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Abstract: Tailoring high-efficiency photocatalytic composites for various implementations is a major
research topic. 1D TNTs-based nanomaterials show promise as a photocatalyst for the remediation of
organic pigments in an aqueous solution. Despite this, TiO2 (TNTs) is only photoactive in the UV
range due to its inherent restriction on absorption of light in the UV range. Herein, we provide a
facile recipe to tailor the optical characteristics and photocatalytic activity of TNTs by incorporating
Zn (II) ionic species via an ion-exchange approach in an aqueous solution. The inclusion of Zn (II)
ions into the TNTs framework expands its absorption of light toward the visible light range, therefore
TiO2 nanotubes shows the visible-light photo-performance. Activity performance on photocatalytic
decontamination of RhB at ambient temperature demonstrates that Zn-TNTs offer considerable
boosted catalytic performance compared with untreated tubular TiO2 during the illumination of
visible light. RhB (10 mg L−1) degradation of around 95% was achieved at 120 min. Radical scavenger
experiment demonstrated that when electron (e−) or holes (h+) scavengers are introduced to the
photodegradation process, the assessment of decontamination efficacy decreased by 45% and 76%,
respectively. This demonstrates a more efficient engagement of the photoexcited electrons over pho-
togenerated holes in the photodegradation mechanism. Furthermore, there seems to be no significant
decrease in the activity of the Zn-TNTs after five consecutive runs. As a result, the fabricated Zn-TNTs
composite has a high economic potential in the energy and environmental domains.

Keywords: titania nanotubes; Zn (II) ions; visible light; photocatalysis; organic pollutants; rhodamine B

1. Introduction

TiO2 has been one of the most researched materials since its commercialization in the
early twentieth century due to its exceptional functional characteristics, environmental
friendless, and stability [1–3]. TiO2 performance in several implementations, particu-
larly photocatalysis and heterogeneous catalysis is tightly connected to shape, phase, and
crystallite size, which dictate electronic characteristics [2–6]. These textural and morpho-
logical properties may be controlled by appropriate choice of fabrication approach and
post-treatments, whereas electric characteristics are often fine-toileted through treatment
with dopants [7]. 1D semiconducting nanomaterials consist of nanotubes, nanowires, and
nanorods and are important in the current nanotechnology [8–13]. They have great poten-
tial in various applications, such as sensing, conversion of solar energy, photodetectors,
batteries, photocatalysis, and light waveguides [14–20]. TiO2 is a photocatalyst which
may be utilized for contaminants remediation, hydrogen production from splitting of
water and transformation of organic compounds [21–24]. In contrast to frequently utilized
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nanoparticles or bulk particles, nanotubular TiO2 may give distinct advantages as a photo-
catalyst due to the following characteristics [25,26]: (i) 1D design allows for both quick and
high-distance electron movement, (ii) nanotubular morphology with great surface features
is predicted, and (iii) owing to the large length-to-width ratio for 1D TiO2 (TNTs), light
scattering and absorption may have significant improvement. As a result, exploring the
potential uses of these TiO2 nanotubular-based nanomaterials as photocatalysts for desired
implementations should be of considerable interest. It should be emphasized, however,
that TiO2 (TNTs) are solely UV-light photo-active due to their absorption in the UV range.
Additionally, TiO2 nanotubes (TNTs) have a significant cation-exchange capability [27],
which is an essential structural characteristic.

1D alkaline titanates are an appealing precursor for the synthesis of 1D tubular TiO2
(TNTs) in gram amounts [28]. Moreover, this approach allows for doping at various stages:
(i) in situ-doping at the start of the production of alkali titanates [29,30] or (ii) during an
ion exchange operation in which the cationic alkaline ions are replaced with dopant ions
and/or protons [31]. When it comes to the influence on the morphology of nanomaterials,
these two doping procedures are significantly less damaging than certain more recognized
approaches, such as high temperature processing. In situ-doping is the best approach for
achieving substitutional doping while preserving the shape of one dimensional tubular
TiO2. This approach has been previously used to synthesize TiO2 nanotubes that have
been doped with various metal ions [29,30]. However, this method cannot be applied in
the basic medium that is used for the development of tubular TiO2 because some ions of
transition elements produce insoluble hydroxides. Zinc in the oxidation state (II) is an
exceedingly desirable dopant for titanate nanomaterials among transition elements. For
example, by replacing Ti (IV) substitutional sites, Zn (II) may generate oxygen vacancies,
enabling the development of the rutile crystalline phase and thereby considerably altering
the durability of the anatase phase [32,33]. Moreover, the inclusion of Zn (II) in the anatase
matrix offers a significant influence on the photocatalytic performance. However, since Zn
(II) has a different charge than Ti (IV) and its radius is 0.74, which is much bigger compared
with Ti (IV) (0.61), substitutional Zn (II) doping is difficult. The decontamination of organic
contaminants has offered remarkable promise in the area of photocatalysis [34,35].

Herein, we enhance the light absorption characteristics of tubular TiO2 by a facile Zn
(II) ion exchange approach and their usage as a photocatalyst in the visible-light range
in water remediation under ambient circumstances. TiO2 (TNTs) may be converted into
a robust visible-light photocatalyst by the introduction of Zn (II). In addition, the Zn (II)
doping may boost the performance of TiO2 (TNTs) when exposed to visible light due to the
increased lifespan of photo-generated e−/h+ couples.

2. Results and Discussion
Materials Characterization

The powder X-ray diffraction (XRD) assessment was utilized to establish the tubular
nanostructure when preserved in Zn-TNTs as compared with pure TNTs. As depicted
in Figure 1a, the diffraction bands at 2θ values of 25.5, 38.3, 48.1, 54.5, 55.4, 63.1, and
69.3◦ could be indexed to (101), (004), (200), (105), (211), (204) and (116) faces of TNTs
anatase structure, respectively. Therefore, this measurement indicates that the prepared
TNTs are highly crystalline with anatase structure as a dominant phase (JCDS 21-1272).
Additionally, three distinctive rutile diffraction peaks with (110), (111), and (210) faces
were also observed (JCDS 21-1276). All of the typical crystalline phase peaks of TNTs
were preserved in Zn (II)-ions doped TNTs, indicating that the TNTs had not crumpled.
Furthermore, no distinguishable diffraction peaks resembling zinc oxide or hydroxide can
be seen in any of the XRD patterns (Figure 1a). Furthermore, regarding un-treated TiO2, the
conversion to TiO2 (anatase) and subsequently to TiO2 (rutile) occurs at high temperatures.
The existence of Zn (II) ions in the TNTs matrix reduced the conversion of anatase to rutile
phase substantially [36,37].
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Figure 1. (a) XRD patterns and (b) Raman spectroscopy of undoped TNTs and Zn-doped TNTs
(Zn-TNTs).

Figure 1b depicts the Raman spectra of the pure TNTs and Zn-TNTs. Tubular nanos-
tructures developed with the formation of two distinctive bands at 275 and 913 cm−1 along
with a unique rutile mode at 449 cm−1. The peak at 449 cm−1 corresponds to the phonon
(Eg) band of rutile-kind, whereas others are anatase kind. The smallest frequency phonon
(Eg) mode of anatase in the Raman spectrum of TNTs changed from 142 cm−1 in pure TNTs
to 146 cm−1 in Zn-TNTs, demonstrating that the tetrahedron architecture was produced in
tubular nanostructure. The 4 cm−1 blue shift might be due to the deficiency of oxygen. The
reorganization of nanomaterials into novel phases is displayed by the disappearance of
certain traditional peaks for TiO2 (196 cm−1) and the emergence of additional wide peaks.
The titanate phase is shown by the band at 913 cm−1. This peak is related to the symmetric
stretching mode of a titanate’s short Ti-O bond in an architecture nanostructure [38].

The optical characteristics using UV-vis of TNTs and Zn-TNTs are depicted in Figure 2,
demonstrating that the light absorption property of TiO2 nanotubes may be carefully
tailored by the addition of various ionic species. The addition of ionic species to the
framework of tubular TiO2 is committed to expanding its light absorption to the visible-
light range. As a result, Zn(II)-ion-treated TNTs may need to be activated by visible
light irradiation and are likely to exhibit TNT’s visible light photocatalytic ability for
various applications.
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A plot obtained via drawing (αhv)
1
2 against (hν) based on the Tauc’s equation is

displayed in Figure 2b, by which the approximately determined bandgap values are 3.12
and 2.873 eV, respectively, for TNTs and Zn-TNTs.. This implies that the bandgap of Zn (II)-
ion-treated TNTs lessens when compared with pristine TNTs. This could be attributed to
the development of defect energy levels of Zn (II)-ion-treated TNTs between the conduction
and valence band of tubular TiO2.

The electronic properties and chemical oxidation states of Zn (II)-ion-treated TNTs
were examined using XPS [39–43]. The high-resolution XPS spectra of Ti2p, Zn2p, and
O1s for Zn-TNTs are displayed in Figure 3. The Ti2p1/2 and Ti2p3/2 bands may be de-
convoluted into two pairs of bands, with stronger peaks at 464.1 eV and 458.5 eV relating
to Ti4+ ions, suggesting the predominant oxidation state of Ti in Zn-TNTs (Figure 3a) [39].
Ti3+ is responsible for a set of weaker bands at 457.1 eV and 460.3 eV. This could be
attributed to the lower temperature’s treatment: oxygen is insufficiently active to completely
oxidize Ti, resulting in the creation of vacancies of O and Ti3+ centers in the tubular TiO2
(Figure 3a) [40]. On the other hand, the bands centered at 1021.5 and 1044.7 eV in the Zn
spectrum (Figure 3b) are related to the Zn 2p3/2 and Zn 2p1/2 of Zn2+, respectively [41].
The concentration of Zn2+ in Zn (II)-ion-42treated TNTs is estimated to be 0.48 mol %
based on the XPS data quantification. The O1s peak in Figure 3c could be deconvoluted
into two bands at 529.7 eV and 531.6 eV. The Ti-O bond is responsible for the peak at
529.8 eV [40]. The presence of a minor band at 531.6 eV might be attributed to oxygen in
Ti–O–Zn. Furthermore, no bands for any extraneous atoms were identified, indicating that
the fabricated nanocomposite is exceedingly pure, supporting the effective development of
the Zn-TNTs nanocomposite.
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Nitrogen adsorption–desorption experiments have been utilized to assess the surface
characteristics of TNTs and Zn-TNTs. The full isotherms and the associated pore size
distributions (BJH) are displayed in Figure 4. Type IV isotherms (Figure 4a) with H3
hysteresis loops were identified in both samples. It is possible that the observed hysteresis
in the data presented in Figure 4a is indeed small, which may suggest that the materials have
limited porosity. The surface areas of the untreated TNTs and Zn-TNTs were determined
to be quite comparable, measuring 235 and 228 m2 g−1, respectively. Furthermore, they
exhibit comparable the same volume of pore of 0.721 and 0.691 cm3 g−1 for TNTs and Zn-
TNTs, respectively. The pore size distribution (Figure 4b) is distinguished by two different
wide peaks at 5.6 and 8.3 nm pore width, and a single sharp peak at 3.6 nm. The peaks were
allocated to wall flaws of the interior pores of the tubes, and the space between tubes [43].
As a result, the combined BET and XRD results indicate that metal-ion treatment has no
influence on the microstructure of Tubular TiO2.



Molecules 2023, 28, 3072 5 of 13

Molecules 2023, 28, x FOR PEER REVIEW 5 of 14 
 

 

Nitrogen adsorption–desorption experiments have been utilized to assess the surface 
characteristics of TNTs and Zn-TNTs. The full isotherms and the associated pore size dis-
tributions (BJH) are displayed in Figure 4. Type IV isotherms (Figure 4a) with H3 hyste-
resis loops were identified in both samples. It is possible that the observed hysteresis in 
the data presented in Figure 4a is indeed small, which may suggest that the materials have 
limited porosity. The surface areas of the untreated TNTs and Zn-TNTs were determined 
to be quite comparable, measuring 235 and 228 m2 g−1, respectively. Furthermore, they 
exhibit comparable the same volume of pore of 0.721 and 0.691 cm3 g−1 for TNTs and Zn-
TNTs, respectively. The pore size distribution (Figure 4b) is distinguished by two different 
wide peaks at 5.6 and 8.3 nm pore width, and a single sharp peak at 3.6 nm. The peaks 
were allocated to wall flaws of the interior pores of the tubes, and the space between tubes 
[43]. As a result, the combined BET and XRD results indicate that metal-ion treatment has 
no influence on the microstructure of Tubular TiO2. 

 
Figure 4. (a) N2 isotherms (b) pore size distribution of undoped TNTs and Zn-doped TNTs (Zn-
TNTs). 

High-resolution transmission electron microscopy (HRTEM) images with various 
magnifications of Zn-TNTs reveal a highly ordered and uniform morphology, as depicted 
in Figure 5A–C. The nanotubes appear as long, cylindrical structures with a length of sev-
eral micrometers [44,45]. The elemental assessment of the as-fabricated tubular TiO2 and 
Zn-TNTs systems was explored by energy dispersive X-ray spectrometry. Typical spectra 
are depicted in (Figure 5D). Titanium, oxygen, and zinc were present by the samples as 
predicted in the structure of titanate. The weak Au signal is due to the sample coating. 

Figure 4. (a) N2 isotherms (b) pore size distribution of undoped TNTs and Zn-doped TNTs (Zn-TNTs).

High-resolution transmission electron microscopy (HRTEM) images with various
magnifications of Zn-TNTs reveal a highly ordered and uniform morphology, as depicted in
Figure 5A–C. The nanotubes appear as long, cylindrical structures with a length of several
micrometers [44,45]. The elemental assessment of the as-fabricated tubular TiO2 and Zn-
TNTs systems was explored by energy dispersive X-ray spectrometry. Typical spectra
are depicted in (Figure 5D). Titanium, oxygen, and zinc were present by the samples as
predicted in the structure of titanate. The weak Au signal is due to the sample coating.
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3. Adsorption and Photocatalytic Performance

The catalytic activity of as-fabricated TNTs and Zn-TNTs was examined for the remedi-
ation of RhB. The finding includes the adsorption of RhB in darkness and the remediation of
RhB using the prepared materials under visible illumination. It is evident that there are dis-
parities in the adsorption and degradation performance of RhB using TNTs and Zn-TNTs.
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3.1. Adsorption Study

To find out the effectiveness of the prepared materials in reducing or removing RhB
dye pollutants, the adsorption of the RhB dye on the surfaces of TNTs or Zn-TNTs was
studied individually. As can be easily noted, the solution containing RhB was kept in
the dark with the prepared materials prior to illuminating it. This was done to attain an
equilibrium state of adsorption/desorption and to investigate the adsorption of RhB. The
obtained findings for NTs and Zn-TNTs show that uptake equilibrium was attained after
30 min. The high surface area of Zn-TNTs is evidently responsible for their substantial
adsorption capacity, particularly towards RhB, as shown in the study. These results indicate
that the samples could potentially serve as effective adsorbents for color compounds. The
kinetic findings of the uptake of RhB over TNTs and Zn-TNTs were examined utilizing
the pseudo-first-order [46] and the pseudo-second-order models [47]. To determine the
most suitable kinetic model, the regression factor (R2) was used for quantitative evaluation,
as presented in Table 1. The findings indicate that the pseudo-first-order model was
determined to be the most suitable for describing the adsorption of RhB.

Table 1. Kinetics variables for the uptake of RhB using pseudo-first-order, and pseudo-second-order
over TNTs and Zn-TNTs.

Pseudo-First-Order Pseudo-Second-Order

Sample qe1,cal.
(mg/g)

K1
(1/min) R2 qe2,cal.

(mg/g)
K2

(g/mg-min) R2

TNTs 16.24 0.0110 0.9638 16.73 0.0103 0.9591
Zn-TNTs 37.35 0.0364 0.9927 38.34 0.0365 0.9911

In order to gain a deeper understanding of the adsorption mechanism of RhB onto the
synthesized materials, the adsorption data were fitted using commonly used mathematical
models for adsorption: the Freundlich Equation (1) and Langmuir Equation (2) models.

LnQe = LnKf + 1/nLnCe (Freundlich) (1)

Ce/Qe = Ce/Qmax + 1/QmaxKL (Langmuir) (2)

where 1/n and KF are the variables of the Freundlich isotherm. The Langmuir maximum
capacity and adsorption constant are represented by Qmax and KL, respectively. Table 2
displays all the parameter values and regression factors for both isotherms.

Table 2. Langmuir and Freundlich isotherm constants for RhB uptake on TNTs and Zn-TNTs.

Sample

Langmuir Isotherm Freundlich Isotherm

qm,cal. KL
R2 KF n R2

(mg/g) (L/mg) (mg/g)(L/mg)1/n

TNTs 99 0.251 0.9971 14.1 0.3 0.9321
Zn-TNTs 146 0.342 0.9982 22.7 0.7 0.9732

It can be inferred from the correlation coefficients of both isotherms that the Langmuir
model is the most suitable for describing the adsorption process of RhB. This suggests that
the adsorption sites of the prepared materials are homogeneous and that a monolayer of
RhB molecules is formed on the surface of these solids.

3.2. Photocatalytic Study

Figure 6a displays the remediation of RhB using visible illumination for TNTs and
Zn-TNTs. Initially, we conducted the decontamination of RhB without TNTs or Zn-TNTs
as a control test to gain a better understanding of the remediation process. The results
revealed that after 120 min of photolysis, there was little degradability (<2%) of RhB. It
demonstrated that the RhB cannot even be adequately remediated using solely photolysis
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during visible-light irradiation; the degradation (%) of RhB was determined to be 61% for
TNTs and 97% for Zn-TNTs after 120 min of visible-light illumination. The UV–vis spectra
of RhD in the presence of Zn-TNTs at different time intervals are depicted in Figure 6a.
The total photocatalytic efficiency of tubular TiO2 during irradiation with visible-light
is extremely poor owing to decreased visible-light absorption due to its higher bandgap
(3.12 eV), and partially decontaminated RhB for this nanostructure material might be
attributed to auto-sensitization. Zn-TNTs outperformed TNTs in photocatalysis efficacy
due to their increased absorption in the visible light spectrum (Figure 6b). These findings
demonstrated that modifying TNTs with Zn (II) ions might significantly increase their
photocatalytic activity during visible-light irradiation.
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The decontamination kinetics have been assessed using Langmuir-Hinshelwood
model to measure the rate constant for the degradation process [48], utilizing Equation (3):

Ln
(

Ct

C0

)
= −kt (3)

where C0 and Ct are the initial and ultimate RhB contents, respectively. k denotes the rate
constant of the pseudo first-order kinetic model, which was estimated for TNTs and Zn-
TNTs from the slope of a straight line in the graph between −Ln(Ct/C0) against time (t), as
illustrated in Figure 6c. Obviously, both samples display a remarkable linearity as verified
by the regression coefficient (R2), indicating that the decontamination of RhB obeys pseudo
first-order model with K values of TNTs, and Zn-TNTs were 0.006 min−1, and 0.049 min−1,
respectively. By linking the results of RhB dye adsorption and the photocatalytic efficiency,
it is clear that the increase in the adsorption efficiency is related to the catalytic efficiency,
as the results suggest that the rate of dye photodegradation correlates with the rate of
photocatalytic in simulated sunlight.

To confirm the degradation of the dye, we performed a Chemical Oxygen Demand
(COD) experiment, which is a commonly used technique for measuring the content of
organic matter in wastewater. The COD measurement test assesses the entire amount of
oxygen needed for organic matter oxidation to CO2 and H2O. A significant decrease in
COD levels suggests that the carbon level of the sample has degraded, thereby displaying
the extent of mineralization that has taken place. This process causes organic carbon to
transform into gaseous CO2 [49]. The mineralization process, which involved the opening
of the aromatic rings to generate carboxylic acids temporarily, and the production of CO2
via the “photo-Kolbe” process, significantly reduced the COD levels (Table 3). The COD
reduction indicates that a remarkable amount of mineralization occurred. Based on the
significant decline in COD, it’s probable that Zn-TNTs have helped the color molecules
entirely mineralize.
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Table 3. Chemical oxygen demand (COD) changes of RhB over the Zn-TNTs at different times.

Physico-Chemical
Variables

Pre-Photocatalytic
Degradation

In Dark
for 60 min

Post-Photocatalytic Degradation after

10 min 20 min 40 min 60 min 180 min

COD (ppm) 28.5 18.1 14.6 12.1 8.4 3.1 1.4

3.3. Effect of Radical Scavenger

The trapping experiments were performed in order to recognize the active constituents
that were engaged in RhB decontamination, and the results are illustrated in Figure 7.
Quenching compounds such as tert-butyl alcohol (TBA) as an electrons (e−) scavenger
and ethylene-diamine-tetraacetic acid disodium (Na2-EDTA) as holes (h+) scavenger were
utilized throughout the experiments [50,51]. When e– or h+ scavengers were introduced
to the photodegradation experiment, the assessment of the decontamination efficacy de-
creased by 45% and 76%, respectively. This demonstrates a more efficient engagement of
the photoexcited electrons over photogenerated holes in the photodegradation process.
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irradiation in the existence of Na2-EDTA as hole scavenger and TBA as electron scavenger.

3.4. Stability and Reusability

Because photocatalyst durability is a crucial criterion of efficacy assessments for in-
dustrial purposes or practical implementations, the reusability of Zn-TNTs photocatalyst
was tested utilizing recycling measurement under the similar conditions for RhB degra-
dation. Figure 8a illustrates that there is just no significant decrease in the activity of the
photocatalyst after 5 consecutive runs, suggesting that Zn-TNTs composite is stable for
decontamination of RhB. Furthermore, the contents of the leaching Zn (II) ions throughout
the degradation process. It worth noting that there were no measurable zinc (II) ions during
the whole decontamination process. The stability of Zn-TNTs was further assessed by
comparing the XRD pattern (Figure 8b) of the Zn-TNTs that is reused for 5 consecutive runs
of decontamination of RhB with the comparable fresh Zn-TNTs. As demonstrated, there
is no discernible difference in the major XRD pattern before and after decontamination,
showing that the tubular structure is stable.
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Figure 8. (a) Durability of Zn-TNTs in photodegrading RhB up to five runs under visible-light
irradiation for 120 min, and (b) XRD patterns of Zn-TNTs before and after 5 consecutive runs.

3.5. Photocatalytic Mechanism

A hypothetical photocatalytic decontamination mechanism for RhB dye over Zn
(II)-treated TNTs could be suggested as the following, which is graphically depicted in
Figure 9. When exposed to the visible-light illumination, the Zn (II) ionic species acting as
defect energy-levels may boost the absorption of visible light and the development of the
photo-excited e−/h+ couples on of Zn-TNTs surface [52–55]. The photo-induced electrons
were transported to both semiconductors’ conduction band, in which they interact with
molecular oxygen to develop O2

−. Simultaneously, photo-excited holes in the valence band
of Zn-TNTs interacted with water to form OH• radicals. Following that, as the principle
active radicals, these produced radicals engaged in the photocatalytic decontamination of
RhB pigment.
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4. Experimental
4.1. Materials

NaOH (≥98%), ethanol (95%), Zinc acetate dehydrate (Zn (CH3COO)2 2H2O, ≥98%)
as zinc-ion precursor, Titanium (IV) oxide (<25 nm, anatase, 99.7%), NH4OH solution (28%,
≥99.9%), and rhodamine B (≥95%) were obtained from Sigma-Aldrich, St. Louis, CO, USA.
All of the materials are analytic grading and utilized exactly as supplied. The distilled water
utilized in all of the studies was obtained from the Milli-Q direct 8 purification system
(Millipore, France).

4.2. Preparation of Tubular Titanate (TNTs)

TNTs was fabricated by stirring the blend of 1 g titania powder (anatas) and a concen-
trated solution of NaOH (80 mL, 10 M) to produce a uniform suspension. Afterwards, the
material was transferred to a Teflon-lined autoclave and subjected to hydrothermal treat-
ment at 140 ◦C for 15 h. Following the process, the product was filtrated and rinsed with
DI water until it became basic with a PH~ 8. It must be seen that the rinsing operation with
a pH of 8 is critical for retaining the complete tubular matrix nanostructure for subsequent
heat treatment [36]. Ultrasonication was then used to disperse the obtained precipitate in
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ethyl alcohol. After a second bath and separation, the final product was vacuum-dried for
12 h at 90 ◦C. Finally, the final product is calcined at 400 ◦C in air for 5 h.

4.3. Preparation of Zn (II)-Doped Tubular Titanate (Zn-TNTs)

Typically, the zinc (II)-ion precursors of Zn (CH3COO) 2 were completely dissolved in
water to develop the appropriate Zn (II) solution, and then a diluted ammonia solution
(28%) was added dropwise to generate transparent solutions at ambient temperature. Then,
the tubular TiO2 (1 g) was suspended in the corresponding Zn (II) solution (100 mL) and
agitated for 24 h at a speed of 200 rpm at ambient temperature to enable a suitable ionic-
exchange reaction. Finally, the Zn-TNTs products were rinsed many times with ammonia
solution (28%), DI water, and a regulation pH of 8 to prevent physisorption of the Zn (II)
ions on the nanotubes surface [36].

4.4. Characterization

To identify the phase and crystalline nanostructure of the tubular materials, X-ray
diffraction (XRD) was employed using an X-ray diffractometer (XPERT, PANalytical, Min-
neapolis, MN, USA) with Cu K radiation (λ = 0.154 nm) at 40 kV and 40 mA. The diffrac-
tograms were obtained in the 2θ range of 20–80◦, with a step size of 0.01◦ and a time
interval of 10 s for each step. Raman spectra were obtained using a ProRaman-L instru-
ment (Enwave Optronics, Irvine, CA, USA) with a doubled Nd: YAG laser (λ = 532 nm).
X-ray photoelectron spectroscopy (XPS) with Al Kα (200 eV and 50 eV) was performed
using equipment from Thermo-Fisher Scientific (K-ALPHA, San Francisco, CA, USA). N2
isotherms were measured at 77K using a surface analyzer (NOVA 3200, Quantachrome
Instruments, Boynton, FL, USA), and the Barrett–Joyner–Halenda (BJH) model was used to
evaluate the pore size distribution from the adsorption branch of the isotherms. Morphol-
ogy and elemental composition were studied using a high-resolution transmission electron
microscopy (HRTEM, JEOL-2011, 200 kV, Tokyo, Japan) equipped with an energy dispersive
X-ray (EDX). The optical characteristics were determined using a UV-vis spectrophotometer,
Agilent Cary 60 Spectrophotometer (Agilent Technologies, Santa Clara, CA, USA).

The absorption-coefficient α(ν) was evaluated using Equation (4):

α(ν) =
1
d

log
(

I0

I

)
(4)

where I0 and I are the incident and transmitted intensities of light, respectively. Eg is the
optical band-gap (Eg) and was determined from the absorption coefficient α(ν) utilizing
Equation (5)

αhν = [B(hν − Eg)]r (5)

where hν is the incident light’s photon energy and B is the constant of band tailing. For
direct or indirect bandgap, r is 1/2 or 2, respectively [37]. The Tauc’s plots were developed

by graphing (αhv)
1
2 versus (hν) to assess the value of bandgap energy.

4.5. Photocatalytic Performance

Typically, in a double wall jacket glass reactor, 50 mg of TNTs or Zn-TNTs were
introduced in 100 mL Rhodamine B (RhB) solution with an initial concentration (10 mg L−1)
to perform a photodegradation experiment at 25 ◦C. The suspension was then put vertically
in front of a visible-light source (Xenon lamp) (300 W, 200 W/m2, 460 nm). An aliquot of the
reaction mixture was collected out and filtrated using centrifugation at predetermined time
intervals. Then the RhB content was then assessed using a UV-vis spectrophotometer (UV-
vis spectrophotometer Agilent Cary 60 Spectrophotometer) at 554 nm. Atomic absorption
spectroscopy (AAS, iCE3300 AAS atomic absorption spectrophotometer Thermo Fisher,
Waltham, MA, USA) was utilized to determine the amount of the leachable Zn(II) ions.
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5. Conclusions

Herein, 1D TiO2 (TNTs) treated with Zn (II) ions was fabricated by an ionic exchange
approach in an aquatic medium. The optical characteristics of TNTs are quite-tailored by the
inclusion of Zn (II) ions. Specifically, the inclusion of Zn (II) ions into the TNTs framework
enables the extension of its light absorption to the visible range, leading TNTs to exhibit
visible-light photoactivity toward RhB decontamination. During illumination with visible-
light, Zn (II) treated TNTs material exhibits significantly robust catalytic performance
toward RhB decontamination compared with the pristine TNTs. There is no significant
decrease in the activity of the photocatalyst after 5 consecutive runs, suggesting that Zn-
TNTs composite is stable for decontamination of RhB. Obviously, our study shows the
tailored optical characteristic of TiO2 by treating with Zn (II) ions and, importantly, offers a
new avenue of 1D TiO2 (TNTs) and other nanostructures as a novel form of visible-light-
driven materials for remediation of organic dyes in aquatic environments.
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