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Abstract: 5-bromopyridine-2,3-diamine reacted with benzaldehyde to afford the corresponding 6-
Bromo-2-phenyl-3H-imidazo[4,5-b]pyridine (1). The reaction of the latter compound (1) with a series
of halogenated derivatives under conditions of phase transfer catalysis solid–liquid (CTP) allows
the isolation of the expected regioisomers compounds (2–8). The alkylation reaction of (1) gives,
each time, two regioisomers, N3 and N4; in the case of ethyl bromoactate, the reaction gives, at
the same time, the three N1, N3 and N4 regioisomers. The structures of synthesized compounds
were elucidated on the basis of different spectral data (1H NMR, 13C NMR), X-Ray diffraction and
theoretical study using the DFT method, and confirmed for each compound. Hirshfeld surface
analysis was used to determine the intermolecular interactions responsible for the stabilization of the
molecule. Density functional theory was used to optimize the compounds, and the HOMO-LUMO
energy gap was calculated, which was used to examine the inter/intra molecular charge transfer. The
molecular electrostatic potential map was calculated to investigate the reactive sites that were present
in the molecule. In order to determine the potential mode of interactions with DHFR active sites, the
three N1, N3 and N4 regioisomers were further subjected to molecular docking study. The results
confirmed that these analogs adopted numerous important interactions, with the amino acid of the
enzyme being targeted. Thus, the most docking efficient molecules, 2 and 4, were tested in vitro for
their antibacterial activity against Gram-positive bacteria (Bacillus cereus) and Gram-negative bacteria
(Escherichia coli). Gram-positive bacteria were more sensitive to the action of these compounds
compared to the Gram-negative, which were much more resistant.
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1. Introduction

Today, infectious diseases caused by bacteria, fungi, viruses and parasites remain a
major threat to public health and a challenge to world’s scientific community [1]. Antibiotic
substances are molecules derived from secondary metabolism which have been particularly
studied because of their importance in human therapy [2]. Since their discovery by Fleming
in 1928 [3], antibiotics have become indispensable to the current system of health, helping
and supplementing the functioning of the immune system against pathogenic microbes.
Since then, humankind has had historic success in controlling morbidity due to infectious
diseases through antibiotic therapy. Following the abusive use of chemo-therapeutic agents,
microorganisms, through their potential to mutate, generate resistance mechanisms to
the known classes of antimicrobials [4]. This has become a serious problem in recent
years [4], and presents a continuous clinical challenge. Thus, the pressing need for new
effective classes of antimicrobials with new modes of action remains necessary and all
possible strategies should be explored. However, strategies to address this challenge include
designing improved versions of already known classes of antimicrobials or designing new
classes of molecules based on the enormous potential of natural products.

Pharmacological and therapeutic activities that present a variety of heterocyclic
molecules containing an imidazo[4,5-b]pyridine pattern have greatly aroused the interest of
researchers for the development of new routes to such compounds. They have often been
defined as precursors in the synthesis of a variety of therapeutic agents. Indeed, they are
endowed with anticancer [5–8], antimitotic [9] and tuberculostatic properties [10]. Recently,
studies have shown that imidazo[4,5-b]pyridine derivatives can be evaluated as antagonists
of various biological receptors AT1 and AT2, including angiotensin II [11] and thromboxane
A2 [12]. Thus, some of those skeletons have, in particular, been introduced into structures of
antibacterial agents [13] such as 2,6-Bis-(4-chloro-phenyl)-1-[2-(3H-imidazo[4,5-b]pyridin-2-
yl)-ethoxy]-3,5-dimethyl-piperidin-4-one (Figure 1), a powerful antibacterial agent against
Bacillus and Staphylococcus aureus. It also has antimycotic activity against Aspergillus
flavus [14]. The best-known example of this family is tenatoprazole, used for the treat-
ment of gastric and duodenal ulcers due to its inhibitory activity of the proton pump [15]
(Figure 1).
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Based on all the previous information, and in the interests of synthesizing new antimi-
crobial agents, we chose, in this work, to synthesize new imidazo[4,5-b]pyridine derivatives
(1) on which we have introduced modifications using the N-alkylation reaction, under
conditions of phase transfer catalysis solid–liquid [16] with a series of halogenated com-
pounds such as Benzyl and ethyl ethanoate, known for their biological activities [17–23].
Theoretical calculations were performed by the DFT [24–26] to explain reasons that manage
the alkylation reactions of imidazopyridine (1), and then synthesized compounds were
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characterized by spectroscopic techniques such as 1H NMR, 13C NMR and X-Ray diffrac-
tion. In addition, some of those compounds were evaluated for their antibacterial activities
in vitro against Escherichia coli and Bacillus cereus bacteria.

2. Results and Discussion
2.1. Chemistry

Among the derivatives of 2,3-diaminopyridine, 5-bromo-2,3-diaminopyridine appears
as a potentially important synthon involved in the synthesis of imidazo[4,5-b]pyridine [27].
Indeed, the condensation of this compound with the benzaldehyde led to the formation of
the expected imidazo[4,5-b]pyridine derivative (1) (Scheme 1).
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Scheme 1. Synthetic route of 6-Bromo-2-phenyl-3H-imidazo[4,5-b]pyridine (1) and their conditions:
(i) Reflux EtOH, I2, 24 h.

The alkylation reactions of imidazo[4,5-b]pyridine are very important pathways in
the synthesis of some new imidazo[4,5-b]pyridine derivatives. In a continuation of our
ongoing work devoted to the preparation and application of new imidazo[4,5-b]pyridine
derivatives [28–31], we report here the synthesis of new imidazo[4,5-b]pyridine derivatives
by the action of (1-(chloromethyl) benzene, 1-(bromomethyl)-4-methylbenzene and ethyl
2-bromoacetate on the 6-bromo-2-phenyl-3H imidazo[4,5-b]pyridine under phase transfer
catalysis conditions. The reaction led to effects on two positions: the nitrogen at position 3
(N3) and at position 4 (N4). On the other hand, the action of ethyl 2-bromoacetate affected
the nitrogen atom in the first position (Schemes 1–4).

We continued our experiments to apply this method for the preparation and the study
of the antimicrobial activity of imidazo[4,5-b]pyridine derivatives.

The tautomeric form present in the imidazo[4,5-b]pyridine skeletons (1) made this
system more diversified, and the condensation of 6-Bromo-2-phenyl-3H-imidazo[4,5-
b]pyridine with 1.2 equivalents of alkyl halides under (PTC) conditions led to effects
on two positions: the nitrogen at position 3 (N3) and at position 4 (N4), (Schemes 2 and 3).
ON the other hand, the action of ethyl 2-bromoacetate affected the nitrogen atom in the first
position (Scheme 4). All the obtained compounds (2–8) were purified by column chromatog-
raphy and isolated with good overall yields (10–49%). The molecular structures of the new
compounds were established on the basis of the NMR spectroscopic data (Figures S1–S6;
Supplementary Materials), mass spectrometry and XRD single crystal for 2 (Scheme 2).
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2.1.1. Crystallographic Data

Studies on the crystallographic data of compound (3) show that alkylation took place at
the third position [32]. Additionally, the crystallized form for 3 and 6 is a monoclinic system
(Figure 1, Tables S1–S3; Supplementary Materials). Moreover, the H-bond interactions for
compounds 3, 6 and 8 are listed (Figure 1, Table S4; Supplementary Materials). Furthermore,
the crystallographic study for compound (3) confirms well that alkylation took place at the
fourth position (Figure 1). Therefore, the synthesis of the imidazopyridine skeletons was
confirmed [33] by a crystallographic study performed for compounds 3 and 6 (Figure 2):
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2.1.2. The Hirschfield Profile for Molecular Packing

All intermolecular patterns and Hirschfield-surfaces “HF” that shared in the stabi-
lization of 3, 6 and 8 molecular packing were mapped in Figures 3–5. The dnorm was
calculated as (dnorm = (di − rvdWi)/rvdWi + (de − rvdWe)/rvdWe) [34]. The rvdWi
and rvdWe were related to the tightest interaction between internal and exterior particles
morphology through VanderWaals radii. The “+” dnorm accepts short rvdW, but lengthy
rvdW have “−” value. The correlation between the “de and di” of the HF for 3, 6 and 8
was obtained using the crystal explorer [35].

3D–HF for molecule 3 is mapped in Figure 3, over (0.1866 Å to 8.1945 Å) for dnorm,
(1.6.17 Å to 6.6658 Å) for di, (1.2618 Å to 11.0466 Å) for de, (−1.00 Å to 1.00 Å) for shape-
index, (−4.00 Å to 4.00 Å) for curvedness and (0.00 Å −3.00 Å) for patch fragment, re-
spectively. The red area in the dnorm fingerprint represents the H-interactions, which
extend beyond the vdWs-radii. Molecule 3 was packed by the shortest interactions for
Br•••N/N•••Br (0.4%) and Br•••C/C•••Br (2.7%), while the highest interactions at
Br•••H/H•••Br (25.4%) and C•••H/H•••C (17.1%) contacts contributed in the crystal
packing. H•••H are the most prevalent, with 47.5% of the region covered by the maps.
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3D–HF for molecule 6 is mapped in Figure 4, including (0.166 Å to 1.4059 Å) for
dnorm, (0.9196 Å to 2.637 Å) for di, (0.9176 Å to 2.5592 Å) for de, (−1.00 Å to 1.00 Å) for
shape-index, (−4.00 Å to 4.00 Å) for curvedness and (0.00 Å −15.00 Å) for patch fragment,
respectively. The shortest interactions were for Br•••C/C•••Br (0.6%) and N•••C/C•••N
(2.7%). The Hydrogen contacts signified by a red area for the dnorm fingerprint were more
intense than the radii of vdWs, as H . . . C/C . . . H (13.5%), O•••H/H•••O (9.3%) and
N•••H/H•••N (10.8%) contacts contributed to the 6 molecule for the crystal packing.
H•••H contacts were the most dominant, with 40 % from the whole maps area, while
π•••π interaction contributed to crystal packing by (6.8%).
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Compound 8 in (Figure 5) included (0.166 Å to 1.4059 Å) for dnorm, di (0.9196 Å to
2.637 Å) for di, (0.9176 Å to 2.5592 Å) for de, (−1.00 Å to 1.00 Å) for shape-index, (−4.00 Å to
4.00 Å) for curvedness and (0.00 Å −15.00 Å) for patch fragment, respectively. The shortest
interactions were for Br•••C/C•••Br (2.6%) and N•••C/C•••N (1.6%). The Hydrogen
contacts as red zone, which were represented in dnorm fingerprint, had interactions of
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higher intensity than the vdWs radii, as H . . . C/C . . . H (13.5%), O•••H/ H•••O (9.3%)
and N•••H/H•••N (10.8%) contacts contributed to the crystal packing. The H•••H were
the most dominant, with 40.9% from the whole maps area, while the π•••π interaction
contributed to crystal packing by (6.8%).
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Si is a sensitive indicator of any lattice shape deviation (Figures 3–5). Red triangles
are used to symbolize the concave region, which was located on the particle’s upper plane,
indicating 6-bromo-2-phenyl-3H-imidazol outside of the surface for 3, 6 and 8. The triangles
with blue highlights show the location of the phenyl fragment on the superficial exterior. SI
data were in agreement with the 2D pattern. The morphology for the particles’ surface for
3, 6 and 8 was studied, together with the crv fingerprint, which separated into dual patches
of curvature due to the connections between nearby molecules.
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2.2. Molecular Modelling Study
2.2.1. Tautomerization Structure and Optimization Geometry

Imidazo[4,5-b]pyridine for 1a–1d tautomerism is an important key for chemical and
biochemical investigations. Tautomerism, isomerism, and opening–closing heterocyclic
rings are present in many medications, and they play a significant part in drug development
for biomolecules with biological activity [36]. All potential tautomer-structures for 1
molecule were optimized by DFT/ B3LYP/6311G** (Figure 6). The 1 canonical structure
with (−220.652 kcal/mole) was considered to have the lowest minimization energy with
the utmost stable tautomer form. The calculated total energy values are corrected by
obtained zero-point energy. One can arrange the order of stability as 1c < 1b < 1a < 1d < 1.
The H atom, which attached to N of imidazole in position three, is preferable to one in
postion 4 and N of pyridine. The bonding of the movable H to pyridine (1) was most stable
form (Figure 6). The presence of the pyridine group closer to imidazole led to a decreased
lengthening bond between imidazole and the phenyl scaffold, and hence a stronger holding
of the phenyl ring and more ability for interaction during the chemical reaction. The
dihedral angles were asymmetrical for both NH, owing to the electrostatic repulsive
interactions with the neighboring hydrogens. Thus, we could manage the alkylation
reactions of imidazopyridine (1).
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Figure 7 showed the electron density of the compound (1), which illustrated that the
negative charge localized on the nitrogen atom at the third position was greater than that at
the fourth position, while the negative charge shown on nitrogen at the first position was
the lowest. These results explain the difference in reactivity of the various nitrogen atoms
of compound (1) towards the carbocations.
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The optimizations of the energies obtained for each pair of regioisomers (third and
fourth positions) are grouped in Table 1. From an energy standpoint, in Table 2, we found
that imidazopyridines alkylated at the third position were more stable than their analogues
alkylated at the fourth position when the alkylating agent was not bulky or so far away. In
fact, (3) and (5) alkylated by the benzyl derivatives at the fourth position were more stable,
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respectively, than (2) and (4) alkylated in the third position, which explains that the volume
of carbocation directs the alkylation towards the pyridine nitrogen because of the steric
gene created with phenyl in the second position. Practically, the yields of regioisomers
(2) and (4) alkylated at the third position were almost equal to yields of regioisomers
alkylated in the fourth position. Therefore, theoretical results are in good agreement with
the experimental findings.

Table 1. Total energies of all synthesis imidazo[4,5-b]pyridine derivatives (2–8).

Compound Alkylated
at Third Position

Energy E3
(Kcal/mol.)

Compound Alkylated
at Fourth Position

Energy E4
(Kcal/mol.)

Compound Alkylated
at First Position

Energy E1
(Kcal/mol.)
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Table 2. Energetic chemical descriptors for 1–8 derivatives.

HOMO LUMO ∆ε η S IP µ χ ω ∆Nmax

1 −0.225 −0.053 0.173 0.086 11.563 0.225 −0.095 −0.139 0.292 −0.803

2 −0.216 −0.082 0.135 0.067 14.819 0.139 −0.115 −0.149 0.403 −1.104

3 −0.224 −0.073 0.151 0.075 12.806 0.159 −0.110 −0.148 0.345 −0.935

4 −0.228 −0.054 0.174 0.087 11.480 0.228 −0.097 −0.141 0.299 −0.810

5 −0.237 −0.060 0.177 0.089 11.271 0.237 −0.104 −0.148 0.322 −0.836

6 −0.220 −0.115 0.105 0.053 18.993 0.148 −0.141 −0.167 0.616 −1.590

7 −0.223 −0.101 0.122 0.061 16.442 0.169 −0.131 −0.161 0.510 −1.329

8 −0.222 −0.080 0.142 0.071 14.081 0.148 −0.115 −0.151 0.398 −1.065

2.2.2. Analysis of Frontier Molecular Orbitals’ FMOs and Electronic Reactivity Descriptors

The DFT/B3LYP/6311G** was applied to compute the energy gap “∆ε” for 1–8
molecules using distribution shapes along the following orbitals: HOMO“donating electrons”
and LUMO“accepts electrons” (Figure 4). The ∆ε was able to determine a molecule’s kinetic sta-
bility before simulating its chemical reactivity [37]. Imidazo[4,5-b]pyridine with a high ∆ε

has a hardness quality “η” and is a good nucleophile; the pyridine system with a low ∆ε is
a soft hybrid and an excellent electrophile ω (Table 2). In addition, the ionization potential
(IP), electronegativity “χ” and global electrophilicity “ω” were estimated as additional
electronic characteristics related to energy gap, and are shown in Table 2. The calculated
∆ε = 0. 105 to 0.177 au. for 6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridine hybrids 1–8 and
the reported biomaterials values were harmonized [38]. HOMO was distributed in 1–8
over the phenyl-3H-imidazo[4,5-b]pyridine fragment. These orbitals transferring into the
LUMO orbital over the imidazole center (Figure 8). The HOMO→LUMO orbital transfer
in 1–8 took place over the phenyl-3H-imidazo[4,5-b]pyridine Skelton. In compound 8, the
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HOMO and LUMO orbitals shielded between phenyl-3H-imidazo[4,5-b]pyridine and the
pyridine fragment.
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Figure 8. HOMO and LUMO orbitals for phenyl-3H-imidazo[4,5-b]pyridine derivatives that were
simulated by TD-DFT/B3LYP/6-311G** using 0.032.

In addition, ω had a low value of between 0.292 and 0.616 au., which directed the
powerful stabilization efficiency which was produced from the electrons in outer space.
Compounds 2, 4 and 6 had more stabilization than 3, 5, 7 and 8. The qualifications value
for η exhibited a low aptitude transformation of electronic current to distortion direction.
As expected [39], the anticancer efficiency for biomolecules renationalized directly with the
antioxidant power, which was related to the small value of the ionization potential (IP) [38].
The molecule had scavenging ability due to the transfer one electron mechanism, and a
healthier antioxidant [39]. The antioxidant power rose as the IP value dropped. The tested
compounds showed a low IP = 0.139 to 0.237 au.

2.2.3. Molecular Electrostatic Potential “MEP” Fingerprint

MEP is a signature for the polarization of the outer electrons and the distribution
of those electrons in relation to the molecular environment’s reactivity and ability to
interact with H-atoms. Additionally, it provides complete information on electrophilic and
nucleophilic chemical locations. As a result, we can graphically determine the statistical
polarity through variations in color; see Figure 9, which served to distinguish the polar
(“−” charge as red color) and nonpolar (“+” charge as blue color) molecular zones. The
green zone was noted as having a potential that was halfway between the dual red and
blue. The order of red, yellow, blue and green rose as electrostatic potential levels changed
in the colors’ distribution on MEP (Figure 9). The electron distribution supported the idea
that the compounds 1–8 were able to attack the DHFR bacterial enzyme based on size and
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shape. Figure 9 showed that the yellow region condensed over the imidazole ring in all
hybrids, which caused an increase in the electrophilicity effect. The blue highlight extended
over the substant of imidazole for all compounds, which activated the nucleophilicity of
the pyridine cores, which handle the substrate’s capacity to identify the binding site via
electrostatic interaction with the receptor.
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2.3. Molecular Docking Profile

To verify the relationship between the biological findings in vitro and the interaction
affinities of the investigated hybrids, the docking analysis of the most active derivatives,
2, 4 and 6, was assessed to identify their binding mode inside the (PDB: 1DLS) [40] and
DNA gyrase (PDB; 4uro [41–43]) active sites, as well as the structural orientation and
conformation. The docking steps were applied as in a previously reported method [44,45].
The 3D loop of dihydrofolate-reductase “DHFR” was created using the mGenTHERADER,
which utilized the docking framework. Herein, we established the toxicity behavior in
binding energy BE terms for the tested compounds over DHFR and DNA gyrase receptors,
then compared with reference inhibitors (Methotrexate and Novobiocin). The investigated
compounds were re-docked, and achieved a root mean square deviation (RMSD) of less
than 2 Å.

The Methotrexate targeted vital amino acids (GLU30, ILE7, VAL115, LYS 68, ARG70,
LYS68, ARG70, ILE7 and PHE34) in the DHFR binding pocket. Novobiocin interacted with
important amino acids residues (ASN54, GLU58, Pro87, ASP81, ASP89 and ARG144) in the
DNA gyrase active site.

The binding efficiency “∆E” was evaluated using the fingerprint interaction between
ligand and protein (PLIF). Table 3 shows all of the docking experiment’s energy values. The
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poses were generated by the “Oples3e” molecular mechanics force-field. In order to assess
the binding affinities of 1–8 molecules, the pose which had the lowest “∆E and RMSD” was
chosen. To further validate the “∆E”, the inhibitory constant “Ki” and ligand-efficiency
“LE” were computed [46].

Table 3. The binding affinity (kcal/mol) for 1–8 against different proteins, including DHFR and DNA
gyrase with reference inhibitors Methotrexate and Novobiocin.

∆E rmsd H.B EInt. E_ele LE Ki ∆E rmsd H.B EInt. E_ele LE Ki

1 −5.45 1.34 36.07 −16.26 −10.64 −11.83 2.47 −5.978 1.396 34.336 −13.795 −8.124 −11.829 2.471

2 −7.00 1.95 38.57 −22.93 −9.34 −7.24 1.98 −6.272 1.243 74.826 −21.907 −9.019 −7.242 1.980

3 −6.52 1.58 81.36 −18.78 −7.49 −4.67 1.54 −5.858 1.081 36.965 −15.246 −8.351 −4.666 1.540

4 −8.44 1.46 32.85 −25.31 −8.15 −6.14 1.81 −6.020 1.030 81.941 −18.905 −9.377 −8.654 2.158

5 −6.67 1.88 44.24 −17.35 −9.50 −8.65 2.16 −5.762 1.374 44.248 −21.344 −9.142 −5.655 1.733

6 −7.86 1.29 18.08 −24.58 −7.07 −4.19 0.94 −6.116 3.687 55.830 −18.595 −8.311 −6.928 1.936

7 −6.35 1.12 52.20 −22.09 −10.31 −5.66 1.73 −6.391 2.993 49.144 −14.564 −8.344 −4.769 1.562

8 −6.53 1.71 35.38 −14.32 −8.29 −1.17 1.94 −6.822 1.409 36.965 −18.855 −8.942 −1.168 0.155

Ref. −7.85 1.68 −203.76 −27.82 −10.09 −6.58 1.88 −7.240 1.372 25.581 −21.869 −9.444 −6.138 1.815

∆G: Free binding energy of the ligand from a given conformer, E.Int.: Affinity binding energy of hydrogen
bond interaction with receptor, H.B.: Hydrogen bonding energy between protein and ligand. Eele: Electrostatic
interaction with the receptor, L.E.: Ligand efficacy. Ki: inhibition constant.

Structurally, the tested derivatives possessed the imidazo[4,5-b]pyridine backbone.
The chief difference between the chemical structures lay in the alkylation site, which could
play a crucial role in its biological activities. The ∆E variation with regard to DHFR and
DNA gyrase, as seen in the present investigation, may be caused by structural variations.

The Methotrexate “original inhibitor” against DHFR displayed a binding energy of
∆E = −7.85 kcal/mol with Ki = 1.88 A, through two H-bonds sidechains with Arg91
and Ser92. The binding efficiency was arranged for most active compounds as 4 > 6 > 1,
with a promising inhibition constant ranging between 2.16 and 1.98. Molecule 2 showed
∆E = −7.00 kcal/mol, and was stabilized in the binding site by the arrangement of the iIle
60 with the imidazole ring with perpendicular mode through the formation of a sticky π–π
bond. 6-bromo-2-phenyl-3-(p-tolyl)-3H-imidazo[4,5-b]pyridine (2) formed an extra π–π
bond with Tyr22, while ethyl 6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridine-3-carboxylate
(6) formed two strong H-bonds with Asn64 and Arg70 (Figure 10). In addition, all the
bioactivity metrics LE and Ki were within a normal range for 1–8 [47]. It can be inferred
that the molecular docking encourages us to perform antimicrobial activity against most
binding efficiencies in the docking experiment.

The original inhibitor Novobiocin displayed a binding energy of ∆E = −7.24 kcal/mol
with Ki = 1.88 A against DNA gyrase, through an H-bonds sidechain with Pro87 and a π–π
interaction with Arg144. The binding efficiency was arranged for most active compounds
as 6 > 4 > 1, with a promising inhibition constant ranging between 2.19 and 1.93. Molecule
2 showed ∆E = −6.27 kcal/mol, and was stabilized in binding site by the arrangement of
the Pro87 with the imidazole ring in perpendicular mode through the formation of a sticky
π–π bond. 6-bromo-2-phenyl-3-(p-tolyl)-3H-imidazo[4,5-b]pyridine (2) formed an extra
H-bond with Arg144, while compound 6 formed a π–π bond with Pro87 (Figure 10). In
addition, all the bioactivity metrics of LE and Ki were within a normal range for 1–8 [47]. It
can be inferred that the molecular docking encouraged us to perform antimicrobial activity
against most bending efficiencies in the docking experiment.
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2.4. Biological Activity

Many pharmaceutical compounds have two or more space isomers. The pharmacolog-
ical activity of racemic pharmaceutical preparations is usually associated with the effect
of only one regioisomer [48]. In this work, we chose to perform the antibacterial test on
imidazo[4,5-b]pyridine derivatives N3-alkylated from each reaction (4 and 6) towards two
different classes of bacterial strains (Gram-positive bacteria (Bacillus cereus) and Gram-
negative bacteria (Escherichia coli)).The table below shows the activity of tested products 4
and 6 (Table 4). The detection of the antibacterial capacity of synthesized products was car-
ried out by the disk diffusion method. The results obtained from this activity are illustrated
in the form of the presence or absence of inhibition zones (Table 4).

Table 4. Inhibitory activity of imidazo[4,5-b] pyridine derivatives (4 and 6).

Products
Strains

B. cereus E. coli

(4) + -

(6) + +
+ Presence of inhibition halo, - absence of inhibition halo.

For the tested products, B. cereus was more sensitive to the action of all products
compared to E. coli, which was much more resistant, with a total growth in the presence
of product (4). Only product (6) was able to inhibit the growth of E. coli. The antibacterial
activity against the studied strains was evaluated by observing their inhibitions in direct
contact with the products tested at different concentrations, using the microdilution method.
The MIC values are set out in Table 4.

As can be seen from Table 5, compound 2 had antimicrobial power to varying degrees
depending on the microbial strain tested. Among the two tested strains, it is interesting to
note that B. cereus was the most sensitive against all the studied compounds, in particular
(2), which exerted the strongest inhibitory effect with a minimum inhibitory concentration
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of 0.07 Mg/mL and 0.315 mg/mL, respectively, which confirms the results obtained by the
agar diffusion method.

Table 5. In vitro antibacterial activity of imidazo[4,5-b]pyridine derivatives (4 and 6).

Concentration
mg/mL

4 6

B. cereus E. coli B. cereus E. coli

5 - + - -

2.5 - + - -

1.25 - + - +

0.625 - + - +

0.312 - + - +

0.15 - + + +

0.07 - + + +

0.03 + + + +

0.01 + + + +

0.005 + + + +

0.0025 + + + +

3. Materials and Methods
3.1. Chemistry

The characterization of the prepared imidazopyridine derivatives by 1H NMR (300 MHz)
and 13C NMR (75 MHz) spectra were recorded on Bruker spectrometers using CDCl3 and
DMSO-d6 as solvents. The coupling constants (J) were expressed in Hertz (Hz). Multiplici-
ties are reported as follows: singlet (s), doublet (d), doublet of doublets (dd), triplet (t) and
multiplet (m). Melting points (mp) were recorded on a Kofler bench, and were not corrected.
Flash chromatography was conducted using flash silica gel 60 (Merck 230–400 mesch). TLC
(thin layer chromatography) was used to monitor the reaction progress.

Synthesis of 6-Bromo-2-phenyl-3H-imidazo[4,5-b]pyridine (1):
To 5.31 mmol of 5-bromo-2,3-diaminopyridine (1 g) dissolved in 40 mL of ethanol

(EtOH), 5.84 mmol of benzaldehyde (0.6 mL) was added dropwise, and 0.531 mmol of
diiodide (0.09 g). The solution was brought to reflux with magnetic stirring (90 ◦C). Over
24 h, a brown solid was formed, filtered and washed 3 times with distilled water and then
dried in an oven.

Brown solid, m.p > 260 ◦C, Rf: 0.48 (eluent: ethyl acetate/hexane (1/2)), Yield: 80%,
1H NMR (DMSO-d6) δppm: 8.42–7.57 (m, 7H, (2Hpyr + 5Harom)); 13.76 (s, 1H, N-H). 13C
NMR (DMSO) δppm: 113.43 (Cq); 127.39, 127.55, 129.54, 131.40, (CHAr); 129.22, 129.54,
129.66 (Cq).
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General alkylation procedures of 6-Bromo-2-phenyl-3H-imidazo[4,5-b]pyridine:
Then, 0.9 mmol of 6-bromo-2-phenylimidazo[4,5-b]pyridine (0.25 g), 20 mL of DMF

and 1.35 mmol of K2CO3 (0.186 g) were placed in a two-necked round bottom flask
equipped with a magnetic stirrer with stirring for 5 min; next, 0.18 mmol of tetra-N-
butylammonium bromide (t-BAB) (0.058 g) was added, and then 1.08 mmol of appropriate
mono-halogenated compounds including (1-(chloromethyl) benzene, 1-(bromomethyl)-4-
methylbenzene and ethyl 2-bromoacetate. The reaction was brought to room temperature
for 6 h. After the removal of salts by filtration, DMF was evaporated under pressure
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and the residue obtained was dissolved in dichloromethane. The rest of the salts were
removed by washing the organic phase three times with distilled water, and the traces of
water in the organic phase were eliminated by the desiccant Na2SO4. After filtration, the
dichloromethane was evaporated (not to dryness) and the product obtained was separated
by chromatography on a column of silica gel (eluent: ethyl acetate/Hexane (1/2)). Our
alkylated products were isolated.

3-Benzyl-6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridine (2)
Yellow solid, m.p = 74 ◦C, Rf: 0.64 (eluent: ethyl acetate/hexane (1/2)), Yield: 43%,

1H NMR (CDCl3) δppm: 5.64 (s, 2H, CH2); 6.97–6.99 (m, 2H, HAr); 7.52–7.57 (m, 3H, HAr);
7.22–7.28 (m, 3H, HAr); 7.74–7.77 (m, 2H, HAr); 8.46 (d, 1H, HAr, J = 1.8 Hz); 8.49 (d, 1H,
HAr, J = 2.1 Hz); 13C NMR (CDCl3) δppm: 46.83 (C, CH2); 114.09 (Cq); 126.67, 127.98, 129.20,
129.35, 129.39, 129.76, 129.80, 131.10 (CHAr); 136.31, 137.07 (Cq); 144.68 (CHAr); 147.88,
156.00 (Cq).
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Colorless crystals, m.p = 120 °C, Rf: 0.6 (eluent: ethyl acetate/hexane (1/2)), Yield: 49%, 
1H NMR (CDCl3) δppm: 1.22 (t, 3H, CH3); 4.23 (m, 2H, (CH2-O)); 5.07 (s, 2H, N-CH2); 7.74–
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Ethyl 2-(6-bromo-2-phenyl-3H-imidazo[4,5-b]pyridin-3-yl)acetate (6):
Colorless crystals, m.p = 120 ◦C, Rf: 0.6 (eluent: ethyl acetate/hexane (1/2)), Yield:

49%, 1H NMR (CDCl3) δppm: 1.22 (t, 3H, CH3); 4.23 (m, 2H, (CH2-O)); 5.07 (s, 2H, N-CH2);
7.74–7.53 (m, H, 5HArom); 8.22 (d, 1H, Hpyr); 8.43 (d, 1H, Hpyr). 13C NMR (CDCl3) δppm:
14.02 (CH3); 44.84 (CH2-O); 62.14 (N-CH2); 114.52 (Cq); 129.05, 129.82 (5CHArom); 130.75,
144.84 (2CH); 136.18, 147.33 (Cq); 155.96 (C-Br); 167.46 (C=O).
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Ethyl 2-(6-bromo-2-phenyl-1H-imidazo[4,5-b]pyridin-4-yl)acetate (7)
Reddish solid, m.p = 126 ◦C, Rf: 0.44 (eluent: ethyl acetate/hexane (1/1)), Yield: 32%,

1H NMR (CDCl3) δppm: 0.80 (t, 3H, CH3); 4.19 (q, 2H, (CH2-O)); 5.46 (s, 2H, N-CH2);
7.36–8.01 (m, 5H, HArom); 8.13 (d, 1H, Hpyr); 8.45 (d, 1H, Hpyr). 13C NMR (CDCl3) δppm:
14.01 (CH3); 38.61 (CH2-O); 50.43 (N-CH2); 114.34 (Cq); 130.51, 119.78 (CHArom); 142.84
(CHArom); 165.26 (C=O).
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Ethyl 2-(6-bromo-2-phenyl-1H-imidazo[4,5-b]pyridin-1-yl)acetate (8)
Reddish crystals, m.p = 140 ◦C, Rf: 0.35 (eluent: ethyl acetate/hexane (1/1)), Yield:

10%, 1H NMR (CDCl3) δppm: 0.89 (t, 3H, CH3); 4.32 (q, 2H, (CH2-O)); 5.59 (s, 2H, N-CH2);
8.07–7.57 (m, 5H, HArom); 8.22 (d, 1H, Hpyr); 8.47 (d, 1H, Hpyr). 13C NMR (CDCl3) δppm:
14.03 (CH3); 39.40 (CH2-O); 50.52 (N-CH2); 144.79 (CHArom); 114.54 (Cq); 131.21, 127.48
(CHArom); 167.46 (C=O).
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3.2. Theoretical Study

The theoretical calculation was performed for the energies of each tautomeric form and
the electron density of each nitrogen. The optimization results of the energies obtained for
each pair of regioisomers (3rd and 4th position) were obtained with the Density functional
theory method (DFT) using the level B3LYP [49] with 6311G** basis set. Gaussian 03 was
used for optimizing the geometry for the structures by standard methods [50].

Docking study:
Molecular docking for target compounds into DHPS using GOLD (version 5.2) was

achieved. H2O and the original inhibitor were removed from the obtained DHFR crystal
structure and DNA gyrase, then H atoms were added. The 2–8 ligands were redocked
against the vacant active site. The charges were allocated using the Charm force field, and
the ChemPLP scoring function was created for measuring the binding affinity.

3.3. Biology

Antibacterial activity:
The antibacterial activity of imidazo[4,5-b]pyridine derivatives 4 and 6 was evaluated

according to the disk-diffusion method [51] against one representative of each class of
susceptible strains: Gram negative strain (Escherichia coli) and Gram positive strain (Bacillus
cereus) using Mueller Hinton agar (MHA) medium. Plates were pre-incubated at 37 ◦C
for 24 h. Then, 100 µL of microbial inoculum adjusted to 0.5 McFarland was spread on
the plate’s surfaces using a sterile glass rod to prepare microbial lawns. A sterile paper
disk (6 mm in diameter) was placed on the surface of each agar plate, and impregnated
with 10 µL of each imidazo[4,5-b]pyridine solution (4 and 6) at a final concentration of
100 µg/disk. Then, Petri dishes were incubated at 37 ◦C for 24 h. The diameters of the
inhibition zones were measured in mm (including disk diameter) with calipers. A disk
impregnated with dimethylsulfoxide at 2% was used as a negative control. Each experiment
was carried out in triplicate.

Minimum inhibitory concentration determination (MIC) against bacterial strains
The MIC was performed in a 96 well-microplate using the microdilution assay accord-

ing to the protocol previously described by Chraibi et al. [52], with slight modifications.
Briefly, a stock solution of each product was prepared in (DMSO). Then, serial dilutions of
all tested products were prepared in Mueller Hinton Broth medium (MHB) at final con-
centrations ranging between 5 mg/mL and 0.0025 mg/mL. The 12th well was considered
as growth control (free drug control). Afterwards, 50 µL of bacterial inoculum was added
to each well at a final concentration of 106 CFU/mL. After incubation at 37 ◦C for 24 h,
10 µL of rezasurin was added to each well as a bacterial growth indicator. After further
incubation at 37 ◦C for 2 h, the bacterial growth was revealed by the change of coloration
from purple to pink. Experiments were carried out in triplicates.

4. Conclusions

The synthesis of a series of imidazo[4,5-b]pyridine derivatives was realized with good
yields, using alkylation under conditions of phase transfer catalysis solid–liquid (CTP).The
structures of the obtained compounds were confirmed by NMR spectroscopy (1H and 13C)
and X-ray diffraction. HF analysis unveiled the interaction types’ stabilized crystalline
phase for compounds 3, 6 and 8, including Br•••C/C•••Br, N•••C/C•••N, H . . . C/C
. . . H, O•••H/H•••O and N•••H/H•••N interactions. The theoretical results produced
by the DFT method were in good agreement with the experimental results. The MESPs
demonstrated that pyridines are nucleophiles, while imidazoles exhibit an electrophilic
character. To determine the potential mode of interactions with the DHFR active site, the
three N1, N3 and N4 regioisomers were further subjected to a molecular docking study.
The outcomes demonstrated that these active analogues engaged in a number of significant
interactions with the target enzyme’s active regions. The antimicrobial activity of the
tested compounds was qualitatively and quantitatively assessed by the disk-diffusion
and microdilution methods, which showed that B. cereus was the most sensitive against
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all the studied compounds, while E. coli was the most resistant strain. Thus, the present
study demonstrated the synthesized products to be potential antimicrobial agents with
further modification.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28073197/s1, Figure S1: 1H NMR spectrum of 4; Figure S2: 1H
NMR spectrum of 6; Figure S3: 13C NMR spectrum of 6; Figure S4: 1H NMR spectrum of 7; Figure S5:
1H NMR spectrum of 8; Figure S6: 13C NMR spectrum of 8; Figure S7: Oretp view of 3, 6 and 8;
Table S1. Sample, Data collection and structure refinement crystal data for 3; Table S2. Sample, Data
collection and structure refinement crystal data for 6; Table S3. Sample, crystal data, data collection
and structure refinement for 8; Table S4: the H-bond geometry (Å, ◦) in 3, 6 and 8 molecules.
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