits [8]. It is well known that, at temperatures higher than
an animal’s thermoneutral zone, heat stress can affect animal welfare, performance, and
product quality. In the same context, Rana et al. [10] reported that CC, particularly HS,
could impact meat safety as well as organoleptic quality. Early studies have shown that
acute or chronic HS can deteriorate meat quality. This is due to decreased protein synthesis,
increased fat deposition, and increased ante-/postmortem glycolytic metabolism associated
with the production of reactive oxygen species (ROS) [11–13]. In the case of broilers, the
exposure of chickens to high temperatures can induce a lower ultimate pH with variation
in meat color, water-holding capacity (WHC), and tenderness of meat [11,13–15], resulting
in lower consumer acceptability. In addition to flavor and oxidative stability, the safety of
meat is also a very important issue (foodborne illness of microbial origin) [16]. Previously,
Lowe et al. [17], Kadim et al. [18], and Macías et al. [19] showed that the increased incidence
of HS in animals has been reported in many countries, especially warmer parts of the world,
compromising animal welfare, and having flow-on effects on meat quality traits. Although
the effects of HS may vary in severity and duration, the exposure of animals to elevated
temperatures increases the concentration of omega-6 fatty acids in muscle [6,11]. However,
the effects of HS on meat quality across animal species and breeds are inconsistent and are
likely due to differences in heat resistance [4,20]. These impacts on carcass characteristics
have been reported in many species, and HS has been well known to reduce feed intake
and carcass yield in poultry [13,21], pigs [22], goats [23], cattle [24], and lambs [25]. Fur-
thermore, the causes of variation in meat quality characteristics between different animal
species, muscle fibers within animals, and even meat parts in response to stress are not
yet fully understood [26]. Recent studies have shown that the magnitude of carcass trait
changes can vary between species, but overall, reduced carcass yields due to HS result in
significant economic losses to the livestock industry [20,26,27]. Long-term HS also results
in decreased subcutaneous fat and lower intramuscular fat (IMF) levels, which may assist
the animal with better heat dissipation rates [28]. However, a small number of reviews
have been conducted to depict the effects of HS on meat safety and quality.

In this context, this review will focus on the effects of heat stress on the quality, and
the physicochemical component of meat.

2. Heat Stress and Carcass Characteristics

Carcass and meat quality depend on both intrinsic and extrinsic factors. The intrinsic
factors include species, breed, gender, age, and slaughter weight. The extrinsic factors
include weaning, diet, and stress [29,30]. This latter can be attributed to the breeding con-
ditions, the transport, or the environment. To maintain euthermia, heat-stressed animals
activate some physiologic and metabolic adjustments at the expense of growth, reproduc-
tive, and productive aspects [31,32]. For this purpose, homeothermic animals reduce their
feed intake to lower metabolic heat production [33]. However, such an adaptive response
has implications on carcass characteristics in monogastric and ruminants as well. Carcass
yield, carcass fat deposition, and intramuscular fat content were reported to be decreased
in poultry [13,21], pigs [22,34], sheep [35], goats [23], and cattle [24,35]. A reduction in
subcutaneous fat was also reported in pigs subjected to chronic HS, to enhance heat dissi-
pation [36]. Holinger et al. [37] described that the carcass of heat-stressed pigs had reduced
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lean meat percentage and thicker backfat. The extent of changes indeed depends on the
species, but it is known that the economic losses caused by carcass yield loss are great [38].
At the same time as fat content dropped, acetyl coenzyme A carboxylase enzyme, L (+)
P-hydroxy acyl CoA dehydrogenase, and lipolytic enzyme activities were decreased [22,36].
Pearce et al. [22] demonstrated that this decrease is independent of heat stress-induced
reductions in feed intake. Nevertheless, no significant effects on intramuscular fat were
reported in broilers subjected to heat stress for 3 weeks [39] and heat-stressed goats for
1 month [30]. Similarly, Mader et al. [40] and Ponnampalam et al. [41] did not report any
significant difference between chronic heat stress (1 week) and thermal neutral groups in
subcutaneous fat in cattle and carcass fat scores in lambs. These findings may be attributed
to the ability of the breeds to cope with heat stress conditions, and to the duration and
severity of HS [30]. However, it is noteworthy to mention that although the carcass weight
was significantly affected by heat stress-induced feed intake reduction, the impacts on
carcass composition are confusing and need further investigation.

3. Heat Stress and Rapid pH Drop

After slaughter, skeletal muscle undergoes physical structural, and biochemical changes.
These changes are triggered by the cession of blood flow and oxygen supply, and the
scarcity of glucose resources. Under these conditions, and for postmortem homeostasis
purposes, skeletal muscle metabolizes stored glycogen for adenosine triphosphate (ATP)
synthesis and use [42]. Lactic acid and hydrogen ions (H+) are the endeavor products
of several chemical reactions leading to the conversion of glycogen to lactic acid [13].
Since oxygen is lacking, the electron chain is interrupted and pyruvate can no longer
enter the mitochondria [42,43]. Hence, lactic acid and H+ accumulate, resulting in pH
lowering [44]. pH is widely recognized as one of the most accepted indicators of meat
quality. Any homeostatic disturbance of postmortem metabolism (e.g., such as rapid pH
drop and lower pHu) leads to meat quality defects such as pale, soft, and exudative (PSE)
meat, high ultimate pH (pHu) meat (dark, firm, and dry (DFD) meat) and dark-cutting in
ruminants [44]. Several studies associated heat stress with a high glycolysis rate and rapid
pH decline, resulting in serious damage to skeletal muscle. In broilers under short-term
heat stress (36 ◦C, 1 h), AMP-activated protein kinase (AMPk) activity at 1 h postmortem
was greater than that of broilers under thermal neutral (25 ◦C) conditions [45]. This was
also the case with broilers exposed to chronic HS [46]. Moreover, broilers transported
during summer (32–42 ◦C) registered a higher adenosine monophosphate/adenosine
triphosphate (AMP/ATP) ratio, increased AMPK, and lower pHu value [47,48]. It is worth
noticing that some authors did not register any significant decline in ultimate pH muscle in
broilers [15,49].

During and after slaughtering, HS stimulates anaerobic glycolysis within the muscles.
The hydrolysis of ATP governed primarily by pyruvate kinase and lactate dehydrogenase
in anaerobic conditions then escalates. More pyruvate is converted to lactate leading to an
accumulation of H+ and lactic acid [50,51]. The result is a rapid pH drop which lowers the
water-holding capacity and is at the origin of PSE meat [52,53]. In ruminants, heat stress
results in pHu values greater than 5.8, a normal pHu muscle value [18,54]. This finding may
be attributed to the effect of the cortisol hormone, which increases under HS conditions.
As a result, antemortem skeletal muscle glycogen content is noteworthy reduced and
postmortem glycolytic enzyme activity is enhanced [54]. Contrarily, in chickens, heat stress
does not affect the antemortem glycogen content [15]. Postmortem glycolytic enzyme
activity and pH drops are then faster and greater. Interestingly, some authors demonstrated
that high ambient temperature and/or long-term heat exposure may not necessarily have
adverse effects on muscle pH and meat quality [47,55]. This could be explained by animals’
adaptation to heat stress [55]. However, rapid pH drops and meat quality damage seem to
be associated with short-term exposure to acute ambient temperatures [53,54].
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4. Meat Color and Water Holding Capacity

Besides its detrimental effects on feed intake and growth rate, heat stress was reported
to impact physicochemical properties such as color, texture, WHC, and organoleptic prop-
erties such as softness, consistency, flavor, and odor in chicken and pork [27,56,57]. Protein
denaturation is a result of HS exposure before slaughtering. As proteins are involved in
the WHC of meat, each protein damage impedes its ability to bind water. The cumulative
effect leads to an impaired WHC marked by high drip and cooking loss [58]. In this trend,
numerous studies reported increased values of heat loss and shear force in heat-stressed
meat-type broilers [13].

In chickens and pigs, muscles consist of fast-twitching fibers [52,53]. These fibers rely
mainly on anaerobic glycolysis [59]. Exposure to stressful ambient temperatures before
slaughtering allows for augmented carcass temperature [60], accelerated glycolysis rate,
increased H+ and lactic acid levels, and elevated protein degradation rate. Consequently,
PSE conditions are developed [61]. PSE meat is poorly processed meat, more dry and
brittle, and has a poor texture, higher lightness, and lower sensory score [50,52,62] due
to its hindered WHC and protein extractability [63,64]. In ruminants, increased pHu
values under heat stress conditions negatively affect the shrinkage of the myofilament
lattice leading to darker meat color. Many meat quality defects were reported, including
higher light absorption, less light scattering, higher oxygen consumption, lower WHC, and
increased toughness [18,56,65,66]. However, it seems that these meat quality attributes
may be influenced by the duration of heat stress exposure, and the extent of the ambient
temperature [20,41,47].

5. Impacts of Heat Stress on Muscle Biochemical and Chemical Properties

It is known that ruminants, pigs, and poultry are highly vulnerable to HS due to their
rapid metabolism and growth, high production, and species-specific characteristics such
as rumen fermentation, transpiration, and skin insulation [67]. Numerous studies have
documented how HS affects muscles [68,69]. According to Sula et al. [70], HS results in
myocyte fibers that are homogenously eosinophilic, hypereosinophilic, and fragmented. It
has been reported that chronic HS would increase the production of lactate in muscle and
affect the meat quality. Therefore, acute HS before slaughter accelerates muscle glycogenol-
ysis and increases lactate concentrations in early postmortem slaughter while carcasses
are still warm [64]. The result is PSE meat characterized by a decreased WHC, jointly
reported in poultry [14,71], but also found recently in cattle [72,73]. Contrarily, animals
under chronic HS have diminished muscle glycogen stores, leading to lower lactic acid
generation, leading to DFD meat with a higher ultimate pH in ruminants [74], but also
in pigs [75]. Additionally, HS effects primarily involve autonomic responses due to the
activation of the autonomic nervous system (ANS), which is regulated by catecholamines
(adrenaline and norepinephrine) (Table 1). This includes increased respiration and heart
rate, increased body temperature, and the redistribution of blood flow from the intestine
to the skin for thermoregulation, hence energy utilization from body stores [76] promotes
muscle glycogenolysis and inhibits energy storage [74,77]. Both acute and chronic HS cause
increases in plasma glucocorticoid concentrations via the activation of the hypothalamic–
pituitary–adrenal (HPA) axis. Nevertheless, acute HS leads to increased glucocorticoids
more than chronic HS [78]. Glucocorticoids enhance heat loss through vasodilation [79]
and increase proteolysis and altered lipid metabolism; proteolysis occurs because of an
increased rate of myofibrillar protein degradation in skeletal muscle as mediated by the fol-
lowing mechanisms: the Ca2+-dependent-ubiquitin–proteasome, and autophagy–lysosome
system [80–82] (Table 1).

HS stimulates the hypothalamic–pituitary–adrenal system in poultry, increases the
concentration of the circulating hormone corticosterone [83], and has profound effects on
protein and lipid metabolism, body composition, and meat quality [84]. Imiku et al. [21]
and Lu et al. [85] provided evidence that HS is associated with chemical alterations in
chicken meat. High levels of the hormone corticosterone (glucocorticoid) increase fat
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accumulation in the abdomen, neck, and thighs [86–88], but boosted protein degradation
and skeletal muscle breakdown [84], potentially via the expression of fatty acid transport
protein and the insulin receptor in the pectoralis major [88]. The exposure of animals to
HS is related to an elevation in the expression of heat shock proteins in ruminants and
pigs [31,89,90], most notably the small alpha βcrystallin (αβC) heat shock protein (sHSP).
Heat shock proteins are key components of living muscle that regulate the cytoskeleton
and control cell maintenance [91].

In rabbits, HS affects the amount of myoglobin in the muscle, which leads to a decrease
in the pigment content of the meat [92].

Table 1. Effects of heat stress on biochemical and chemical parameters of the muscle.

Origin Chemical Class Sub-Class References

Pigs

Steroid hormones Glucocorticoids [79]

Carbohydrates Glycogen [71]

Organic acid Lactic acid [64]

Ruminants

Protein
Myofibrillar protein [81]

alpha βcrystallin (αβC) heat shock protein (sHSP) and HSP27 [31,89,90]

Steroid hormones Glucocorticoids [79]

Organic acid Lactic acid

[71]Carbohydrates Glycogen

Lipid Volatile fatty acids

Broiler

Hormone
Corticosterone [83]

Insulin [88]

Protein alpha βcrystallin (αβC) heat shock protein (sHSP) and HSP27 [31,87,89,90]

Organic acid Lactic acid [65]

Steroid hormones Glucocorticoids [79]

Lipid Fatty acid [87]

Rabbit

Organic acid Lactic acid [4]

Lipids - [93]

Proteins - [93]

Metalloprotein Myoglobin [92]

6. Fatty Acid Profiling

Meat quality is significantly influenced by fat deposition. An animal’s condition
or grade of meat may be taken into consideration by a producer when determining the
best time to gather the animal. Consumer opinions are even more diverse, with some
preferring leaner meats while others prefer fatty meats. These additional requirements
from various industry segments make it important to understand why targets exist and
how fat accumulates throughout an animal’s life. Schumacher et al. [94] reported that fat
deposition occurred after relative muscle growth decreased and continued to increase while
bone growth decreased. The rate of adipose tissue growth varies greatly depending on
the location and the growth stage. Environmental factors that affect metabolism can affect
fat deposition. Chronic HS reduces beta-oxidation and positively affects lipid deposition
to reduce thermogenesis [95]. In addition, Heng et al. [96] reported that exposure to
HS alters the expression of genes associated with lipid metabolism and storage, leading
to increased obesity in piglets born to heat-stressed sows. Kouba et al. [97] concluded
that chronically heat-stressed growing pigs showed increased lipid metabolism in both
the liver and adipose tissue (lipoprotein lipase activity). This promotes the uptake and
storage of plasma triglycerides in adipose tissue, contributing to obesity. In dairy cattle,
Hao et al. [98] reported that heat-stressed animals had increased lipogenic capacity but
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decreased lipolysis. Lu et al. [85] studied the effect of HS on fat deposition in two genetic
chickens. Their results showed that the effects of HS were breed-dependent, with increased
abdominal and intermuscular fat deposition compared to other types [94]. Lipid oxidation,
the process by which meat lipids oxidize and interact with other meat components, causes
meat degradation and undesirable nutritional effects [99]. In this context, HS accelerates
protein denaturation processes and cell death, leading to the accumulation of ROS and
continuous oxidative damage in tissues [100]. Thus, HS damages or destroys mitochondria,
causing subsequent changes in energy metabolism pathways. It is now widely accepted
that the metabolic changes in energy substance could alter the meat quality attributes in
broiler chickens [101].

El-Tarabany et al. [102] showed that HS significantly increased the percentage of
abdominal fat in broiler chickens. The prolonged HS significantly increased the contents of
saturated fatty acids (SFA) (myristic and palmitic) in the breast and thigh muscles of broiler
chickens. Meanwhile, chronic HS decreased the concentrations of monounsaturated fatty
acids (MUFA) (myristoleic, palmitoleic, and oleic) in the breast and thigh muscles of the
broiler. Moreover, HS significantly decreased the concentration of polyunsaturated fatty
acids (PUFA) (linoleic, docosahexaenoic, and eicosapentaenoic) in breast and thigh muscles.

Pig meat was also denatured due to HS. In lean pigs, it has been reported that in-
creased levels of MUFA in Longissimus and lower ratio PUFA/SFA in the gluteus after
exposure to hot ambient temperature [103,104]. HS has been reported to activate myofas-
cial phospholipase and phosphatidylinositol phosphate kinase for a short time when the
ambient temperature rises above 25–35 ◦C [105]. The impact of short-term HS on lamb
showed an increase in muscle omega-6 fatty acid concentration from short-term heat stress
may induce oxidative stress via proinflammatory action [6].

7. Mineral Composition

Less is known about the impact of animal HS conditions on meat mineral content and
its distribution. Under stressful conditions, the acid-base balance of blood is disturbed
in heat-stressed animals [106]. The alteration of electrolyte status must be resolved by
mineral supplementation. Further, mineral supplementation is necessary because HS can
lead to oxidative damage. In general, micronutrients’ ability to enhance performance under
heat conditions depends on the species and the physiological stage within each species
(growing or breeding animals). In warmer environments, animals consume less food and
consequently less mineral intake. In addition, thermoregulatory responses during HS
may also influence mineral requirements. The principal pathways of heat loss during
heat stress are sweating and panting. Bovines lose a significant amount of minerals via
sweat (especially potassium and sodium). As reviewed by Beede and Collier [107] in
lactating animals under HS, potassium, and sodium supplementation more than National
Research Council (NRC) recommendations resulted in a 3–11% increase in milk production.
Electrolyte supplementation (ammonium chloride, potassium chloride, and/or sodium
bicarbonate) in potable water or feed decreases the adverse impact of HS in broilers [108].
Nevertheless, the magnitude of the impact of electrolytes relies on the electrolyte balance
of the diet [109,110].

In heat-stressed cows, reduced blood bicarbonate concentration because of respiratory
alkalosis compromises the buffering capacity of the rumen. Exposure to HS in chickens
leads to decreased feed intake, feed efficiency, and weight gain [111,112]. Once domestic
poultry (including ducks) are exposed to HS, their hematological index decreases [113]. In
addition, it has been reported that HS could generate altered calcium (Ca2+) homeostasis in
skeletal muscle which could be the result of a disruption of several critical functions [114].
Heat stress induced an elevation in zinc (Zn) levels, which was independent of the restric-
tion of dietary intake. Although the cause of the increased zinc content in heat-stressed
pork meat is unknown, it is beneficial to consumers as zinc intake is essential for human
health due to its role in cell division and growth, making it a significant nutritional factor
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in enzyme systems, immune and reproductive function, gene expression, and antioxidant
defense [115].

8. Antioxidant Status

The body has enzymatic antioxidants (viz., superoxide dismutase, glutathione per-
oxidase, and catalase) to protect ROS generated due to HS. It is well known that HS is
associated with impaired meat quality and the disruption of redox balance [104,116]. In
this context, many studies have reported that prolonged HS has a profound effect on
muscle metabolism [20,117]. These effects are associated with increased oxidative reactions
and the generation of ROS. This disrupts the redox balance that ensures skeletal muscle
stability and maintains meat quality [118,119]. Agarwal and Prabhakaran [120] showed
that superoxide dismutase (SOD) along with catalase (CAT) and glutathione peroxidase
(GPx) scavenges both intracellular and extracellular superoxide radicals and prevents lipid
peroxidation (Figure 1).
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Figure 1. Schematic representation showing the relationship between HS and ROS [121]. GA: ganoderic
acid, HSPs: heat shock proteins, ROS: reactive oxygen species, SOD: superoxide dismutase, CAT: catalase,
NAC: N-acetyl-l-cysteine, VC: ascorbic acid, APX: Ascorbate Peroxidase.8.1. Lipid Oxidation.

Lipid oxidation not only negatively influences the sensory characteristics but also the
functional characteristics of meat. Studies have shown that high ambient temperatures
initiate lipid oxidation in cell membranes. The oxidation of lipids is a significant problem,
producing off-flavors and often overcooked flavors in meat [9,122]. The major effects of
lipid oxidation on meat quality include changes in odor, color, taste, and texture, adverse
effects on functional properties such as protein solubility and WHC, and a decline in
the bioavailability of some nutrients [123,124]. A study investigating the effects of HS
on lipid oxidation in duck meat showed that HS significantly increased lipoxygenase
activity and thiobarbituric acid-reactive substances and decreased the content of free
unsaturated fatty acids in duck meat [125]. In addition, a similar report on broilers showed
that the lipid oxidation content in meat significantly increased under HS, accompanied
by enhanced activities of antioxidant enzymes [126]. Previous studies showed that HS
accelerates the oxidation of muscle tissue causing changes in the pro-oxidant/antioxidant
balance and compromising meat quality in pigs [104], broilers [127,128], lambs [129–131],
rabbits [132,133], and beef [134].
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Antioxidant Enzyme Activity

Antioxidant enzymes play an important role in the detoxification of superoxide rad-
icals, thereby protecting cells from free radical damage [135]. During HS conditions,
disturbances in the electron transport chain within the membrane lead to the rapid genera-
tion of ROS, disrupting physiological and biochemical mechanisms occurring within the
cell [136]. HS shifts the antioxidant-free radical equilibrium towards more free radicals [21].
According to Zhang et al. [20] and Wang et al. [51], HS accelerates the oxidation of muscle
tissue. A previous study by Li et al. [137] revealed that the changes in antioxidant enzyme
activity are closely associated with high temperature (Table 2). Superoxide dismutase
(SOD), catalase (CAT) activity, malondialdehyde (MDA) levels, and total antioxidant ca-
pacity (T-AOC) were increased in broiler livers exposed to high temperatures [112,138,139].
A study by Zeng et al. [112] showed alterations in SOD, MDA, CAT, and T-AOC, and an
increase in the activities of SOD, CAT, and T-AOC, after HS. Akbarian et al. [140] reported
that after acute HS, the activity of antioxidant enzymes (CAT, GSH-Px, and SOD) is greatly
increased to protect cells from excessive superoxide formation.

Table 2. Variation of antioxidant enzymes activity under heat stress.

Antioxidant Enzyme. Animal Species Effects of HS References

Antioxidant capacity (T-AOC)
Lambs Increased [129]
Broilers Increased [128]
Rabbits Accelerated [132]

Superoxide dismutase (SOD)

Pigs Enhanced [104]
Broilers Increased [141,142]
Goats High [135]
Beef High [134]

Catalase (CAT)
Pigs Stimulated [104]

Broilers Increased [142]
Lambs Increased [129]

Malondialdehybe (MDA) Pigs Elevated [104]
Broilers Increased [138]

Glutathione Peroxidase (GPx)
Pigs Low activity [139]

Broilers Increased [142]
Japanese quail Decreased [143]

9. Conclusions

This review summarizes the effects of HS on the properties and physicochemical com-
ponents of meat and its antioxidant status. It is well known that HS is inevitable in modern
animal husbandry, from farm to slaughterhouse. It is well known that different climate
conditions have important effects on the organic and inorganic components of meat. HS
potentially affects meat quality via the influence of HS on postmortem muscle pH decline
rate and ultimate pH (pHu), water holding capacity, or meat color. In addition, it showed
a variable meat quality performance during higher temperatures in different species and
breeds of animals. For example, ruminant (lamb, beef) meat had lower brightness and
higher terminal muscle pH values during extreme heat, as did dark, firm, and dried meat
(DFD). Several new phenomena and mechanisms for changes in meat quality under HS
conditions have also been reported, explaining different effects on carcass quality attributes
and meat quality attributes, and reducing economic losses for producers and consumers.
The effects of heat stress can be mitigated by good farming practices, taking good precau-
tions, and good management. Genetic development and reproductive measures, physical
environment modifications, and dietary management are the most important strategies to
mitigate heat stress.
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