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Abstract: As fewer therapeutic options are available for treating toxoplasmosis, newer antiparasitic
drugs that can block TgAPN2 M1 aminopeptidase are of significant value. Herein, we employed
several computer-aided drug-design approaches with the objective of identifying drug molecules
from the Asinex library with stable conformation and binding energy scores. By a structure-based
virtual screening process, three molecules—LAS_52160953, LAS_51177972, and LAS_52506311—were
identified as promising candidates, with binding affinity scores of −8.6 kcal/mol, −8.5 kcal/mol, and
−8.3 kcal/mol, respectively. The compounds produced balanced interacting networks of hydrophilic
and hydrophobic interactions, vital for holding the compounds at the docked cavity and stable
binding conformation. The docked compound complexes with TgAPN2 were further subjected to
molecular dynamic simulations that revealed mean RMSD for the LAS_52160953 complex of 1.45 Å),
LAS_51177972 complex 1.02 Å, and LAS_52506311 complex 1.087 Å. Another round of binding free
energy validation by MM-GBSA/MM-PBSA was done to confirm docking and simulation findings.
The analysis predicted average MM-GBSA value of <−36 kcal/mol and <−35 kcal/mol by MM-PBSA.
The compounds were further classified as appropriate candidates to be used as drug-like molecules
and showed favorable pharmacokinetics. The shortlisted compounds showed promising biological
potency against the TgAPN2 enzyme and may be used in experimental validation. They may also
serve as parent structures to design novel derivatives with enhanced biological potency.

Keywords: Toxoplasma gondii; toxoplasmosis; computer-aided drug design; molecular dynamic
simulation; MM-PBSA

1. Introduction

The M1 aminopeptidases (also termed aminopeptidase N) are found in living systems
and are anchored in cell membrane [1]. These enzymes are vital from a functionality
perspective and are important in cell growth, development, maintenance, and defense [2].
They are documented as potential candidates for novel drugs and regarded as potential
immunoprotected targets [3]. In the Plasmodium falciparum malaria parasite, a single M1
aminopeptidase enzyme has been reported, classified as PfA-M1, that plays a prime role
in hemoglobin digestion to ensure pathogen growth and development in the blood stage
of the parasite [4]. Targeted inhibition of PfA-M1 has been unveiled to stop P. falciparum
inhibition in both laboratory and animal murine models [5]. Toxoplasma gondii is a causative
agent of toxoplasmosis, which can cause serious complications in pregnant women [2,6–9].
The congenital pathogen infection results in mental retardation, miscarriage, and hearing
and vision problems [6]. Toxoplasmosis management relies on chemotherapy comprising
pyrimethamine with either clindamycin or sulfadiazine [10]. Drugs that can treat both active
and latent infections are scarce, and thus new biomolecular targets and their inhibitors are
needed for drug discovery [11].

The M1 aminopeptidases are of three types in the T. gondii ME49 strain—TgAPN1,
TgAPN2, and TgAPN3—and encoded by genes present on different chromosomes [2].
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TgAPN1 is experimentally active and shown as immunogenic. TgAPN3 is a metalloexopep-
tidase enzyme and a functional peptide, despite the N-terminal transmembrane anchor.
TgAPN2 has localization within the parasite cytosol and is expressed at all stages of the
parasite life cycle. The biological function of TgAPN2 is still not clear; however, it is pre-
dicted to play a role in tachyzoite growth. Its upregulation in bradyzoites also makes it an
important target for drug development [2].

In contrast to conventional drug discovery, computer-aided drug design (CADD) is
considered attractive, as it is more cost-effective and consumes less time and little human
resources [12–14]. CADD is a multidisciplinary approach and involves structure-based and
ligand-based virtual screening of drug libraries against given biological targets [15,16]. The
aim of the study was to identify the best binding molecules of T. gondii ME49 TgAPN2 that
show stable binding mode associated with lowest binding energy score. The aim was split
into several objectives. First, screening of the Asinex drug library was done by using blind
screening to identify novel binding sites for inhibitors [17]. The docking analysis includes
both identification of compound binding mode as well as binding affinity score [18,19].
As the docking and virtual screening calculations are associated with high false-positive
rates, the study was extended by molecular dynamic simulation analysis, which aids
in validating hit compound binding modes and interaction stability along the length of
simulation time [20]. Molecular dynamic simulation also helps in pointing to protein
regions that are more flexible and stable in the presence of compounds and residues that
are vital in compound binding and biomolecule catalytic mechanisms. Dynamic simulation
analysis is key in determining the binding and chemical interactions of lead molecules
to the receptors and deciphering conformation stability during the simulation [21–32].
Binding free energy analysis was conducted to revalidate the docking and simulation
findings [20,21]. Binding free energy methods rely on simulation trajectories and play a
key role in compound structure optimization for lead discovery [25–32]. These methods
have gained considerable appreciation in recent years, as they have proved vital in estima-
tion of relative binding free energies [33,34]. Compared to molecular docking- or virtual
screening-based approaches, these methods are more significant in predicting compound
binding [35–37].The outcomes of this study may hasten antiparasitic drug development for
controlling T. gondii ME49 diseases. Furthermore, new chemical structures may be designed
from the compound’s parent structure in order to achieve good biological potency and a
safer pharmacokinetic profile.

2. Results and Discussion
2.1. Structure-Based Virtual Screening

Virtual screening was conducted to identify compounds that show stable binding at the
TgAPN2 binding pocket. This was achieved by screening the Asinex library, which contains
diverse chemical scaffolds and ready-to use-products for experimental investigation. The
virtual screening identified 10 compounds as promising leads (Table 1). Among these, only
three were complexed with TgAPN2 for docking conformation and interaction analysis.

Table 1. Compounds identified via virtual screening that showed stable binding affinity for TgAPN2
binding pocket.

Ligand Structure IUPAC Name Binding
Affinity

LAS_52160953
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4-((3,4,5-trimethylphe-
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din-4-ol 
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methoxyphenyl)-1H-
pyrrol-1-yl)-4-((3,4,5-
trimethylphe-
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3-(phenoxymethyl)-1-
(4-(2-(piperidin-1-
yl)ethoxy)benzyl)pi-
peridin-3-ol 

−8.3 

LAS_5216094
3 

 

4-methoxy-1-(3-(3-(2-
methyl-2,3-dihydro-
1H-imidazol-1-
yl)propoxy)benzyl)-4-
((m-tolyloxy)me-
thyl)piperidine 

−7.8 

LAS_5215760
7 

 

3-methyl-1-(4-(2-(2-
methyl-2,3-dihydro-
1H-imidazol-1-yl)eth-
oxy)benzyl)-4-(m-tol-
yloxy)piperidin-3-ol 

−7.7 

LAS_5216086
3 

 

1-(3-(3-(2-methyl-2,3-
dihydro-1H-imidazol-
1-yl)propoxy)benzyl)-
3-(phenoxymethyl)pi-
peridin-3-ol 

−7.7 

1-(3-(3-(2-methyl-2,3-dihydro-
1H-imidazol-1-yl)propoxy)
benzyl)-4-((3,4,5-
trimethylphenoxy)
methyl)piperidin-4-ol

−8.6
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Table 1. Cont.

Ligand Structure IUPAC Name Binding
Affinity

LAS_51177972
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3-methyl-1-(4-(2-(2-
methyl-2,3-dihydro-
1H-imidazol-1-yl)eth-
oxy)benzyl)-4-(m-tol-
yloxy)piperidin-3-ol 

−7.7 
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1-(3-(3-(2-methyl-2,3-
dihydro-1H-imidazol-
1-yl)propoxy)benzyl)-
3-(phenoxymethyl)pi-
peridin-3-ol 

−7.7 

5-carboxy-2-(2-(2,5-
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LAS_52506311
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yloxy)piperidin-3-ol 
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1-(3-(3-(2-methyl-2,3-
dihydro-1H-imidazol-
1-yl)propoxy)benzyl)-
3-((2,3,5-trimethylphe-
noxy)methyl)piperi-
dine-3,4-diol 
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2.2. Top Three Compounds’ Docking Analysis 
The top three compounds—LAS_52160953, LAS_51177972, and LAS_52506311—

were chosen based on the lowest binding energy value in the virtual screening process, 
with binding energy values of −8.6 kcal/mol, −8.5 kcal/mol and −8.3 kcal/mol, respectively. 
Chemically, the LAS_52160953, LAS_51177972 and LAS_52506311 are 1-(3-(3-(2-methyl-
2,3-dihydro-1H-imidazol-1-yl)propoxy)benzyl)-4-((3,4,5-trimethylphenoxy)methyl)pi-
peridin-4-ol, 5-carboxy-2-(2-(2,5-dimethoxyphenyl)-1H-pyrrol-1-yl)-4-((3,4,5-trime-
thylphenoxy)methyl)pyrimidine-1-ium and 3-(phenoxymethyl)-1-(4-(2-(piperidin-1-
yl)ethoxy)benzyl)piperidin-3-ol. All three compounds were noticed to achieve deep bind-
ing inside the active pocket and produced rich hydrophilic and hydrophobic contacts (Fig-
ure 1). The LAS_52160953 1-methyl-4-((3,4,5-trimethylphenoxy)methyl)piperidin-4-ol 
chemical moiety was seen docked deep inside the pocket facing the pocket bottom and 
formed a hydrogen bond contact with Tyr914 at distance of 2.3 Å. The opposite 2-methyl-
1-(3-phenoxypropyl)-2,3-dihydro-1H-imidazole ring is placed at a pocket-out position 
and formed multiple weak hydrophobic contact. The compound interacts with several 
important residues, such as Asp920, Arg889, Gly1369, Leu1372, Thr915, Arg1366, Glu836 
and Gly799. The LAS_51177972 was among the most stable compound due to multiple 
hydrogen bonds contact with the enzyme. The compound 5-methoxy-1,2,3-trimethylben-
zene ring tend to interact with enzyme base residues while the opposite 5-carboxy-2-(2-
(2,5-dimethoxyphenyl)-1H-pyrrol-1-yl)pyrimidine-1-ium interact with the active pocket 
walls. The compounds formed hydrogen bonds with Arg1366, Tyr919, Ala916 and Asp920 
at distance of 2.3 Å, 3.1 Å, 2.6 Å, and 2.2 Å, respectively. LAS_52506311 3-(phenoxyme-
thyl)piperidin-3-ol is involved in hydrogen bond contact Asp865 while the 1-(2-phenoxy-
ethyl)piperidine ring interactions are dominated by van der Waals involving residues of 
Asp920, Val862, Gly836, Phe885, Thr915, Arg1366, Arg889, Ala916, and Leu1372 etc. The 
control compound 1 binding energy score was −8.52 kcal/mol. The control mainly formed 
hydrogen bonds with Asn831, His835 and Glu924. The van der Waals contacts were 
Val883, Arg879, Phe885, Gln866, Lys878, Leu886, Val832, Val862, and Tyr919 (Figure S1). 

3-(phenoxymethyl)-1-(4-(2-
(piperidin-1-yl)ethoxy)
benzyl)piperidin-3-ol

−7.6

LAS_52506188
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2.2. Top Three Compounds’ Docking Analysis 
The top three compounds—LAS_52160953, LAS_51177972, and LAS_52506311—

were chosen based on the lowest binding energy value in the virtual screening process, 
with binding energy values of −8.6 kcal/mol, −8.5 kcal/mol and −8.3 kcal/mol, respectively. 
Chemically, the LAS_52160953, LAS_51177972 and LAS_52506311 are 1-(3-(3-(2-methyl-
2,3-dihydro-1H-imidazol-1-yl)propoxy)benzyl)-4-((3,4,5-trimethylphenoxy)methyl)pi-
peridin-4-ol, 5-carboxy-2-(2-(2,5-dimethoxyphenyl)-1H-pyrrol-1-yl)-4-((3,4,5-trime-
thylphenoxy)methyl)pyrimidine-1-ium and 3-(phenoxymethyl)-1-(4-(2-(piperidin-1-
yl)ethoxy)benzyl)piperidin-3-ol. All three compounds were noticed to achieve deep bind-
ing inside the active pocket and produced rich hydrophilic and hydrophobic contacts (Fig-
ure 1). The LAS_52160953 1-methyl-4-((3,4,5-trimethylphenoxy)methyl)piperidin-4-ol 
chemical moiety was seen docked deep inside the pocket facing the pocket bottom and 
formed a hydrogen bond contact with Tyr914 at distance of 2.3 Å. The opposite 2-methyl-
1-(3-phenoxypropyl)-2,3-dihydro-1H-imidazole ring is placed at a pocket-out position 
and formed multiple weak hydrophobic contact. The compound interacts with several 
important residues, such as Asp920, Arg889, Gly1369, Leu1372, Thr915, Arg1366, Glu836 
and Gly799. The LAS_51177972 was among the most stable compound due to multiple 
hydrogen bonds contact with the enzyme. The compound 5-methoxy-1,2,3-trimethylben-
zene ring tend to interact with enzyme base residues while the opposite 5-carboxy-2-(2-
(2,5-dimethoxyphenyl)-1H-pyrrol-1-yl)pyrimidine-1-ium interact with the active pocket 
walls. The compounds formed hydrogen bonds with Arg1366, Tyr919, Ala916 and Asp920 
at distance of 2.3 Å, 3.1 Å, 2.6 Å, and 2.2 Å, respectively. LAS_52506311 3-(phenoxyme-
thyl)piperidin-3-ol is involved in hydrogen bond contact Asp865 while the 1-(2-phenoxy-
ethyl)piperidine ring interactions are dominated by van der Waals involving residues of 
Asp920, Val862, Gly836, Phe885, Thr915, Arg1366, Arg889, Ala916, and Leu1372 etc. The 
control compound 1 binding energy score was −8.52 kcal/mol. The control mainly formed 
hydrogen bonds with Asn831, His835 and Glu924. The van der Waals contacts were 
Val883, Arg879, Phe885, Gln866, Lys878, Leu886, Val832, Val862, and Tyr919 (Figure S1). 

1-(3-(3-(2-methyl-2,3-dihydro-1H-
imidazol-1-yl)propoxy)benzyl)-3-
((2,3,5-trimethylphenoxy)
methyl)piperidine-3,4-diol

−7.4
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2.2. Top Three Compounds’ Docking Analysis

The top three compounds—LAS_52160953, LAS_51177972, and LAS_52506311—were
chosen based on the lowest binding energy value in the virtual screening process, with
binding energy values of −8.6 kcal/mol, −8.5 kcal/mol and −8.3 kcal/mol, respectively.
Chemically, the LAS_52160953, LAS_51177972 and LAS_52506311 are 1-(3-(3-(2-methyl-2,3-
dihydro-1H-imidazol-1-yl)propoxy)benzyl)-4-((3,4,5-trimethylphenoxy)methyl)piperidin-
4-ol, 5-carboxy-2-(2-(2,5-dimethoxyphenyl)-1H-pyrrol-1-yl)-4-((3,4,5-trimethylphenoxy)
methyl)pyrimidine-1-ium and 3-(phenoxymethyl)-1-(4-(2-(piperidin-1-yl)ethoxy)benzyl)
piperidin-3-ol. All three compounds were noticed to achieve deep binding inside the
active pocket and produced rich hydrophilic and hydrophobic contacts (Figure 1). The
LAS_52160953 1-methyl-4-((3,4,5-trimethylphenoxy)methyl)piperidin-4-ol chemical moiety
was seen docked deep inside the pocket facing the pocket bottom and formed a hydrogen
bond contact with Tyr914 at distance of 2.3 Å. The opposite 2-methyl-1-(3-phenoxypropyl)-
2,3-dihydro-1H-imidazole ring is placed at a pocket-out position and formed multiple
weak hydrophobic contact. The compound interacts with several important residues,
such as Asp920, Arg889, Gly1369, Leu1372, Thr915, Arg1366, Glu836 and Gly799. The
LAS_51177972 was among the most stable compound due to multiple hydrogen bonds
contact with the enzyme. The compound 5-methoxy-1,2,3-trimethylbenzene ring tend to in-
teract with enzyme base residues while the opposite 5-carboxy-2-(2-(2,5-dimethoxyphenyl)-
1H-pyrrol-1-yl)pyrimidine-1-ium interact with the active pocket walls. The compounds
formed hydrogen bonds with Arg1366, Tyr919, Ala916 and Asp920 at distance of 2.3 Å,
3.1 Å, 2.6 Å, and 2.2 Å, respectively. LAS_52506311 3-(phenoxymethyl)piperidin-3-ol is
involved in hydrogen bond contact Asp865 while the 1-(2-phenoxyethyl)piperidine ring
interactions are dominated by van der Waals involving residues of Asp920, Val862, Gly836,
Phe885, Thr915, Arg1366, Arg889, Ala916, and Leu1372 etc. The control compound 1 bind-
ing energy score was −8.52 kcal/mol. The control mainly formed hydrogen bonds with
Asn831, His835 and Glu924. The van der Waals contacts were Val883, Arg879, Phe885,
Gln866, Lys878, Leu886, Val832, Val862, and Tyr919 (Figure S1).

2.3. Molecular Dynamic Simulations

Molecular dynamic simulations were conducted to investigate the physical move-
ments of TgAPN2 in the presence of lead molecules. This helped in understanding the
long-term compounds conformational stability with the enzyme and shed light on key
molecular features of both receptor and compounds vital in intermolecular interactions.
The analysis includes root mean square deviation (RMSD) [38,39], root mean square fluc-
tuation (RMSF) [31,39] and radius of gyration (RoG) [4,5] (Figure 2). The analyses were
done by mean of carbon alpha atoms. The RMSD describes the structure variation by
measuring distance among the superimposed docked intermolecular conformation over
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the initial docked conformation. The RMSD demonstrated all the docked systems stable
with mean RMSD value as LAS_52160953 complex (1.45 Å), LAS_51177972 complex (1.02 Å)
and LAS_52506311 complex (1.087 Å). Among the systems, the first had more structural
variations than the last two; however, it was still in a very stable range. All these values
determine the complexes as highly stable from the docked conformation perspective. It
further emphasizes that the compounds’ docked conformation with the enzyme is solid
and no freedom of energy is available in the systems to detach the ligands. The control
compound 1 RMSD is given in Figure S2, which shows mean RMSD of 2.4 Å. The reflects
that the control docked complex with the enzyme showed more structure deviations than
the filtered complexes. Previous studies reported that RMSD is important to determine
structural stability of compounds at the receptor active pocket [39–42]. This was further
validated by RMSF assay, which determines residue-based stability. RMSF analysis is
important to underline the key regions of enzymes that play a vital role in compound
recognition and long-term binding stability. RMSF, as can be seen in Figure 2B, evaluated
that most of the receptor residues lie within the stable range in the presence of compounds.
However, the N-terminal and C-terminal of the enzyme are a bit more flexible due to
loops that are naturally flexible. The flexibility provides structure adaption to the enzyme
during the catalytic process, thereby creating enough room for compounds to attain stable
energy. Next, the compact and relaxed 3D conformation of TgAPN2 was investigated using
RoG [32,43,44]. This analysis is important to understand the compactness and relaxed
nature of the enzyme in the presence of compounds during simulation. Higher RoG de-
termines loose packing of the enzyme’s secondary structure elements which may results
in ligand detachment. The RoG depicted that the systems are compact with no major
variations seen. This analysis complements the RMSD in gaining confidence in the system’s
intermolecular docked conformation. The RoG value of the system ranged between 43 Å
and 45 Å. These values are within the stable range and depict the stable compound binding
with the enzyme and higher complex intermolecular stability.
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2.4. Binding Free Energy Calculations

The binding free energy calculation by MM-GBSA/MM-PBSA was carried out in order
to reassess the docked affinity of compounds for Toxoplasma gondii ME49 TgAPN2. The
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details of binding free energies are given in Table 2. All the complexes revealed stable
energies, with an average value <−36 kcal/mol. The overall energy was dominated by
van der Waals forces, which illustrated the complexes were stabilized mainly by weak
hydrophobic energy. The TgAPN2- LAS_52160953 complex, LAS_51177972 complex and
LAS_52506311 complex had net MM-GBSA binding energy scores of −39.45 kcal/mol,
−36.19 kcal/mol, and −39.4 kcal/mol, respectively. High contributions were seen from
van der Waals energy: −36.89 kcal/mol for LAS_52160953 complex, −33.60 kcal/mol for
LAS_51177972 complex, and −36.02 kcal/mol for LAS_52506311 complex. The electrostatic
energy contribution, though, was less contributing than the van der Waals energy, but
still played a favorable role in complex stabilization. There were high contributions for
LAS_52160953 and LAS_52506311: −14.23 kcal/mol and −14.85 kcal/mol, respectively.
The net gas phase energy involved insignificant energy contribution from internal energy.
The solvation energy contribution for each complex in MM-GBSA was seen as unfavorable.
Similarly, on MM-PBSA analysis, the complexes also revealed stable energies. The net
energy MM-PBSA values for TgAPN2-LAS_52160953 complex, LAS_51177972 complex
and LAS_52506311 complex were −38.57 kcal/mol, −35.23 kcal/mol and −37.12 kcal/mol,
respectively. These energy values were more stable for complexes than reported by MM-
GBSA. Binding entropy values of LAS_52160953, LAS_51177972 and LAS_52506311 were
16.14 kcal/mol, 17.31 kcal/mol and 16.78 kcal/mol, respectively.

Table 2. MM-GBSA/MM-PBSA binding free energies of docked complexes, given in kcal/mol.

Energy Parameter LAS_52160953
Complex

LAS_51177972
Complex

LAS_52506311
Complex

MM-GBSA

van der Waals Energy −36.89 −33.60 −36.02

Electrostatic Energy −14.23 −12.78 −14.85

Delta Gas Phase Energy −51.12 −46.38 −50.87

Delta Solvation Energy 11.67 10.19 11.47

Net Energy −39.45 −36.19 −39.4

MM-PBSA

van der Waals Energy −36.89 −33.60 −36.02

Electrostatic Energy −14.23 −12.78 −14.85

Delta Gas Phase Energy −51.12 −46.38 −50.87

Delta Solvation Energy 12.55 11.15 13.75

Net Energy −38.57 −35.23 −37.12

2.5. WaterSwap Analysis

WaterSwap analysis was done to gain more confidence in the intermolecular affinity
of complexes. The WaterSwap method is more sophisticated than the MM-GBSA/MM-
PBSA method and considers the water molecules’ role in bridging ligand to receptor
residues. This method has been successfully used in different studies and provided promis-
ing results in term of predicting compound binding affinity for the targeted biological
macromolecule [27,45]. Three algorithms are used in WaterSwap: thermodynamic integra-
tion (TI), free energy perturbation (FEP), and Bennett’s. The three algorithms’ energy value
for each complex is illustrated in Figure 3. All the three systems were confirmed to get
maximum stable energy, depicting a strong interacting network.
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2.6. SwissADME Analysis

In silico prediction of compounds ADMET properties is vital in present drug-discovery
pipelines, as it saves cost and time associated with drug failure in clinical trials. The
SwissADME details of LAS_52160953, LAS_51177972 and LAS_52506311 are given in
Table 3. All the three compounds showed favorable adsorption, distribution, metabolism
and excretion [46]. The compounds also revealed good topological polar surface area
(TPSA) to allow efficient drug adsorption across the cell membrane [47]. Similarly, the
compounds have good gastrointestinal absorption, and thus a high concentration of drugs
can reach the site of action. Additionally, the compounds are drug-like, as classified by
most rules, specifically Lipinski’s rule of five [48], Veber [49], and Egan [50]. Lipinski’s rule
of five is a famous drug rule and describes that a biologically active drug molecule should
possess several physical and chemical properties to be orally active. These properties
include suitable molecular weight (<500 Da), hydrogen bond donors (<5), hydrogen bond
acceptors (<10), and partition coefficient less than 5. Additionally, the compounds have
no pan-assay interference compounds (PAINS) alerts and thus cannot bind to multiple
targets and will specifically bind to a single biomolecule [51]. This prevents cross-reaction
of the compounds with different proteins/enzymes when administered to the host and
may also reduce unwanted and adverse effects. The compounds are synthetically feasible
to synthesize. The easy synthesis of the compounds allows their use in experimental
testing to disclose their real biological potency by blocking the biological function of the
TgAPN enzyme.
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Table 3. SwissADME analysis of compounds. # stands for number.

Physicochemical Properties LAS_52160953 LAS_51177972 LAS_52506311

Formula C29H41N3O3 C27H29N3O5+ C26H36N2O3

Molecular weight 479.65 g/mol 475.54 g/mol 424.58 g/mol

Num. heavy atoms 35 35 31

Num. arom. heavy atoms 12 23 12

Fraction Csp3 0.52 0.22 0.54

Num. rotatable bonds 10 8 9

Num. H-bond acceptors 4 5 5

Num. H-bond donors 2 3 1

Molar Refractivity 153.33 134.40 132.19

TPSA 57.20 Å2 98.20 Å2 45.17 Å2

Lipophilicity

Log Po/w (iLOGP) 4.71 3.60 4.50

Log Po/w (XLOGP3) 5.22 4.66 3.97

Log Po/w (WLOGP) 3.21 3.84 3.04

Log Po/w (MLOGP) 2.83 2.47 2.72

Log Po/w (SILICOS-IT) 4.79 5.03 4.29

Consensus Log Po/w 4.15 3.92 3.70

Water Solubility

Log S (ESOL) −5.70 −5.68 −4.67

Solubility 9.66 × 10−4 mg/mL;
2.01 × 10−6 mol/L

9.88 × 10−4 mg/mL;
2.08 × 10−6 mol/L

9.16 × 10−3 mg/mL;
2.16 × 10−5 mol/L

Class Moderately soluble Moderately soluble Moderately soluble

Log S (Ali) −6.17 −6.45 −4.62

Solubility 3.25 × 10−4 mg/mL;
6.77 × 10−7 mol/L

1.69 × 10−4 mg/mL;
3.56 × 10−7 mol/L

1.02 × 10−2 mg/mL;
2.40 × 10−5 mol/L

Class Poorly soluble Poorly soluble Moderately soluble

Log S (SILICOS-IT) −7.47 −8.38 −6.78

Solubility 1.63 × 10−5 mg/mL;
3.39 × 10−8 mol/L

2.00 × 10−6 mg/mL;
4.21 × 10−9 mol/L

7.11 × 10−5 mg/mL;
1.67 × 10−7 mol/L

Class Poorly soluble Poorly soluble Poorly soluble

Pharmacokinetics

GI absorption High High High

BBB permeant Yes No Yes

P-gp substrate Yes No Yes

CYP1A2 inhibitor No No No

CYP2C19 inhibitor No Yes No

CYP2C9 inhibitor No Yes No

CYP2D6 inhibitor Yes Yes Yes

CYP3A4 inhibitor Yes Yes Yes

Log Kp (skin permeation) −5.52 cm/s −5.89 cm/s −6.07 cm/s

Druglikeness

Lipinski Yes; 0 violation Yes; 0 violation Yes; 0 violation
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Table 3. Cont.

Physicochemical Properties LAS_52160953 LAS_51177972 LAS_52506311

Ghose No; 2 violations: MR > 130,
#atoms > 70 No; 1 violation: MR > 130 No; 1 violation: MR > 130

Veber Yes Yes Yes

Egan Yes Yes Yes

Muegge No; 1 violation: XLOGP3 > 5 Yes Yes

Bioavailability Score 0.55 0.55 0.55

Medicinal Chemistry

PAINS 0 alert 0 alert 0 alert

Brenk 0 alert No; 3 violations: MW > 350,
Rotors > 7, XLOGP3 > 3.5

No; 3 violations: MW > 350,
Rotors > 7, XLOGP3 > 3.5

Lead-likeness No; 3 violations: MW > 350,
Rotors > 7, XLOGP3 > 3.5 No; 1 violations: MW > 350 No; 1 violations: MW > 350

Synthetic accessibility 4.87 4.76 4.81

3. Materials and Methods
3.1. Preparation of Protein Structure and Asinex Library

The crystallographic structure of T. gondii ME49 TgAPN2 was retrieved from the
Protein Data Bank using PDB ID 6OIU [2,52]. The PDB structure was selected due to its
recent submission to the database and good resolution quality compared to other available
structures. The experimental data snapshot of the structure is as follows: method X-ray
diffraction, resolution 2.20 Å, R-value free 0.236, R-value work 0.190, and R-value observed
0.193. The global stoichiometry of the structure is monomer. The native ligands were
removed from the crystal structures along with water molecules. The missing amino
acids were added using the CHARMM-GUI PDB manipulator [53]. The protonation of
the structure was carried out at pH 7.4 using the H++ web server [54]. The structure
was energy-minimized using steepest descent and conjugate gradient algorithms in UCSF
Chimera v1.16 to eliminate steric clashes [55]. After energy optimization, the structure
was saved in the PDB for additional analysis. The drug library used in this study was
Asinex (https://www.asinex.com/ accessed on 15 November 2022). This library contains
575,302 compounds (updated on February 2023). It provides a cost-effective, diverse,
drug-like chemical space. Most of the compounds in the library have a high degree of
drug-likeness. The library was imported to PyRx 0.8 software [56]. The library was then
energy-minimized using MM2 force field and converted to pdbqt format to make the
compounds ready for virtual screening [57].

3.2. Virtual Screening

Virtual screening is a regularly used technique to screen drug libraries against any
given enzyme/protein active pocket with the goal of identifying molecules that show best
fitting with the receptor enzyme [58]. This technique has been used in different studies and
provided lead molecules that produced good biological potency against the receptor [59].
The virtual screening process was initiated by docking all the Asinex library using the PyRx
0.8 AutoDock Vina program. The screening was performed against catalytic domain II by
specifying the residues His835, His839 and Glu858 [2].The grid box dimensions were 25 Å
on the XYZ axes. The grid box was centered on the X-axis = 90.81 Å, Y-axis = 25.40 Å, and
Z-axis = 126.93 Å. The grid box in virtual screening was set as such to provide flexibility to
the library compounds for binding the cavity across the T. gondii ME49 TgAPN2, where
they show high conformational stability. The number of iterations set for each compound
in docking was 100. The docking process was validated by redocking of cocrystalized
ligand to the same site reported in the crystal structure. The superimposition of crystalized
ligand and docked conformation revealed a root mean square deviation (RMSD) value of

https://www.asinex.com/
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0.27 Å, illustrating docking procedure accuracy [38]. For a positive control, compound 1
from Marijanovic et al., 2020 was used [2].

3.3. Molecular Dynamic Simulation

Molecular dynamic simulation is a computer-based approach to study physical move-
ments of atoms/molecules in a fixed period of time [20]. The molecules’ movements are
solved by Newton’s law of motion, and behavior is plotted in the form of a graph [60].
The top complexes (LAS_52160953, LAS_51177972 and LAS_52506311) were subjected to
molecular dynamic simulations in explicit water. The starting atomic coordinates used were
obtained from molecular docking and processed through the AMBER20 simulation pack-
age [61]. Amber ff14sb was employed for M1 aminopeptidase TgAPN2, while generalized
Amber force field (GAFF) was applied for nonstandard residues as well as the TIP3P water
model [62–65]. Amber ff14sb was used as it has improved potential for side chain torsion
potentials. The compounds’ partial charges were added using the AM1-BCC method via
antechamber program [66]. Each complex was placed at the center of a dodecahedral box
with padding distance of 12 Å, followed by charge neutralization by adding an appro-
priate number of counterions. The number of sodium ions added were 12, 11 and 13 for
LAS_52160953 complex, LAS_51177972 complex and LAS_52506311 complex, respectively.
The complexes were next subjected to energy minimization for 5000 steps of the steepest
descent algorithm in order to remove irregular geometry and steric clashes. During energy
minimization, hydrogen atoms were minimized first for 500 cycles. This was followed by
entire systems’ atom minimization with restraint of 10 kcal/mol Å2. Then, nonheavy atoms
were lastly energy-minimized for 500 rounds in the presence of 200 kcal/mol Å2 on the
remaining system. Afterward, equilibration was done for 100 ps under canonical ensemble.
Then, another equilibration was performed for each system under isothermal isobaric
ensemble in the presence of 1 bar pressure. Heating of each system was done gradually
and achieved a constant temperature of 310 K. The production run was performed for
200 ns in periodic boundary conditions. The production run was facilitated in NVT (con-
stant temperature, constant volume) ensemble and in the presence of Berendsen algorithm.
The SHAKE algorithm and Langevin were considered for maintain restraint on hydrogen
bonds and constant temperature, respectively [67,68]. The particle-mesh Ewald method
was employed for treating long-range interactions. The cutoff value used for long-range
interactions was 1.0 nm. The CPPTRAJ module of AMBER was used for structure stability
analysis of systems [69]. Plots were generated using XMGRACE v 5.1 [70] and snapshots of
simulation were visualized using VMD v 1.93 [71].

3.4. MM/PBSA Binding Free Energy Calculations

The docking programs offer simplified scoring functions for predicting ligand binding
affinity for receptors. Therefore, they suffer from several limitations in accurate prediction
of binding energy. Validation of the binding affinity of studied compounds was accom-
plished using molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) and
molecular mechanics generalized Born surface area (MM/GBSA) methods as implemented
in AMBER MMPBSA.py [29,30,72–74]. In the process, 1000 snapshots were extracted from
the simulation trajectories. The MM/PBSA net binding energy was determined using the
following equation:

∆Gbind = Gcomplex − (Greceptor + Gligand)

During the analysis, the nonpolar energies were estimated using linear combination
of pairwise overlaps with water probe radius of 1.4 Å. The β and γ values of nonpolar
solvation energy employed were 0 kcal/mol in MMGBSA and 0.092 kcal/mol in MMPBSA.
The dielectric constant value in MM-GBSA was set to 1.0. The entropy energy contribution
in complex formation was determined using a bash script described by Duan et al., 2016 [75].
The MM-GBSA and MM-PBSA binding energies were reconfirmed by WaterSwap, which
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is considered more sophisticated in terms of determining water molecules’ contribution in
ligand binding to the receptor [76,77].

3.5. Computational Pharmacokinetic Analysis

Computational studies on compounds’ physicochemical properties, lipophilicity, wa-
ter solubility, pharmacokinetics, drug-likeness, and medicinal chemistry were done using
SwissADME webserver [78].

4. Conclusions

In this work, three high-affinity binders were identified—LAS_52160953, LAS_51177972,
and LAS_52506311—against TgAPN2. The molecules achieved stable binding at the en-
zyme active pocket and produced a stable interacting network of hydrophilic and hy-
drophobic contacts. The docked complexes also demonstrated stable dynamics with no
major structure variations. The compound binding of compounds was confirmed by dif-
ferent binding free energy methods. The binding energy of intermolecular complexes
was dominated by van der Waals energy. Additionally, the electrostatic energy had a
vital contribution in making the compounds’ stable binding mode. Though results of
the study are promising, revalidation of biological potency can be ensured by subjecting
the compounds to in vitro and in vivo studies. Further, the lead compounds’ structures
might be used in designing novel promising derivatives that have fewer structure and
physicochemical limitations.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28073186/s1, Figure S1: Docked conformation and
interactions of control compound 1 with TgAPN2 (shown by secondary structure cartoon representa-
tion); Figure S2: RMSD of control compound 1.
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