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Abstract: Bioactive peptides are a highly abundant and diverse group of molecules that exhibit
a wide range of structural and functional variation. Despite their immense therapeutic potential,
bioactive peptides have been traditionally perceived as poor drug candidates, largely due to intrinsic
shortcomings that reflect their endogenous heritage, i.e., short biological half-lives and poor cell
permeability. In this review, we examine the utility of molecular engineering to insert bioactive
sequences into constrained scaffolds with desired pharmaceutical properties. Applying lessons learnt
from nature, we focus on molecular grafting of cyclic disulfide-rich scaffolds (naturally derived or
engineered), shown to be intrinsically stable and amenable to sequence modifications, and their
utility as privileged frameworks in drug design.

Keywords: peptides; cyclic peptides; molecular grafting; disulfide-rich; engineered; drug design;
cyclotides; molecular scaffolds

1. Introduction

Peptide therapeutics have been an area of considerable interest in recent years due to
their unique structural and functional features that make them an excellent starting point
in drug design [1–3]. Falling between the two major categories of therapeutics—small
molecules (<500 Da) and protein-based biologics (>5000 Da)—peptides are able to simulta-
neously exhibit the high specificity and efficacy of biologics, allowing for selective targeting
of conventionally “undruggable” protein-protein interactions [4], whilst maintaining the
lower production cost and complexity of small molecules [5]. However, despite their potent
activity and specificity, linear peptide sequences have been historically limited by their
intrinsic in vivo instability [6]. One approach to circumvent this innate shortcoming is
to combine bioactive linear peptides with stable molecular scaffolds, generating grafted
products with the desired properties of both parent compounds. In terms of peptide drug
design, cyclic disulfide-rich peptides are particularly attractive frameworks due to their
exceptional stability and desirable drug-like properties.

Compared to their linear counterparts, cyclic peptides can, in favorable cases, exhibit
improved pharmaceutical properties, including enhanced stability, specificity, bioavail-
ability, and membrane permeability [7–9]. These improvements in drug-like qualities are
largely due to the closed structural conformation adopted upon cyclization, resulting in
sizeable free-energy barriers between alternative backbone conformations [10]. Whilst
cyclization does not eliminate clearance due to glomerular filtration, the induced rigidity,
in combination with the removal of terminal residues, allows cyclic peptides to circumvent
the typically short in vivo half-life of linear peptides resulting from degradation by blood
serum endo- and exopeptidases [11,12]. Furthermore, the limited conformational flexibility
of the preorganized ring archetype reduces entropic binding costs, promoting greater speci-
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ficity and binding affinity towards receptor and protein targets [13]. Recent reviews have
provided detailed analyses of macrocyclic peptides as drug candidates [14–18].

In the case of cyclic disulfide-rich peptides, the combination of cyclic backbone and
disulfide crosslinks affords exceptional stability, particularly in resistance to extreme pH
and temperature [19,20]. However, these entropic effects are system dependent, varying
with the number of disulfide bonds and their topological arrangement. In general, disulfide
bonds are shown to enhance thermodynamic stability by limiting conformational freedom,
with system entropy decreasing proportionally with an increasing number of disulfide
bonds [21,22]. In this review, we focus specifically on head-to-tail cyclized disulfide-rich
peptides, both native and engineered, and their utility as bioactive frameworks. Our
coverage is limited to examples our laboratory has direct experience with and is not
intended to be a comprehensive examination of all naturally occurring disulfide-rich or
cyclic peptide families. Additional classes of natural peptides are covered in other recent
articles [23–26]. Similarly, other classes of engineered peptides not covered here, such as
stapled peptides, are described in more detail in other recent reports [27–31].

In nature, cyclic disulfide-rich peptides represent a diverse class of bioactive molecules
found in plants and animals. Here, we focus on five native cyclic disulfide-rich scaffolds,
namely the orbitides, PawS-derived peptides (PDPs), cyclotides, θ-defensins and retrocy-
clins. Alongside these native plant- and animal-derived macrocycles, we will also examine
five classes of disulfide-rich peptides that have been engineered via non-native cycliza-
tion junctions and epitope inclusions, namely the conotoxins, chlorotoxins, tachyplesins,
protegrins and gomesins. Figure 1 shows prototypic examples from the various classes of
frameworks examined in this review, highlighting key structural variations and sites of
non-natural modifications. As is apparent from the figure, these molecules offer a diverse
range of scaffolds that are amenable to a range of molecular engineering applications,
including molecular grafting.
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Figure 1. Selected classes of native and engineered cyclic disulfide-rich peptides derived from plants
and animals, with representative examples from each class. Cysteine residues are numbered and
highlighted in yellow, with engineered cyclization linkers represented by brown shading.

2. Molecular Grafting

Molecular grafting is a drug design approach that involves the insertion of a bioactive
sequence into a constrained scaffold with desired pharmaceutical properties. The overar-
ching goal of this paradigm is to construct novel molecules that retain both the biological
activity and structure of the grafted epitope, whilst preserving the stability of the molecular
framework [32–34]. This process typically employs chemical techniques, such as residue
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mutagenesis, or library-based methods, such as recombinant display. Similar to horticul-
tural grafting, this approach aims to produce an entity better than the sum of its parts. Due
to their exceptional stability profile, cyclic disulfide-rich peptides have been widely used in
a range of molecular grafting experiments, resulting in exciting developments in several
therapeutic fields, including the treatment of cancer, chronic pain, neurodegeneration, and
obesity [35]. For a more comprehensive review of molecular grafting utilizing disulfide-rich
peptides we recommend the following recent perspective articles [32,35].

In conjugation with providing stability, molecular grafting can also transfer additional
properties of the parent scaffold, including cell-penetrating, anti-microbial, anti-cancer,
and analgesic activities [36]. Figure 2 highlights an elegant molecular grafting example,
where Ji et al. engineered an α-helical Hdm2/HdmX-binding (human double minute 2
or X protein) peptide (PMI) into the cyclotide MCoTI-I [37,38]. Hdm2 and HdmX are two
oncoprotein homologues, commonly overexpressed in tumor cells, that negatively regulate
the activity and stability of the tumor-suppressing protein p53, through binding of p53′s
N-terminal transactivation domain [39,40]. Short peptides derived from this helical domain,
and variants optimized through phage display screening, have been shown to antagonize
the intracellular interaction between p53 and Hdm2 and/or HdmX with low nanomolar
affinities, stabilizing p53 proteins and reducing the viability of cancer cells expressing
wild type p53 [38,41]. However, due to their peptidyl nature, these mimics displayed
poor stability and bioavailability [42]. To counteract these intrinsic shortcomings, Ji et al.
grafted the PMI sequence into the solvent exposed loop 6 of the MCoTI-I, a privileged
scaffold with reported cell-penetrating ability and exceptional stability [43]. Furthermore,
to aid the stabilizing of the bioactive α-helical conformation, the authors utilized a flanking
helix-stabilizing sequence derived from apamin, which is a bee-venom peptide [44]. The
resulting grafted peptide, MCo-PMI, was found to not only retain the structure of the
helical linear epitope and cyclotide scaffold, but to also retain the desired bioactivities of
both parent molecules. Demonstrating low nanomolar in vitro affinity for both Hdm2 and
HdmX (IC50 = 30 ± 5 and 163 ± 17 nm, respectively), high ex vivo human serum stability
(τ1/2 = 30 ± 4 h) and potent cytotoxicity to wild type p53 cancer cell lines in vitro and
in vivo [37].
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binding peptide PMI (cyan), with an apamin-derived linker (pink), for the treatment of cancer. The
PMI epitope was derived from the N-terminal domain of p53 and optimized through phage display
screening. When grafted onto the MCoTI-I framework, the resulting grafted peptide MCo-PMI
displayed high serum stability and potent intracellular activity.

Following this brief introduction to molecular grafting, in the remainder of this review
we will examine selected classes of disulfide-rich peptides and expand in more detail on
several examples that have utilized these molecular frameworks as drug leads. These
include examples from native cyclic peptides and artificially cyclised peptides.

3. Plant-Derived Cyclic Peptides
3.1. Orbitides

Orbitides, comprising 5–12 amino acids, are a class of cyclic peptides isolated from a
variety of plants, including species of the Verbenaceae, Schizandraceae, Rutaceae, Phyto-
laccaceae, Linaceae, Lamiaceae, Euphorbiaceae and Annonaceae families [45–48]. Despite
their small size, this family of macrocycles display considerable sequence diversity, with
approximately 200 orbitides identified so far [49], and a wide range of functional diversity,
including anti-bacterial [50], anti-cancer [51], anti-malarial [52], enzymatic inhibition [53],
immunosuppressive [54–56] and vasodilatory activities [57]. Unlike many macrocyclic
peptides of similar size, which are assembled non-ribosomally, orbitides are direct gene
products and are biosynthesized by genetic translation and processing of precursor proteins
to produce the mature cyclic peptides. Since our focus in this review is on disulfide-rich
peptides, and orbitides are conspicuously lacking in such disulfide bonds, we will not
cover them further here apart from noting that extra detail may be found in several recent
reviews [47,48,58].

3.2. PawS-Derived Peptides (PDPs)

The PDPs are a family of head-to-tail cyclized peptides found in species of the daisy
family, Asteraceae [59]. Ribosomally synthesized as part of a precursor protein for seed
storage albumins, PDPs are post-translationally excised and cyclized during proteolytic
processing [60]. To date 23 unique PDP sequences have been identified, with 15 confirmed
in planta [61]. Despite exhibiting considerable structural diversity, PDPs adopt a rigid
well-defined conformation (excluding PDP-8), stabilized by an anti-parallel β-sheet and
bridged by a disulfide bond [62,63]. PDP-23 remains the only known exception to this
structural classification, adopting a V-shaped structure approximately twice that of typical
PDP members (28 amino acids), and comprising two anti-parallel β-sheets stabilized by two
disulfide bonds (CysI–CysII and CysIII–CysIV) [61]. Recently identified from the seeds of the
Zinnia elegans, PDP-23 demonstrates an intriguing chameleonic-like ability to structurally
adapt to different surroundings, exposing different levels of hydrophobicity depending on
the conditions, allowing PDP-23 to effectively penetrate cells in a non-toxic manner [61].

The prototypical PDP member, sunflower trypsin inhibitor-1 (SFTI-1), is a broad
range serine protease inhibitor, consisting of 14 amino acids, isolated from seeds of the
common sunflower (Helianthus annuus) [64]. Despite its small size, SFTI-1 is homologous
in sequence to the family of potent serine protease inhibitors, Bowman-Birk inhibitors
(BBIs), and is the most potent known trypsin inhibitor with reported sub-nanomolar Ki
values [65]. Typically comprising 60–70 amino acids, BBIs perform dual inhibition of
trypsin and/or chymotrypsin via a β-hairpin loop motif that binds the protease catalytic
sites [66]. Although biosynthetically unrelated, SFTI-1 demonstrates striking sequence
and structural homology to these BBI bioactive segments [67]. In accordance with the
Laskowski mechanism [68], SFTI-1 protease inhibition is mediated through the insertion of
a substrate-like loop into the active site via the formation of an extended β-sheet, effectively
blocking access of incoming substrates. The binding loop of SFTI-1 is subsequently cleaved
at the scissile bond (Lys5-Ser6) generating an acyl–enzyme adduct [69]. However, the
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structural conformation and tight binding of the bound inhibitor prevent the completion
of the standard catalytic cycle, such that hydrolysis does not occur. Instead, the neo-N-
terminus is activated to attack the acyl–enzyme bond, regenerating the scissile bond and
the cyclic inhibitor [70].

The cyclic backbone, disulfide bond and extensive hydrogen-bonding network of
SFTI-1 confers a highly stable and rigid scaffold, readily accessible by chemical [71] and
biological [72,73] means. Furthermore, with potent bioactivity towards a range of proteases,
SFTI-1 was initially investigated for its anti-inflammatory and anti-cancer properties [65,74].
Over the years, the SFTI scaffold has been widely utilized as a molecular framework with
numerous examples of sequence mutagenesis, epitope inclusions and library-based screen-
ing, and applications in the areas of autoimmune disease [75], cancer [76–80], cardiovascular
and wound healing [81], neurological diseases [82,83] and inflammatory disorders [84,85].
For a more comprehensive review of SFTI-1 and its therapeutic applications we direct
readers towards the following recent perspective article [62]. Figure 3 shows four linear
epitopes and their subsequent SFTI-1 grafted products examined in our group. The bioac-
tive epitopes include OPN and LAM, two proangiogenic peptide sequences [81], HfRW,
a minimal MSH-derived core sequence shown to activate mammalian melanocortin recep-
tors [86], and CD2, the adhesion domain sequence that forms the main CD2-CD58 binding
interface, modulating cell adhesion between T-cells and epithelial cells [75].
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(a) Three-dimensional structure of SFTI-1, with scissile bond signified by a * symbol. (b) Peptide
sequences of SFTI-1 and four engineered SFTI variants. (c) Amino acid sequence, disulfide bond
connectivity and loop nomenclature of SFTI-1. Cysteine residues are numbered and highlighted
in yellow, with engineered epitope sequences represented by brown shading. D-amino acids are
designated with lowercase lettering and N-methylated amino acids by bolded letters.

3.3. Cyclotides

Cyclotides [87] are a large and well-studied family of macrocyclic peptides, character-
ized by a unique cyclic cystine knot (CCK) structural motif, comprising a head-to-tail cyclic
backbone and interlocking arrangement of three disulfide bonds, that confers exceptional
stability and resistance to chemical, thermal and enzymatic degradation [20]. This highly
constrained structure provides an ultra-stable core that is decorated with six hypervariable
backbone loops protruding between successive cysteine residues [88].

Comprising 28–37 amino acids, cyclotides have been classified into three subfamilies
termed bracelet, Möbius or trypsin inhibitor cyclotides, with the prototypic or most widely
studied members being cycloviolacin O1, kalata B1 and MCoTI-II, respectively [89]. To date,
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hundreds of cyclotides have been reported in species from five major plant families, namely
Rubiaceae, Violaceae, Solanaceae, Cucurbitaceae and Fabaceae [90–92], or more commonly
referred to as the coffee, violet, tomato, gourd, and legume families, respectively. Their
sequences and structures are available on the online database CyBase www.cybase.org.au
(accessed on 31 March 2023) [93]. Of these plant families, none have been exhaustively
screened yet, but conservative estimates suggest that more than 50,000 native cyclotide
variants await discovery [91,94].

This remarkable number of cyclotide variants is the result of the high sequence
diversity present within the intra-cysteine backbone loops of the cyclotide framework,
acting as a natural combinatory template (with >10 million sequence combinations esti-
mated) [95]. Native cyclotides exhibit an extensive array of biological activities, including
anti-HIV [96–104], anti-influenza [105], anti-microbial [106–109], anti-parasitic [52], utero-
tonic [110,111], anti-cancer [112–116] and immunosuppression activities [117–120]. With
exceptional stability, tolerance to residue substitution and accessibility by chemical [121],
biological [122] or plant-based [123] production methods, it is no surprise that cyclotides
have been a popular drug design framework [88,124]. Figure 4 shows four linear epitopes
and their subsequent grafted peptide sequences (based on the kalata B1 framework) that
have been studied in our laboratory. The sequence inclusions include T20K, a single residue
substitution that promotes immunomodulatory properties [125], DALK, a bradykinin B1
receptor antagonist [126] linked to chronic pain and inflammation, and N1.14 and N2.1,
neurophilin-1 and -2 agonists sequences attained through two sequential generations of
bacterial display libraries [127].
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represented by brown, blue or green shading. Blue and green shading distinguishing the first (N1.14)
and second generations (N2.1) of bioactive epitope sequences generated via sequential bacterial
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4. Animal-Derived Cyclic Peptides
4.1. θ-Defensins

θ-defensins are a family of cysteine-rich peptides associated with the immune sys-
tem in several species of primates [128,129]. Produced within leukocytes, θ-defensins
are characterized by a cyclic cystine ladder (CCL) motif, comprising a head-to-tail cyclic
peptide backbone and three disulfide bonds arranged in parallel [130]. This CCL motif
creates a highly constrained system, with two adjoining anti-parallel β-strands, confer-
ring excellent thermal and enzymatic stability [131]. In nature, θ-defensins are generated
from the splicing of precursor gene products, truncated nonapeptide α-defensin genes
termed demi-defensins, that are processed to form a backbone cyclic 18-amino acid prod-
uct [132]. To date, θ-defensins are the only cyclic peptides native to animals, with six
isolated from rhesus monkeys (RTD-1 to RTD-6) and five from baboon species (BTD-1 to
BTD-5) [133]. Acting as immunomodulators within the innate immune system, θ-defensins
suppress the production of proinflammatory cytokines [134]. The prototypic θ-defensin,
RTD-1, contains 18 amino acids and demonstrates broad anti-microbial [128,135–137], anti-
inflammatory [135], anti-fungal [128,138] and anti-viral activity [128,139]. In particular,
RTD-1 has been shown to act as a prophylactic anti-viral in a mouse model of severe acute
respiratory syndrome coronavirus (SARS-CoV) lung disease [139], with promising in silico
investigations suggesting its utility as a COVID-19 treatment through furin inhibition [140].

Although not as widely utilized as the PDP or cyclotide frameworks, θ-defensins offer
a number of therapeutically attractive features, including excellent resistance to protease
digestion in biological fluids, minimal immunogenicity [135,141] and low haemolytic
and cytotoxic activity [142]. Figure 5 illustrates two grafted θ-defensin scaffolds that
have been used to host different bioactive epitopes, namely the CD2 binding domain [75]
and the widely known RGD (Arg-Gly-Asp) integrin binding sequence, the latter readily
incorporated into [Asp2,11]RTD-1 given the pre-existing native RG sequence present [143].

Molecules 2023, 28, x FOR PEER REVIEW 8 of 22 
 

 

respiratory syndrome coronavirus (SARS-CoV) lung disease [139], with promising in sil-
ico investigations suggesting its utility as a COVID-19 treatment through furin inhibition 
[140]. 

Although not as widely utilized as the PDP or cyclotide frameworks, θ-defensins of-
fer a number of therapeutically attractive features, including excellent resistance to prote-
ase digestion in biological fluids, minimal immunogenicity [135,141] and low haemolytic 
and cytotoxic activity [142]. Figure 5 illustrates two grafted θ-defensin scaffolds that have 
been used to host different bioactive epitopes, namely the CD2 binding domain [75] and 
the widely known RGD (Arg-Gly-Asp) integrin binding sequence, the latter readily incor-
porated into [Asp2,11]RTD-1 given the pre-existing native RG sequence present [143]. 

 
Figure 5. Structure and sequence of the θ-defensin RTD-1 and two grafted examples. (a) Three-
dimensional structure of RTD-1. (b) Peptide sequences of RTD-1 and two engineered variants. (c) 
Amino acid sequence, disulfide bond connectivity and loop nomenclature of RTD-1. Cysteine resi-
dues are numbered and highlighted in yellow, with engineered epitope sequences represented by 
brown shading. 

4.2. Retrocyclins 
Despite their presence in several of our evolutionary cousins, including baboons, 

bonobos and macaques, humans do not produce θ-defensin peptides, even though our 
genome encodes for θ-defensin-like sequences [144]. Although these pseudogenes are 
transcribed to mRNA, they are not translated due to a premature stop codon upstream of 
the pro-peptide segment [129]. The putative coding regions of human θ-defensins have 
remained intact over the 7 million years of evolution from our primate cousins, with 89.4% 
sequence identity with the rhesus θ-defensin genes [145]. Accordingly, they are available 
as blueprints, and chemists have been able to synthetically resuscitate these genetically 
encoded sequences [145]. 

With the human genome encoding two distinct retrocyclin genes, three theoretical 
combinations of native retrocyclin peptides exist, with two homodimers, retrocyclin-1 
(RC-1) and retrocyclin-3 (RC-3), and a heterodimer (RC-2) (see Figure 6). These native, 
although not naturally synthesized, cyclic peptides form an alternative sub-category of θ-
defensin molecules called retrocyclins and exhibit exceptional activity against HIV-1 and 
bacterial agents [142]. Although retrocyclins have yet to be fully utilized as molecular 
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Figure 5. Structure and sequence of the θ-defensin RTD-1 and two grafted examples. (a) Three-
dimensional structure of RTD-1. (b) Peptide sequences of RTD-1 and two engineered variants.
(c) Amino acid sequence, disulfide bond connectivity and loop nomenclature of RTD-1. Cysteine
residues are numbered and highlighted in yellow, with engineered epitope sequences represented by
brown shading.

4.2. Retrocyclins

Despite their presence in several of our evolutionary cousins, including baboons,
bonobos and macaques, humans do not produce θ-defensin peptides, even though our
genome encodes for θ-defensin-like sequences [144]. Although these pseudogenes are
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transcribed to mRNA, they are not translated due to a premature stop codon upstream of
the pro-peptide segment [129]. The putative coding regions of human θ-defensins have
remained intact over the 7 million years of evolution from our primate cousins, with
89.4% sequence identity with the rhesus θ-defensin genes [145]. Accordingly, they are
available as blueprints, and chemists have been able to synthetically resuscitate these
genetically encoded sequences [145].

With the human genome encoding two distinct retrocyclin genes, three theoretical
combinations of native retrocyclin peptides exist, with two homodimers, retrocyclin-1
(RC-1) and retrocyclin-3 (RC-3), and a heterodimer (RC-2) (see Figure 6). These native,
although not naturally synthesized, cyclic peptides form an alternative sub-category of
θ-defensin molecules called retrocyclins and exhibit exceptional activity against HIV-1 and
bacterial agents [142]. Although retrocyclins have yet to be fully utilized as molecular
frameworks, modest sequence mutagenesis experiments have been performed, generating
several interesting retrocyclin variants, of which, RC-101 has garnered the most attention.
Demonstrating significantly more potent activity against primary HIV type-1 isolates
compared to RC-1, despite its sequence varying by a single amino acid substitution (Arg-to-
Lys) [146]. Furthermore, RC-101 has been shown to destabilize SARS-CoV-2 Spike protein,
inhibiting Spike-mediated membrane fusion and Spike/ACE2 interaction [147], thereby
demonstrating the potential of retrocyclins as therapeutics tools in the development of new
topical anti-viral drugs, for the treatment of HIV and COVID.
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bond connectivity and loop nomenclature of retrocyclin RC-2. Cysteine residues are numbered and
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5. Engineered Cyclic Peptides

Naturally occurring peptides have benefited from millions of years of evolution dur-
ing which their activity and stability have been stringently optimized, serendipitously
endowing these native compounds with properties that are suitable for pharmaceutical
exploitation. However, as mentioned earlier in this article, many native peptides are limited
by one aspect that reflects their endogenous heritage, i.e., short biological half-lives when
exogenously delivered. Applying the lessons learnt from studying naturally occurring
cyclic scaffolds, an area of increasing interest is the re-engineering of acyclic bioactive
peptides. By manufacturing engineered cyclic peptides, researchers have developed ap-
proaches to exploit the potent bioactivity of native acyclic compounds, further enhancing
the pharmacological scope of these natural products, allowing them to hit targets which
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were not accessible in their natural environment. In this section, we outline the broad
characteristics of such engineered cyclic scaffolds, all based upon animal-derived peptides,
and describe the grafting strategy that was utilized in each case. The five molecular frame-
works examined include, cyclic conotoxins, cyclic chlorotoxin, cyclic tachyplesins, cyclic
protegrins, and cyclic gomesins.

5.1. Cyclic Conotoxins

Conotoxins are small peptide toxins, comprising 10–35 amino acids, found in the
venom of marine cone snails of the Conus genus [148]. With individual species producing
50–1000 distinct variants and over 800 documented species, cone snails provide one of
the highest known venom diversities, with current estimates of more than one million
native conotoxins yet to be discovered [149]. Conotoxins adopt a wide range of compact
structures, including motifs such as α-helices, β-sheets and β-turns, stabilized by multiple
disulfide bridges and post-translational modifications [150]. These bioactive protein-like
structures target a range of ion channels, receptors and transporters found throughout
the nervous systems with high potency and exquisite selectivity [151]. Unsurprisingly,
this extensive source of bioactive compounds has attracted considerable attention, with
one such peptide (ω-conotoxin, MVIIA) being an FDA approved product and several
native conotoxins having undergone clinical trials [152,153]. However, due to their natural
biophysical properties, these acyclic peptides have been typically hampered by poor drug-
like qualities. In the case of MVIIA the poor drug-like properties are overcome via an
intrathecal delivery route.

One example studied extensively in our laboratory is Vc1.1, an α-conotoxin, com-
prising 16 amino acids, that forms a small α-helix and two disulfide bridges [154]. Ini-
tially discovered during the PCR screening of cDNAs isolated from the venom ducts of
Conus victoriae, Vc1.1 was originally characterized by its ability to inhibit nicotinic acetyl-
choline receptors and attracted considerable therapeutic interest for its potent analgesic
activity [155,156]. However, as is the case with many nature-derived peptide molecules,
synthetic Vc1.1’s utility was initially limited by its lack of oral activity [156]. To confer
greater biological stability and drug-like qualities, molecular engineering was performed
to manufacture a cyclic Vc1.1 (cVc1.1) variant, through the incorporation of a six-residue
linker, spanning the 12 Å distance between the N- and C-termini (see Figure 7). Contrary to
standard molecular grafting, the incorporated epitope linker was not bioactive but rather
contained inert Gly and Ala residues [120]. The backbone cyclization resulted in significant
pharmacological improvements, with increased intestinal fluid and serum stability, and
oral activity in a rat pain model [157,158]—with MALDI imaging revealing cVc1.1 in the
GI tract for >4 h post-oral dosing [159]. Furthermore, when tested in a rat CCI-model
of neuropathic pain, cVc1.1 induced 120 times more potent analgesia than gabapentin,
which is the gold standard for neuropathic pain [160]. It should be noted that successful
cyclization was reliant upon the use of an appropriate linker length, as too short or long
sequences can disrupt the native conformation and eliminate biological activity [160].

5.2. Cyclic Chlorotoxin

Chlorotoxin (CTX) is a 36 amino acid disulfide-rich peptide isolated from the venom
of the deathstalker scorpion Leiurus quinquestriatus [161]. Adopting a compact knotted
topology, chlorotoxin is characterized by four disulfide bonds, three small anti-parallel
β-strands and a single α-helix [162]. Chlorotoxin has garnered significant therapeutic
interest due to its ability to preferentially bind cancer cells, putatively mediated by selective
interaction with matrix metallopreoteinase-2 isoforms, which are upregulated in gliomas
and other solid tumors [163]. Nonetheless, the efficacy of chlorotoxin in binding cancer cells
is clear and a number of articles have been published describing the potential of chlorotoxin
as an imaging agent, as well as a platform for targeted cancer treatments [162,164–167].
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Figure 7. Structure and sequence of α-conotoxin Vc1.1 and three engineered cyclic conotoxin vari-
ants. (a) Three-dimensional structure of synthetic Vc1.1, with engineered inert cyclization linker.
(b) Peptide sequence of Vc1.1 and three different engineered cyclic conotoxin variants. (c) Amino
acid sequence, disulfide bond connectivity and loop nomenclature of cVc1.1. Cysteine residues are
numbered and highlighted in yellow, with the engineered sequences represented by brown shading.

One such example is “Tumor paint”, a bio-conjugate that combines the targeted tumor-
binding properties of chlorotoxin, with a near infrared fluorescent dye to visualize tumors
in real-time during surgery [168–170]. In early studies, this compound was manufactured
by conjugating Cyanine5.5 (Cy5.5) dye with native lysine residues (Lys15, Lys23 or Lys27).
Utilizing three molar equivalents of NHS-ester modified Cy5.5 dye, this approach was
inherently non-specific, resulting in a mixture of mono-, di- and tri-labelled peptides [162].
Interestingly, the bio-conjugation resulted in 75–85% mono-labelled Lys27, along with small
amounts of Lys15 and Lys23 labelled chlorotoxin [171]. With mono-labelled compounds
preferred for FDA approval and commercialization, subsequent studies substituting Lys15
and Lys23 with alanine or arginine residues were conducted to obtain Lys27 mono-labelled
chlorotoxin [171].

Surprisingly, that study also showed that mono-labelling was also possible through
the incorporation of a 7-residue linker between the free N- and C-termini. As illustrated in
Figure 8, without altering the native lysine residues, Cy5.5 conjugation using the engineered
cyclic chlorotoxin variant (cCTX), resulted in a homogenous product with only Lys27
labelled. Unfortunately, despite showing limited improvements in ex vivo serum stability
(70% to 90% intact peptide following 24 h incubation in human plasma), cCTX-Cy5.5
demonstrated reduced in vivo serum half-life compared to the linear CTX-Cy5.5 variant
(τ1/2 = 11 h and 14 h, respectively) [171].

5.3. Cyclic Tachyplesins

Tachyplesins are a family of six host-defense peptides (TI to TVI) isolated from different
species of horseshoe crab [172]. These cationic agents have broad anti-microbial properties,
with reported activity against Gram-positive and Gram-negative bacteria, fungi, and cancer
cells [173]. Similar to other host-defense peptides, tachyplesins exhibit an amphipathic
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secondary structure, with positively charged and hydrophobic residues segregated into
distinct clusters [173]. These distinct regions allow for preferential binding to the anionic
surfaces of microbes or cancer cells, followed by membrane insertion and subsequent cell
death [174,175].
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Figure 8. Structure and sequence of CTX and its cyclic analogue. (a) Three-dimensional structure
of CTX, with engineered cyclization linker. (b) Peptide sequences of CTX and its engineered cyclic
variant cCTX. (c) Amino acid sequence, disulfide bond connectivity and loop nomenclature of CTX.
Cysteine residues are numbered and highlighted in yellow, with non-native residues and sites of
lysine Cy5.5 conjugation indicated by brown and orange shading, respectively.

Comprising 17-residues and a α-amidated C-terminus, tachyplesins are organized in
a β-hairpin structure, constrained by two disulfide bonds [176]. Interestingly, this disulfide
connectivity positions the N- and C-termini in close proximity, making the tachyplesin
family readily amendable to engineered backbone cyclization [177]. Figure 9 highlights the
method followed by Vernen et al. to manufacture three cyclic tachyplesin variants (cTI,
cTII and cTIII), through the insertion of a linker comprising a single glycine residue [173].
This small epitope inclusion simultaneously bridged the termini gap and produced a
symmetrical structure with 18 amino acids, closely resembling that of the θ-defensins.
Following cyclization, these engineered variants displayed promising pharmacological
improvements with respect to serum stability and reduced red blood cell toxicity, whilst
maintaining potent anti-cancer and anti-microbial activity [173].

5.4. Cyclic Protegrins

Protegrins are a family of secreted anti-microbial peptides found in porcine leuko-
cytes, involved in defending various tissues from infection [178]. To date, five protegrins
have been identified (PG-1 to PG-5), with reported activities against bacteria, fungi, and
some envelope viruses [179]. Comprising 16–18 amino acids, protegrins bear a striking
resemblance to tachyplesins, adopting two anti-parallel β-strands stabilized by two cystine
bridges [180]. Furthermore, they demonstrate a similar mode of action, with the cationic
and amphipathic protegrin composition performing targeted membrane disruption, via
induced pore formation and subsequent cell death [181].
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Protegrins and their synthetic congeners have demonstrated considerable pharmaco-
logical potential with IB-367, a truncated protegrin derivative, having undergone phase III
clinical trials under the name Iseganan, as a topical antibiotic treatment. Although, ulti-
mately these trials were terminated or had remained in limbo for the past 10 years [182–184].
Figure 10 illustrates the prototypical protegrin PG-1 and three non-native variants, two
of which are re-engineered cyclic peptides generated through direct N-to-C cyclization.
The cyclization loops of both cPG-1 and cPG-421 (also referred to as IB-200 and IB-421),
containing 7 and 10 amino acids, respectively, displayed minimal structural perturbance as
a result of this engineered junction [185,186]. The biological activity of these variants was
mildly improved over their linear counterparts, along with the cyclic peptide analogues
demonstrating improved resistance to enzymatic degradation [186].
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ing cyclization site. (b) The native peptide sequence of PG-1 and three engineered protegrins
variants [163,167]. (c) Depiction of the amino acid sequence and disulfide bond connectivity of
the cyclic protegrin cPG-1. Cysteine residues are numbered and highlighted in yellow, with the
engineered sequences and junction points represented by brown shading.
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5.5. Cyclic Gomesins

Gomesin (Gm) is an antimicrobial peptide isolated from the haemocytes of Brazilian
tarantula Acanthoscurria gomesiana [187]. Initially identified for its role in the innate immune
system fighting infection [188], gomesin has since been reported to have a myriad of thera-
peutic properties, such as cytotoxic activity against bacteria, fungi, parasites, and cancer
cells [187,189–191]. Although not as potent, gomesin is related to the tachyplesin family,
sharing considerable sequence and structural homology, adopting a β-hairpin conforma-
tion stabilized by a disulfide bond at each end [192]. Containing 18 amino acids, gomesin
is highly cationic and amphipathic, although to a lesser degree than tachyplesin and prote-
grin, with post-translationally protected termini, including an N-terminal pyroglutamic
acid and C-terminal amide [193,194]. In contrast to many other anti-microbial peptides,
gomesin causes substantially lower levels of haemolysis, and hence is highly valued in the
development of treatments for microbial infections and cancer [189]. Several studies have
examined the re-engineering of gomesin for improved stability and bioactivity [195], with
backbone cyclization shown to not only improve the in vitro stability of cyclic gomesin
(cGm), but also to enhance cytotoxic activity against cancer cells lines, whilst maintaining
its native fold [196].

Figure 11 illustrates how Chan et al. engineered cGm by substituting the original
pyroglutamic acid for a glycine residue and introducing a cyclic backbone junction [196].
Following this study, several cyclic gomesin variants have subsequently been designed and
synthesized with various pharmacological improvements. In particular, [G1K,K8R]cGm
has demonstrated promising therapeutic potential, boasting ten times more potent anti-
bacterial activity than gomesin or cGM, against a range of Gram-positive and Gram-
negative bacteria (including Staphylococcus aureus and Escherichia coli, respectively), with no
increase in haemolytic activity [197]. Additionally, [G1K,K8R]cGm has also demonstrated
potent activity against S. aureus biofilms, being able to kill embedded bacterial cells in a
concentration-dependent manner [198]. In an alternative approach, instead of focusing on
the innate potent bioactivity of cGm, Benfield et al. developed a non-disruptive, non-toxic
cGm analogue, [R/r]cGm, by substituting D-amino acids within the scaffold, creating a
targeted delivery mechanism of therapeutic cargos into cancer cells, without compromising
healthy cells [199].
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6. Conclusions

This article highlights that naturally occurring cyclic peptides from plants and animals
are stable scaffolds that have a wide range of potential applications in drug design. These
naturally occurring cyclic peptides appear to have evolved to become highly resistant to
proteases, and accordingly have further inspired chemists in the artificial cyclization of
natural peptides to improve their properties. While we have focused on peptides that
have been studied in our laboratory in recent years, there are many other examples in the
literature of natural peptides as sources of inspiration in drug design.
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