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Abstract: The effect on the photophysical properties of sulfur- and selenium-for-oxygen replacement
in the skeleton of the oxo-4-dimethylaminonaphthalimide molecule (DMNP) has been explored
at the density functional (DFT) level of theory. Structural parameters, excitation energies, singlet–
triplet energy gaps (∆ES-T), and spin–orbit coupling constants (SOC) have been computed. The
determined SOCs indicate an enhanced probability of intersystem crossing (ISC) in both the thio-
and seleno-derivatives (SDMNP and SeDMNP, respectively) and, consequently, an enhancement of
the singlet oxygen quantum yields. Inspection of Type I reactions reveals that the electron transfer
mechanisms leading to the generation of superoxide is feasible for all the compounds, suggesting a
dual Type I/Type II activity.

Keywords: PDT; TDDFT; Type I/Type II

1. Introduction

The search for new therapeutic strategies with an enhanced spatial and temporal
control of drug activation has significantly boosted scientific interest in Photodynamic
Therapy (PDT) [1–3]. The latter is a minimally invasive protocol in which biological
damage is promoted by the production of highly reactive oxygen species (ROS) or by the in
situ generation of singlet oxygen (1O2), through the so-called Type I and II photoreactions,
respectively [4]. Although cancer treatment is definitely the most challenging field of the
application of PDT [5–7], it is successfully used for a number of different diseases, including
cardiovascular disorders [8], bacterial, fungal, and viral infections [9–11], rheumatoid
arthritis [12], cutaneous manifestations [13], and dental caries [14]. Furthermore, photo-
induced 1O2 utilization for environmental applications such as water purification and
disinfections is also emerging as a promising strategy for photocatalysis [15–17].

The fewer side effects of PDT, and its higher selectivity compared with classical surgery,
are further supported by an invoked immune response that causes a mixture of necrotic
and apoptotic cell death, also preventing far-off metastases and tumour recurrence [18–20].

As a consequence, the design of efficient, light-responsive compounds has significantly
increased in the last decades and made it possible to develop new and more effective
photosensitizers [21–25], which are also able to overcome some of the most important
limitations of current PDT, such as poor light penetration and hypoxia [26–30]. The working
mechanism of PDT is sketched in Figure 1.

After administration and localization on a target tissue, the photosensitizer is irra-
diated by a proper light source whose wavelength must fall in the so-called therapeutic
window (500–900 nm), limited at shorter wavelengths by the absorption properties of
several skin chromophores and at longer wavelengths by water absorption. The pop-
ulation of triplet states by intersystem crossing (ISC) and their consequent quenching
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mechanisms trigger a series of photoreactions that lead to biological damage. The occur-
rence of ISC strongly depends on the values of the spin–orbit coupling constants whose
amplitude increases with an increased difference between the orbital natures involved
in the transition [31]. Values previously computed for the approved PS Foscan [32,33]
(5,10,15,20-tetrakis- (m-hydroxyphenyl) chlorin) are generally used as references for or-
ganic dyes. Once populated, direct photo-induced electron transfer processes can generate
ROS [34,35] or even nitric-oxide radicals, able to react indiscriminately with DNA, lipids,
and proteins [36] (Type I reactions), or they can promote an energy transfer mechanism to
tissue oxygen, leading to the formation of the highly cytotoxic singlet oxygen (3Σg → 1∆g)
(Type II reaction). To some extent, triplet-deactivating pathways could be in competition
among them. To cause irreversible destruction of neoplastic tissues, it is generally believed
that the energy transfer should predominate over Type I, due to the relatively higher reac-
tive property combined with the higher spatio-temporal control of the 1O2 release. Anyway,
extremely powerful photosensitizers that show dual Type I/II activity have already been
proposed, in which the combination of both mechanisms is evoked to explain the potent
phototoxicity [23,26]. PS should possess specific requirements to be proposed as a therapeu-
tic pro-drug, such as: (i) a red-shifted absorption wavelength to deeply penetrate human
tissues; (ii) a singlet–triplet splitting (∆S-T) high enough to excite oxygen and producing
the singlet species (0.98 eV) [37]; and (iii) an efficient ISC mechanism that, in turn, increases
the production of singlet oxygen. These crucial properties can be easily tuned by proper
structural modification, including the use of heavy atoms to enhance ISC or choosing
appropriate ligands to modify the photophysical and electronic properties. The search for
metal-free and less-toxic solutions has led to consideration of more biocompatible main
group elements to induce heavy atom effects [38–40]. Several intriguing investigations so
far, carried out on chalcogen-modified nucleobases, demonstrated that exocyclic carbonyl
oxygen replacement by either sulphur or selenium produce nucleobases able to generate
singlet oxygen [41–44]. Moreover, stable RNA [45], DNA duplex [46,47], and G-quadruplex
structures [47] have been found for selenium derivatives, which, moreover, exhibit im-
proved photophysical properties due to red-shift absorption properties and faster ISC
compared with their thio-counterparts. Such findings boost attention on chalcogen use to
find new and appealing photosensitization agents. Indeed, besides nucleobases, Nguyen
et al. [48] recently proposed thio-based naphthalimide dyes and their utility for PDT ap-
plication in an hypoxia environment, and, almost at the same time, Xiao et al. reported
a series of thio-based fluorophores starting from oxo-congeners, demonstrating that the
thiocarbonyl derivatives exhibit a distinct batochromic shift, a significant fluorescence loss,
and distinct singlet oxygen quantum yields that are missing in the oxygen counterparts,
suggesting them as outstanding PS candidates for PDT [49]. Moreover, in both cases, an
efficient population of long-lived, active triplet-excited states is evoked, consistent with the
observed ability of sensitizing molecular oxygen.
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Some of the proposed thio-compounds have been investigated in previous theoretical
papers that confirm that the choice of chalcogens can be a promising strategy to achieve
more suitable PDT agents while proposing an advance toward heavy-atom-free PSs [50,51].

Herein, we investigated the effects of oxygen atom replacement by either S and Se on
the photophysical properties of dimethylaminonaphthalimide dye [49] (DMNP, Figure 2)
by means of density functional theory (DFT) and its time-dependent extension (TDDFT).
Among the so-far proposed thio-carbonyl compounds [49], SDMNP has also been proposed
for photoimmunotherapy due to the robust cytotoxicity exerted by its conjugate with
trastuzumab, a monoclonal anti- body directed against HER2 [49], which enhances the
interest of this dye. While the effects of sulphur have been experimentally examined [49],
those relative to the seleno derivative have never been explored for this dye. Consequently,
our investigation attempts to establish whether the Se-for-oxygen single-atom replacement
can lead to an appealing candidate for PDT. At the same time, the possibility that both the
chalcogen derivatives act as a dual Type I/II PS has been herein considered, along with the
elucidation and characterization of absorption properties, singlet–triplet splitting, and the
SOCs values.

Molecules 2023, 28, x FOR PEER REVIEW 3 of 11 
 

 

proposed thio-based naphthalimide dyes and their utility for PDT application in an 
hypoxia environment, and, almost at the same time, Xiao et al. reported a series of thio-
based fluorophores starting from oxo-congeners, demonstrating that the thiocarbonyl 
derivatives exhibit a distinct batochromic shift, a significant fluorescence loss, and distinct 
singlet oxygen quantum yields that are missing in the oxygen counterparts, suggesting 
them as outstanding PS candidates for PDT [49]. Moreover, in both cases, an efficient 
population of long-lived, active triplet-excited states is evoked, consistent with the 
observed ability of sensitizing molecular oxygen. 

Some of the proposed thio-compounds have been investigated in previous theoretical 
papers that confirm that the choice of chalcogens can be a promising strategy to achieve 
more suitable PDT agents while proposing an advance toward heavy-atom-free PSs 
[50,51]. 

Herein, we investigated the effects of oxygen atom replacement by either S and Se on 
the photophysical properties of dimethylaminonaphthalimide dye [49] (DMNP, Figure 2) 
by means of density functional theory (DFT) and its time-dependent extension (TDDFT). 
Among the so-far proposed thio-carbonyl compounds [49], SDMNP has also been 
proposed for photoimmunotherapy due to the robust cytotoxicity exerted by its conjugate 
with trastuzumab, a monoclonal anti- body directed against HER2 [49], which enhances 
the interest of this dye. While the effects of sulphur have been experimentally examined 
[49], those relative to the seleno derivative have never been explored for this dye. 
Consequently, our investigation attempts to establish whether the Se-for-oxygen single-
atom replacement can lead to an appealing candidate for PDT. At the same time, the 
possibility that both the chalcogen derivatives act as a dual Type I/II PS has been herein 
considered, along with the elucidation and characterization of absorption properties, 
singlet–triplet splitting, and the SOCs values.  

 
Figure 2. Molecular structures of DMNP, SDMNP, and SeDMNP, herein investigated, created 
with the free ChemSketch software available at www.acdlabs.com.  

2. Results and Discussion 
The ground state conformations of the considered systems are depicted in Figure 3, 

together with the main geometrical parameters. Comparison between the obtained 
structures reveals that the sulphur- and selenium-for-oxygen substitution process does 
not affect significantly the geometrical parameters, with the exception of the C–X bond 
(X=O, S, Se), which is elongated along the chalcogen group. Indeed, the bond length 
increases from the value of 1.225 Å (X=O) to 1.658 Å (X=S), reaching the maximum length 
of 1.820 Å in the seleno derivative. Analogously, the X– C–N valence angle slightly 
increases in going from DMNP (123.8°) to SDMNP (125.6°) to SeDMNP (128.8°). The 
peripheral ester groups are perpendicular to the perfectly planar aromatic naphthalimide 
core in all cases, with dihedral angles of almost 180° (See Figure 3).  

Figure 2. Molecular structures of DMNP, SDMNP, and SeDMNP, herein investigated, created with
the free ChemSketch software available at www.acdlabs.com.

2. Results and Discussion

The ground state conformations of the considered systems are depicted in Figure 3,
together with the main geometrical parameters. Comparison between the obtained struc-
tures reveals that the sulphur- and selenium-for-oxygen substitution process does not affect
significantly the geometrical parameters, with the exception of the C–X bond (X=O, S, Se),
which is elongated along the chalcogen group. Indeed, the bond length increases from
the value of 1.225 Å (X=O) to 1.658 Å (X=S), reaching the maximum length of 1.820 Å in
the seleno derivative. Analogously, the X– C–N valence angle slightly increases in going
from DMNP (123.8◦) to SDMNP (125.6◦) to SeDMNP (128.8◦). The peripheral ester groups
are perpendicular to the perfectly planar aromatic naphthalimide core in all cases, with
dihedral angles of almost 180◦ (See Figure 3).

Molecules 2023, 28, x FOR PEER REVIEW 4 of 11 
 

 

 
Figure 3. Optimized geometries of DMNP, SDMNP, and SeDMNP in DMSO environment at the 
B3LYP/6-31+G(d,p) level of theory. The Cartesian coordinates for the optimized structures are 
reported in Table S1. 

Analysis of the four Gouterman frontier orbitals (Figures 4 and S1) offers interesting 
details on the electronic change following single-atom replacement. Indeed, a significant 
drop in the energy of the LUMO orbital is obtained upon the introduction of sulfur and 
even more after the seleno-for-oxygen substitution. Inspection of the shape of the LUMO 
orbitals reveals a higher contribution of the chalcogens S and Se to the orbital composition 
(≈30%) compared with the low contribution of oxygen (9%). As a consequence, the 
stabilization of the LUMO for SDMNP and SeDMNP can be attributed to their hybrid π* 
character. An opposite trend can be observed for the HOMO-1 orbital, for which the 
increasing contribution of chalcogens to the orbital is proportional to the increasing of 
orbital energy and to the change in nature from π to n observed upon sulfur and seleno 
introduction. 

 
 

Figure 3. Optimized geometries of DMNP, SDMNP, and SeDMNP in DMSO environment at the
B3LYP/6-31+G(d,p) level of theory. The Cartesian coordinates for the optimized structures are
reported in Table S1.

www.acdlabs.com


Molecules 2023, 28, 3153 4 of 10

Analysis of the four Gouterman frontier orbitals (Figures 4 and S1) offers interesting
details on the electronic change following single-atom replacement. Indeed, a significant
drop in the energy of the LUMO orbital is obtained upon the introduction of sulfur and even
more after the seleno-for-oxygen substitution. Inspection of the shape of the LUMO orbitals
reveals a higher contribution of the chalcogens S and Se to the orbital composition (≈30%)
compared with the low contribution of oxygen (9%). As a consequence, the stabilization
of the LUMO for SDMNP and SeDMNP can be attributed to their hybrid π* character.
An opposite trend can be observed for the HOMO-1 orbital, for which the increasing
contribution of chalcogens to the orbital is proportional to the increasing of orbital energy
and to the change in nature from π to n observed upon sulfur and seleno introduction.
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Upon sulfur-for-oxygen replacement, the H→L lowest energy band undergoes a
bathochromic shift, detected at 603 nm, and its π→π* nature has a considerable increase
of density on the sulfur ligand. Analogously, the insertion of selenium further shifts
the λmax at a higher wavelength (645 nm), and the contribution of the chalcogen during
the transition is unequivocally observed in the NTOs plot reported in Figure 5. As a
consequence, SDMNP and SeDMNP reach a fully biocompatible region of the spectrum to
be proposed as a PDT candidate.

The possibility of populating the triplet states upon irradiation has also been con-
sidered. In the energy diagram of the main singlet and triplet states (See Figure S3), two
lower-energy triplet states (T1, T2) lie below S1 for DMNP and SDMNP, and three (T1,
T2, and T3) for selenium derivative SeDMNP, and these can be considered in the possible
S1→Tn intersystem crossing deactivation pathways. The higher triplet states, if populated,
could easily decay to T1, whose energy is higher than that required to produce the 1∆g
cytotoxic molecular oxygen (0.98 eV) for all the investigated compounds.
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Figure 5. Computed Absorption Spectra of DMNP, SDMNP, and SeDMNP in DMSO environment at
the B3LYP/6-31+G(d,p) level of theory and Natural Transition orbitals (NTOs) characterizing the
bright lowest energy transition for each compound. See SI for more details.

Figure 6 reports the computed SOC values for the S1-T1 and S2-T2 channels for all the
derivatives and even the S2-T1 channel for SeDMNP, due to the close energy between the
first two singlet excited states, together with the S0-T1 energy difference gap (∆S-T) (See also
Figure S3). The calculated SOCs for the considered channels clearly show that the oxygen
replacement led to a significant increase in their values, suggesting a more efficient ISC for
both S1-T1 and S1-T2 channels for SDMNP and SeDMNP. In the case of a seleno derivative,
the S2-T1 channel has also been considered that shows a very high SOC (>1500 cm−1) and
represents a further deactivation pathway. The computed values provide a rationale for the
experimental reported singlet oxygen quantum yield values (Φ∆) [49] that are negligible
for DMNP but reach a higher value for sulfur- substituted species (Φ∆ = 0.81) [49].
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Besides the Type II mechanism, the occurrence of the electron transfer reaction leading
to the highly reactive O2

.(−) species has also been verified. Two main mechanisms could
lead to the formation of superoxide: a direct electron transfer from the photosensitizer (PS)
to oxygen (1) or an electron transfer mechanism from a reduced form of the PS to O2 (2).
The latter could be reduced by auto-ionization reactions (3) and (4), involving neighboring
PS in the S0 or T1 states, according to the following reactions:

3Ps + 3O2 → Ps (+)• + O2
(−)• (1)

Ps(−)• + 3O2 → 1Ps + O2
(−)• (2)
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3Ps + 1Ps→ Ps(+)• + Ps(−)• (3)

3Ps + 3Ps→ Ps(+)• + Ps(−)• (4)

Knowledge of the vertical electron affinity (VEA) and ionization potentials (VIP) allow
verification of the feasibility of the above-mentioned reactions. On the basis of the computed
values summarized in Table 1 for DMNP, SDMNP, and SeDMNP, it can be deduced that
the direct electron transfer to oxygen to produce superoxide (1) can be ruled out for sulfur
and seleno derivatives, but it could occur for DMNP, with the sum of VEA (3O2) and VIP
(3PS) slightly negative (0.10 eV), suggesting an energetically favorable reaction.

Table 1. B3LYP-D3/6-31+G(d,p) Vertical electron affinity (VEA) and vertical ionization potential
(VIP) of DMNP, SDMNP, SeDMNP, and O2 in DMSO, in eV.

Cpds VEA (S0) VIP (S0) VEA (T1) VIP (T1)

DMNP −2.48 5.42 −4.66 3.56
SDMNP −3.51 5.43 −4.83 4.23
SeDMNP −3.71 5.42 −4.84 4.39

O2 −3.66

The photosensitizer, once it has populated the lowest triplet state, could be reduced by
auto-ionization through reaction (4), since the comparison between the VEA and VIP values
considering both molecules in the triplet state (VEA and VIP 3PS) indicate an exothermic
process for each derivative. This conclusion is not valid for the auto-ionization involving
one of the PS reactants in the ground state (3) due to the positive summation value between
VEA (3Ps) and VIP (1Ps). More importantly, the results show that once produced, the Ps(−)•

is able to undergo electron transfer to the oxygen with the production of superoxide (2)
in DMNP and in the thio-derivative SDMNP. Indeed, comparing the electron affinity of
dioxygen in water (−3.66 eV) with the corresponding values for both the above-mentioned
compounds, the reaction is predicted to be favorable. Concerning the SeDMNP dye, the
small difference between the electron affinity of molecular oxygen compared to VEA (1Ps)
does not allow us to definitely exclude the occurrence of the reaction, since it is predicted to
be exothermic by 0.5 eV. Moreover, the superoxide anion can itself act as a reducing agent
for compounds in the triplet state, which may be indicative of an increased phototoxicity.
Such evidence is supportive of a dual Type I/Type II activity of such compounds, further
enhancing the importance of the use of chalcogens in dyes for PDT.

3. Computational Details

The DFT/B3LYP [52,53] method, as implemented in Gaussian 16 software [54], has
been employed to carry on geometry optimizations and to compute excitation energies, by
using the 6-31+G(d,p) basis set [45,46]. Dispersion corrections for nonbonding interactions
were included by applying an atom pairwise additive scheme (DFT-D3) method [55].
Solvent dimethylsulfoxide (DMSO, ε = 46.82) effects were considered using the IEFPCM
continuum solvation model [56]. Ref. [47] Excitation singlet and triplet energies were
obtained in DMSO as vertical electronic excitations on the ground-state structures at the
TD-DFT/B3LYP/6-31+G(d,p) level of theory. The Tamm-Dancoff approximation [57] has
been used throughout to avoid triplet instabilities [58]. Singlet–triplet splittings (∆ES-T)
were computed at the same level of theory and compared with the previously computed
gap for oxygen (0.90 eV) [59].

The SOCs values, defined as SOCnm =
√

∑i
∣∣〈ψSn

∣∣ĤSO
∣∣ψSm

〉∣∣2
i
(where i = x, y, z ;

ĤSO = spin–orbit Hamiltonian), were computed by using the atomic-mean field approx-
imation [60] as implemented in the DALTON code [61] at the B3LYP/cc-pVDZ level of
theory on the previously optimized structures. The accuracy of the chosen protocol was
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previously adopted to investigate the photophysical properties of several other organic
photosensitizers [62–66].

SOCs and ∆ES-T are both crucial parameters to estimate the occurrence of the non-
radiative ISC mechanisms, considering that the KISC for the Sn–Tm transition, in the
Frank–Condon approximation and in the non-adiabatic regime, can be obtained by using
the Fermi Golden rule expression [67]:

knm
ISC =

2π

} 〈ψSn

∣∣ĤSO
∣∣ψT m〉2x FCWD

where ĤSO is the spin–orbit Hamiltonian, and FCWD is the Franck–Condon weighted
density of states that mainly depends on the ∆ES − T values [67]:

FCWD ∝ exp

[
− (∆ES−T)

2

4λkBT

]

4. Conclusions

DFT and TDDFT levels of theory have been used to determine the modulation of
photophysical properties when sulfur and selenium atoms replace the oxygen in dimethy-
laminonaphthalimide dyes. Results show that the absorption Q band undergoes a sig-
nificant red shift upon oxygen atom substitution, due to a drop in energy of the LUMO
orbital caused by a higher contribution of chalcogen to the orbital. The reduced H–L gap
determines a significant batochromic shift of the λmax, reaching a more biocompatible
region of the spectrum. The spin–orbit coupling constants substantially increase when
sulfur and selenium replaces oxygen, suggesting a more efficient ISC mechanism. From our
data, SeDMN exhibits a more advantageous red-shifted absorption spectrum and faster ISC
compared with its thio-counterpart, as suggested by the higher SOC values obtained for
the three deactivation channels considered (T1→S1; T2→S1; T1→S2). All in all, the more
feasible population of the triplet states, together with the ∆S-T gap of appropriate energy
to produce cytotoxic molecular oxygen (>0.98 eV), allow confirmation of the occurrence
of Type II photoreactions for chalcogen-modified dyes. Concerning the electron transfer
mechanisms with the production of superoxide, our results show that the auto-ionization
mechanism (Type I) result feasible for all compounds and the reduced form of the triplet
state could, in the case of DMNP and SDMNP, transfer an electron to oxygen with the pro-
duction of superoxide. For Se-derivative, the process is predicted to be slightly exothermic.
The results herein presented support the use of sulfur- and seleno-chalcogens to improve
the photophysical properties of metal-free dyes for PDT.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28073153/s1, Figure S1: Frontiers Molecular Orbital
Plots; Figure S2: Main Vertical singlet and triplet excitation energies, λ (nm), ∆E (eV), oscillator
strength f and Natural Transition Orbitals involved; Figure S3. Energy diagram of the main singlet
and triplet states.
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