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Abstract: Ideal Adsorbed Solution Theory (IAST) is a predictive model that does not require any
mixture data. In gas purification and separation processes, IAST is used to predict multicomponent
adsorption equilibrium and selectivity based solely on experimental single-component adsorption
isotherms. In this work, the mixed gas adsorption isotherms were predicted using IAST calculations
with the Python package (pyIAST). The experimental CO2 and CH4 single-component adsorption
isotherms of Mg-gallate were first fitted to isotherm models in which the experimental data best fit the
Langmuir model. The presence of CH4 in the gas mixture contributed to a lower predicted amount
of adsorbed CO2 due to the competitive adsorption among the different components. Nevertheless,
CO2 adsorption was more favorable and resulted in a higher predicted adsorbed amount than CH4.
Mg-gallate showed a stronger affinity for CO2 molecules and hence contributed to a higher CO2

adsorption capacity even with the coexistence of a CO2/CH4 mixture. Very high IAST selectivity
values for CO2/CH4 were obtained which increased as the gas phase mole fraction of CO2 approached
unity. Therefore, IAST calculations suggest that Mg-gallate can act as a potential adsorbent for the
separation of CO2/CH4 mixed gas.

Keywords: adsorption; MOF; Mg-gallate; IAST

1. Introduction

Single-component and mixed gas adsorption on porous solid materials plays an
important role, particularly in the chemical, petrochemical and biochemical industries.
The single-component adsorption isotherms (pure gas adsorption isotherms) are typically
measured by using commercial instruments with high performance and accuracy. On
the other hand, the measurement of multicomponent adsorption equilibrium (mixed gas
adsorption isotherms) is one of the most complicated experimental techniques in the
adsorption area since it is challenging, time-consuming and requires self-built instruments.
Generally, the design and development of adsorptive separation require information of
both single-component and multicomponent adsorption equilibria. Therefore, the ability to
accurately predict the multicomponent adsorption equilibrium offers a great advantage.

Due to the aforementioned limitations in measuring multicomponent adsorption equi-
librium, single-component adsorption isotherms are measured experimentally and used
to calculate the mixture behaviors using Ideal Adsorbed Solution Theory (IAST). IAST,
developed by Myers and Prausnitz, is a well-studied method to predict multicomponent
adsorption equilibrium based only on the experimental data of single-component adsorp-
tion isotherms at the same operating temperature [1,2]. In this approach, the adsorbed
phase is considered ideal without any interaction in the multicomponent system. Generally,
IAST provides reliable predictions of the adsorption and selectivity of a gas mixture and has
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been used for various solid adsorbents such as zeolites, activated carbon and metal-organic
frameworks (MOFs) [3–6]. Recently, MOFs are considered as emerging porous materials for
gas adsorption and separation due to their large surface area and porosity, tunable structure
and functionalities [7]. MOF is a classification of inorganic-organic hybrid constituents
consisting of metal ions (or clusters) and organic linkers/ligands [8].

Carbon dioxide (CO2) and methane (CH4) mixture separation is a key challenge
for the energy sector and crucial to provide high purity natural gas that meets gas sales
specifications. In our previous reported work, the feasibility of gallate-based MOFs for CO2
and CH4 single-component adsorption was predicted using Grand Canonical Monte Carlo
(GCMC) simulation [9]. Among the studied gallate-based MOFs, Mg-gallate showed the
highest predicted CO2 adsorption capacity and CO2/CH4 selectivity [9]. The magnesium
atom exhibits a significant contribution in the conduction band of states, leading to possible
Lewis acidic activity in crystalline materials [10]. This Lewis acidic activity allows a strong
interaction with Lewis bases (oxygen in CO2). The higher ionic character of the Mg-O bond
compared to other metals facilitates stronger charge-quadrupole interaction and degree of
polarization between Mg and CO2, which favors CO2 capture [11,12].

However, there are limited reported studies on the mixed gas adsorption isotherms pre-
dicted with IAST calculations at different compositions and temperatures for the CO2/CH4
mixture using Mg-gallate. Therefore, this work aims to synthesize a magnesium gallate-
based MOF (Mg-gallate). Then, the as-synthesized Mg-gallate was further subjected to
single-component gas adsorption (static adsorption) of pure CO2 and CH4. The main
objective of this work is to predict the mixed gas adsorption isotherms based on the experi-
mental CO2 and CH4 single-component adsorption isotherms of Mg-gallate using IAST
calculations with the Phyton package at the same operating temperatures. The predicted
mixed gas adsorption isotherms were plotted with different compositions of CO2/CH4
gas mixture at 273, 298 and 313 K, and then used to calculate the corresponding selectivity,
which is crucial to evaluate their gas separation performance. These predicted mixed gas
adsorption behaviors are expected to give background information for future experimental
multicomponent adsorption equilibrium. Understanding the multicomponent adsorption
equilibrium is essential for designing adsorption-based separation processes.

2. Ideal Adsorbed Solution Theory (IAST)

IAST is a thermodynamic approach in which an ideal solution is considered to be
formed by the adsorbed phase, corresponding to Raoult’s law for vapor-liquid equilib-
rium [3]. To meet the ideal condition, there must be no interaction between the adsorbate
molecules in the adsorbed phase, and the spreading pressures of the components must
be equal at constant temperature [13]. The highlighted equations for deriving mixed gas
isotherms are provided here for convenience, since the detailed explanations of IAST can
be found in various sources [3,13–16]. The spreading pressure can be calculated using the
equation below:

πA
RT

=
∫ P0

i

0

ni
Pi

dPi (1)

where π is the spreading pressure, A is the specific surface area of adsorbent (m2/g), R is
the gas constant (8.314 J K−1 mol−1), T is the temperature (K) and ni is the adsorption of
component i (mmol/g). The partial pressure (Pi) is defined using an analogue to Raoult’s law:

Pi = yiP = xiP0
i (π)(at constant T and ß) (2)

where P0
i (π) is the partial pressure of pure component i calculated at the spreading pressure

and temperature of the mixture. Pi is the partial pressure of component i (bar), P is the total
pressure (bar), yi and xi represent mole fractions of component i in the gas and adsorbed
phases (dimensionless).
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The total adsorbed amount (nT) can be determined as below:

1
nT

=
N

∑
i=1

xi

n0
i

(3)

where N is the number of components in the mixture and n0
i (mmol/g) is the standard

state loading. Therefore, ni, which is the adsorption of component i (mmol/g), is calculated
using this equation:

ni = xinT (4)

The established adsorption selectivity based on IAST is defined by the following
equation:

Sij =
xi/xj

yi/yj
(5)

3. Result and Discussions

Mg-gallate with the chemical formula of Mg(C7O5H4)·2H2O is a type of crystal struc-
ture that contains magnesium ions as the secondary building unit (SBU) connected with
oxygen atoms of gallic acid (organic linker) to form a three-dimensional framework [17].
The pore structure of Mg-gallate creates spaces or channels depending on its pore size
within the framework that can accommodate the other molecules, in this case CO2 or CH4
molecules. The pore size of Mg-gallate can vary depending on the synthesis method and
conditions used. Generally, the pore size ranges from a few amstrongs to nanometers. Its
unique structure and pore size made it a promising CO2 and CH4 adsorbent. Figure 1
shows the structures of the building units and the resulting framework drawn using Ma-
terial studio. Green, gray and red represent magnesium, carbon and oxygen respectively,
while hydrogen atoms are omitted for clarity.
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Figure 1. The structures of building units and Mg-gallate.

3.1. Characterization Analysis
3.1.1. Powder X-ray Diffraction (PXRD) Pattern

The PXRD patterns of Mg-gallate were performed and are shown in Figure 2 to confirm
its crystalline nature.

The fresh Mg-gallate (as-synthesized) exhibited a PXRD pattern with three significant
diffraction peaks around 11.35◦, 14.05◦ and 24.53◦ that corresponded to Miller indices (hkl)
values of 010, 011 and 221, respectively, which showed that this porous material was in
a good agreement with the previous reported work [18]. The signature of crystallinity of
Mg-gallate could be detected by the sharp peaks. The average crystallite size for Mg-gallate
was calculated to be 34.9 nm, which could be determined through X-ray diffraction line
broadening by using the Debye-Scherrer formula [19]. There is a limited source of gallate-
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based MOFs in the Joint Committee on Powder Diffraction Standards (JCPDS) database
and the highest peak search score obtained by using X’Pert HighScore Plus software was
55 with a reference number of 96-433-5642.

Molecules 2023, 28, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 2. PXRD patterns of Mg-gallate. 

The fresh Mg-gallate (as-synthesized) exhibited a PXRD pattern with three signifi-
cant diffraction peaks around 11.35°, 14.05° and 24.53° that corresponded to Miller indices 
(hkl) values of 010, 011 and 221, respectively, which showed that this porous material was 
in a good agreement with the previous reported work [18]. The signature of crystallinity 
of Mg-gallate could be detected by the sharp peaks. The average crystallite size for Mg-
gallate was calculated to be 34.9 nm, which could be determined through X-ray diffraction 
line broadening by using the Debye-Scherrer formula [19]. There is a limited source of 
gallate-based MOFs in the Joint Committee on Powder Diffraction Standards (JCPDS) da-
tabase and the highest peak search score obtained by using X’Pert HighScore Plus soft-
ware was 55 with a reference number of 96-433-5642. 

On the other hand, the diffraction peaks of fresh Mg-gallate almost overlapped with 
those of spent Mg-gallate. Generally, XRD pattern originates from the bulk rather than the 
surface of a material. CO2 and CH4 adsorption was classified as physisorption (physical 
adsorption), in which the molecules are attached to the surface of Mg-gallate due to a 
weak force known as Van der Waals force [20]. In addition, physisorption was not fol-
lowed by incorporation into the crystal structure, which was confirmed by the unaffected 
XRD patterns between fresh Mg-gallate and after CO2 and CH4 adsorption. 

The XRD pattern of the as-synthesized Mg-gallate exhibited peaks at around 11.35°, 
14.05°, 20.03°, 21.58°, 23.08°, 24.53°, 25.97°, 27.31°, 28.50°, 31.92°, 35.05°, 36.01°, 39.06°, 
39.88°, 42.41° and 43.30°, which well-agreed with the simulated pattern. The simulated 
pattern was calculated based on the reference structure in the Cambridge Crystallo-
graphic Data Centre (CCDC) with the database identifier of GELVEZ and deposition 
number of 286498. However, the intensity of the peaks between the as-synthesized and 
the simulated was different due to the elements of the as-synthesized Mg-gallate might 
not be uniformly distributed throughout the crystal structure. Typically, the intensity of 
the diffraction peaks is directly proportional to the amount of elements present in the ma-
terial [21]. In addition, the as-synthesized peaks were broader compared to the simulated 
peaks since the simulated crystallite size was calculated to be 46.4 nm. Broader peaks in-
dicate a smaller size of crystallite [21]. 

3.1.2. Fourier Transform Infrared (FTIR) Spectrum 
The FTIR spectra of Mg-gallate with the patterns that provide structural insights are 

illustrated in Figure 3. 
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On the other hand, the diffraction peaks of fresh Mg-gallate almost overlapped with
those of spent Mg-gallate. Generally, XRD pattern originates from the bulk rather than the
surface of a material. CO2 and CH4 adsorption was classified as physisorption (physical
adsorption), in which the molecules are attached to the surface of Mg-gallate due to a weak
force known as Van der Waals force [20]. In addition, physisorption was not followed
by incorporation into the crystal structure, which was confirmed by the unaffected XRD
patterns between fresh Mg-gallate and after CO2 and CH4 adsorption.

The XRD pattern of the as-synthesized Mg-gallate exhibited peaks at around 11.35◦,
14.05◦, 20.03◦, 21.58◦, 23.08◦, 24.53◦, 25.97◦, 27.31◦, 28.50◦, 31.92◦, 35.05◦, 36.01◦, 39.06◦,
39.88◦, 42.41◦ and 43.30◦, which well-agreed with the simulated pattern. The simulated
pattern was calculated based on the reference structure in the Cambridge Crystallographic
Data Centre (CCDC) with the database identifier of GELVEZ and deposition number of
286498. However, the intensity of the peaks between the as-synthesized and the simulated
was different due to the elements of the as-synthesized Mg-gallate might not be uniformly
distributed throughout the crystal structure. Typically, the intensity of the diffraction
peaks is directly proportional to the amount of elements present in the material [21]. In
addition, the as-synthesized peaks were broader compared to the simulated peaks since
the simulated crystallite size was calculated to be 46.4 nm. Broader peaks indicate a smaller
size of crystallite [21].

3.1.2. Fourier Transform Infrared (FTIR) Spectrum

The FTIR spectra of Mg-gallate with the patterns that provide structural insights are
illustrated in Figure 3.

For fresh Mg-gallate, a strong and broad band in the IR spectrum in the region of
3500–2800 cm−1 was found to be the stretching vibration of the O-H of a carboxyl group.
The strong and narrow peak at 1622 cm−1 represented by a carbonyl (C=O) indicated the
presence of a carboxyl group in the gallic acid. Three peaks located at 1554, 1462 and
1376 cm−1 were typical stretching vibrations of C-C bonds in an aromatic ring of the gallic
acid. There were a few peaks in the region 1300–1000 cm−1 which indicated the stretching
vibrations of C-O bonds and the bending vibration of O-H bonds in the aromatic ring of
the gallic acid. C-H bonds of the aromatic ring were located at 748 cm−1. Therefore, the
IR spectrum identified the functional groups present in the structure of Mg-gallate. There
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is a very good agreement between the band positions of this work and the literature [19].
On the other hand, the IR spectra also displayed peaks identical to those of the spent Mg-
gallate, which confirmed that CO2 and CH4 adsorption did not compromise the structure
of Mg-gallate.
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3.1.3. Thermogravimetric Analysis (TGA)

Figure 4 shows the TGA curve to describe the thermal stability of Mg-gallate.
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The thermal stability of Mg-gallate is reported in the form of onset temperature
(T0) and decomposition temperature (Tmax). T0 is obtained from the intersection of the
baseline and the tangent of the sample weight against the temperature, while Tmax is the
temperature at the point where the maximum weight loss of the sample occurs [22]. Based
on Figure 4, the Mg-gallate started to decompose at T0 = 417.7 K, which indicated the
beginning of the first stage of weight loss. Tmax for the first stage occurred at 462.9 K when
10.5% was lost due to the release of the remaining water and ethanol. Meanwhile, the
decomposition of the gallic acid (organic linker) started at the second stage of the weight
loss, at T0 = 535.7 K. Approximately 24.9% of Mg-gallate was reported as the maximum
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weight loss at Tmax = 561.5 K. It also showed that the structure of Mg-gallate was stable up
to 561.5 K. Therefore, Mg-gallate can stand and operate at high-temperatures.

3.1.4. Porous Properties

Figure 5 shows the adsorption-desorption isotherms of nitrogen (N2) and pore size
distribution. At the initial stage, a rapid increment in N2 uptake was observed, followed
by a plateau phase, which represented the monolayer adsorption. Due to the further
adsorption, a multilayer was produced. In addition, the existence of a small hysteresis loop
in the N2 adsorption-desorption curves could be seen at the region P/P0 0.15–0.7. This is
due to capillary condensation in which gas adsorbed in pores at low density, spontaneously
condenses into a liquid-like state inside the pores of a framework. In other words, hysteresis
occurs when desorption does not occur in the same way as adsorption.
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The Brunauer–Emmett–Teller (BET) equation was used to calculate the specific surface
area in the relative pressure range of 0.00–0.09. The BET surface area of Mg-gallate was
found to be 512.38 m2/g. Furthermore, the pore volume was estimated using the t-plot
method and the value was 0.187 cm3/g.

The classification of porous materials is usually based on the diameter of their pores,
microporous (<2 nm), mesoporous (2–50 nm) and macroporous (>50 nm) according to the
International Union of Pure and Applied Chemistry (IUPAC) [23]. Due to the nature and
mode of MOFs’ preparation, MOFs generally have a non-uniform range of pores, hence
an average pore size is used. The average pore size of Mg-gallate is 6.66 nm and it is
classified as mesoporous (2–50 nm). The pore size distribution was interpreted based on the
relationship between the pore width (w) and dV/dlog(w) using the Barrett-Joyner–Halenda
(BJH) model [24]. The porous properties of Mg-gallate are tabulated in Table 1. Given
its porous properties, Mg-gallate was expected to exhibit a remarkable performance in
CO2/CH4 adsorptive separation.

Table 1. Porous properties of Mg-gallate.

BET Surface Area (m2/g) Pore Volume (cm3/g) BJH Pore Size (nm)

512.38 0.187 6.66

3.2. Single-Component Gas Adsorption

An equilibrium distribution is reached if the adsorbent and guest molecules come
into contact and can be explained quantitatively. The equilibrium behavior is expressed
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in terms of the amount of adsorbate as a function of partial pressure at a fixed temper-
ature. This equilibrium can be illustrated in what is called an isotherm. Adsorption
isotherms are important for the description of how the adsorbate will interact with the
adsorbent based on the pore surface properties and affinity, which results in the adsorp-
tion capacity. Single-component gas adsorption capacity is determined from the pure
gas sorption isotherm at a certain temperature and pressure. The adsorption capacity
is an important parameter in the evaluation of MOFs for CO2 capture and is the main
evaluation tool for gas capture applications.

In order to investigate the potential impact of the porous nature of Mg-gallate on CO2
and CH4 behaviors, single-component gas adsorption was conducted at three different
temperatures. Figure 6 illustrates the experimental CO2 single-component adsorption
isotherms at three different temperatures with S-shaped isotherms (sigmoidal).
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313 K.

The amount of CO2 adsorbed on Mg-gallate increased as the pressure increased for
all temperatures. However, the isotherms decreased as the temperatures increased from
273 to 313 K. The reason behind is that the surface adsorption energy and the molecular
diffusion rate increase with the temperature, causing the gas molecules to unsteadily move
and making it difficult for them to attach to the surface of the adsorbent [25]. Subsequently,
a higher temperature condition is not advantageous for the adsorption process and may
cause a reduction in the adsorbed amount. This phenomenon in which the adsorbed
amount increases with pressure and decreases with temperature is due to Le Chatelier’s
principle [26]. According to Le Chatelier’s principle, the exothermic process at higher
temperature prefers conditions that produce less heat. In addition, since adsorption is
known as an exothermic process, it is expected to have a higher adsorbed amount at a
lower temperature due to a higher affinity between the adsorbent and the adsorbate, which
results in the adsorbent’s surface being covered with more adsorbates.

The influence of the porous nature of Mg-gallate on the CO2 adsorption capacity could
be observed at 1 bar, showing that Mg-gallate offered a CO2 adsorption capacity of 5.06,
4.92 and 4.60 mmol/g at 273, 298 and 313 K, respectively. MOFs are considered competitive
adsorbents once they can offer a CO2 adsorption capacity of 3.0 mmol/g or higher [27].

Figure 7 illustrates the experimental CH4 single-component adsorption isotherms at
three different temperatures.
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The experimental CH4 single-component adsorption isotherms also displayed the
same pattern in which the amount of CH4 adsorbed on Mg-gallate increased with
increasing pressure for all temperatures with a linear shape isotherm. However, the
isotherms decreased as the temperature increased from 273 to 313 K. The linear shape
isotherm is also known as Henry adsorption isotherm. Henry isotherm is considered the
simplest adsorption isotherm since the partial pressure of adsorptive gas corresponds
to the amount of adsorbate [28]. Based on the isotherms, the equilibrium adsorbed
amount of CH4 on Mg-gallate was substantially proportional to the gas partial pressure.
Mg-gallate provided a CH4 adsorption capacity of 0.438, 0.226 and 0.158 mmol/g at
273, 298 and 313 K, respectively and at 1 bar. It is worth noting that Mg-gallate is able
to prevent CH4 from being adsorbed because of low gas uptake due to poor affinity
between the framework and CH4 molecules.

The CO2 adsorption capacity of Mg-gallate is greater than that of CH4 under the same
condition due to the thermodynamic equilibrium effect. The thermodynamic equilibrium
effect arises due to the difference in the affinity/interaction of various gas molecules to be
adsorbed on the adsorbent surface. The affinity between the adsorbent and the adsorbate
depends on the different physical properties of the gas molecules, such as polarizability
and quadrupole moment. This large gap between the adsorption capacity values of CO2
and CH4 verified that CO2 is a strong adsorbate and adsorbs more favorably on Mg-gallate
due to a stronger interaction between CO2 and Mg-gallate. It is known that CO2 has a
larger polarizability (29.1 × 10−25 cm3 for CO2, 25.9 × 10−25 cm3 for CH4) and quadrupole
moment (4.30 × 10−26 esu cm2 for CO2, 0 for CH4) compared to CH4 [29]. The higher
the polarizability of the adsorbate, the higher the interaction with the adsorbent surface.
This interaction is favorable since the quadrupole moment of CO2 is complementary to
the polarization of Mg-gallate. The CO2 adsorption capacity was greatly affected by the
interactions of Mg-gallate and CO2 molecules, which occurred at two binding sites. The
CO2 molecules firstly occupied the open metal sites of the secondary building unit (SBU)
and then interacted with the organic linker. Based on this phenomenon, the separation of
the CO2/CH4 mixture is feasible.

3.3. Isotherm Models

The experimental single-component adsorption isotherms of CO2 and CH4 should be
first fitted using a proper model in order to perform the integration required by IAST. It is
to discrete data so that the uncertainty in the multicomponent predictions always comes
from this fit of data [3]. There are no restrictions on the choice of the isotherm models
as long as they can fit precisely. Phyton can offer several isotherm models such as the



Molecules 2023, 28, 3016 9 of 17

Langmuir, quadratic, BET, Henry, approximated Temkin, and dual-site Langmuir to fit
the experimental single-component adsorption isotherms [15]. The model parameters are
tabulated in Table 2.

Table 2. Parameter values of isotherm models.

Model Parameter
CO2 CH4

273 K 298 K 313 K 273 K 298 K 313 K

Langmuir
M 5.3934 6.2675 7.2937 1.4239 1.1525 1.4239
KL 23.45 4.57 1.87 0.1251 0.2456 0.1251

RMSE 0.3321 0.3882 0.3825 4.41 × 10−4 8.80 × 10−4 4.41 × 10−4

Quadratic

M 2.4819 2.5036 2.4885 5.25 × 10−4 5.25 × 10−4 5.25 × 10−4

Ka 5.52 −0.4963 −0.0225 5.0 × 10−4 5.0 × 10−4 5.0 × 10−4

Kb 768.40 60.69 14.79 5.0 × 10−4 5.0 × 10−4 5.0 × 10−4

RMSE 0.1586 0.1953 0.1961 0.1094 0.1546 0.1094

BET

M 6.1832 5.25 × 10−4 5.25 × 10−4 5.25 × 10−4 5.25 × 10−4 5.25 × 10−4

Ka 18.53 5.0 × 10−4 5.0 × 10−4 5.0 × 10−4 5.0 × 10−4 5.0 × 10−4

Kb −0.1666 5.0 × 10−4 5.0 × 10−4 5.0 × 10−4 5.0 × 10−4 5.0 × 10−4

RMSE 0.3100 3.2372 3.2059 0.1094 0.1546 0.1094

Henry KH 6.1555 5.7421 5.0373 0.1591 0.2296 0.1591
RMSE 2.1951 1.3555 0.8717 3.10 × 10−3 8.03 × 10−3 3.10 × 10−3

Approximated
Temkin

M 4.7234 2.6270 5.25 × 10−4 1.3694 1.6112 1.3694
KT 15.59 3.74 5.0 × 10−4 0.1301 0.1766 0.1301
θ −1.9074 −8.1530 5.0 × 10−4 −0.0473 0.4733 −0.0473

RMSE 0.2335 0.2330 3.2059 4.46 × 10−4 8.0 × 10−4 4.46 × 10−4

Dual-site
Langmuir

M1 0.5384 5.25 × 10−4 4.4854 5.25 × 10−4 5.25 × 10−4 5.25 × 10−4

K1 23.45 5.0 × 10−4 1.8707 5.0 × 10−4 5.0 × 10−4 5.0 × 10−4

M2 4.8550 5.0 × 10−4 2.8083 5.0 × 10−4 5.0 × 10−4 5.0 × 10−4

K2 23.45 5.0 × 10−4 1.8707 5.0 × 10−4 5.0 × 10−4 5.0 × 10−4

RMSE 0.3321 3.2372 0.3825 0.1094 0.1546 0.1094

The differences between the studied isotherm models appeared as a function of how
accurately the models fit the experimental single-component adsorption isotherms. It
is important to emphasize that if IAST is used using a poorly fitted model, then the
multicomponent prediction is expected to be inaccurate even though IAST itself is accurate
for the system of interest. According to Table 2, the Langmuir model gave the best fit for all
single-component adsorption isotherms of CO2 and CH4 at 273-313 K in terms of RMSE
value with relevant parameter values. Figure 8 shows the experimental single-component
adsorption isotherms and Langmuir fitted-isotherms of Mg-gallate for CO2 and CH4 at
three different temperatures in terms of loading (mmol/g) versus pressure (bar).

The Langmuir model is a model to describe the adsorption behavior of gases and is
defined as below [30,31]:

qe =
MKLPe

1 + KLPe
(6)

where, qe (mmol/g) represents the amount of the adsorbed gas per unit mass of adsorbent at
equilibrium, M (mmol/g) is the maximum adsorption capacity, KL (1/bar) is the Langmuir
constant related to the free energy of adsorption and Pe (bar) is the equilibrium pressure.

It is a widely used isotherm model due to its simplicity, effectiveness and reasonable
explanation of its parameters [32]. The Langmuir model was developed based on the
assumption of monolayer adsorption, no interactions between adsorbed molecules, equal
energy of adsorption and molecules adsorbed at fixed sites that do not migrate over the
surface [33].
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Based on Table 2, the maximum adsorption capacity (M) values of CO2 molecules
on Mg-gallate increased as the Langmuir constants (KL) decreased from 273 to 313 K. KL
explains the adsorption energy and the affinity between the adsorbates and the adsorption
sites of the adsorbent in whose reduction of this factor causes the increase of M [34].
Normally, KL decreases with increasing temperature since adsorption is an exothermic
process. All the values of KL for CO2 are much higher than those for CH4, resulting in
higher M values for CO2. Meanwhile, the values of M and KL for CH4 fluctuated.

3.4. Prediction of CO2 and CH4 by IAST Calculations

Based on the experimental single-component adsorption isotherms, the multicom-
ponent adsorption isotherms predicted using IAST with the Phyton package for the
CO2/CH4 gas mixture for different compositions at 273, 298 and 313 K and up to 1 bar
are shown in Figure 9.
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Figure 9 shows that the predicted amount of adsorbed CO2 and CH4 on Mg-gallate is
lower than the experimental amount. This is due to competitive adsorption between the
different components of the gas mixture in which the CO2 and CH4 molecules competed
with each other for the adsorption sites. Consequently, the presence of CH4 in the gas
mixture slightly affected the adsorption of CO2 on Mg-gallate. Nevertheless, CO2 was still
dominant and favorably adsorbed compared to CH4 due to a stronger interaction between
CO2 and Mg-gallate, resulting in a lower predicted amount of CH4 due to the previously
mentioned thermodynamic equilibrium effect. The predicted CO2 adsorption isotherms
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exhibited the same pattern as the experimental single-component adsorption isotherms
in that they increased with pressure but decreased as temperatures increased from 273
to 313 K. In addition, it is worth noting that the predicted adsorbed amount of CO2
increased as the composition of CO2 in the CO2/CH4 gas mixture increased. Moreover,
the predicted amount of CH4 is too low and almost showed a plateau pattern. Indeed, the
multicomponent adsorption isotherms using IAST led to the evaluation of the capability
of Mg-gallate.

At initial stage of adsorption (lower pressure range), the CO2 isotherms demonstrated
a rapid increase in gas uptake, especially at a higher gas-phase mole fraction of CO2 in
which the isotherms became steeper but less steep as temperature increased. It means that
the fastest initial stage of adsorption was achieved by the 75:25 composition adsorption
at 273 K since it formed the steepest curve in the lowest pressure range. In addition,
the steep curve was followed by the plateau gradient, indicating the saturation of the
monolayer, which proved the occurrence of the gas adsorption limit. It is worth noting that
the predicted CO2 adsorption isotherms fulfilled the characteristics and belonged to Type I,
while the CH4 adsorption isotherms almost corresponded to the linear isotherms.

The isotherm shape can be used to determine whether an adsorption system is favor-
able or unfavorable. Based on the isotherm shapes, the predicted CO2 adsorption systems
were more favorable as the gas-phase mole fraction of CO2 approached unity and at lower
temperature. In addition, the predicted CH4 adsorption systems could be considered
approached unfavorable. The isotherm shapes in this work followed the pattern mentioned
by the literature as shown in Figure 10 [35].
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The degree of favorability in this work was supported by the important feature of the
Langmuir isotherm that can be expressed in terms of a dimensionless constant separation
factor or equilibrium parameter (RL). RL represents the isotherm shape and the nature of
the adsorption. It can be defined as below [36]:

RL =
1

1 + KLPe
(7)

The value of RL determines whether the nature of the isotherm is irreversible (RL = 0),
favorable (0 < RL < 1), linear (RL = 1) or unfavorable (RL > 1). The values of RL for different
CO2/CH4 compositions at different temperatures are illustrated in Figure 11. The values
of RL in the range of 0–1 verified that CO2 adsorption was favorable. In addition, CO2
adsorption was less reversible in all CO2 compositions, confirmed by the lower values of RL.
Furthermore, CH4 adsorption was less favorable based on higher values of RL compared
to CO2. Additionally, the highest values of RL for CH4 that approached unity (reversible)
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represented the ease of adsorbed CH4 molecules being desorbed from Mg-gallate. This
is the reason behind the lower CH4 uptake compared to CO2. In short, the degree of
favorability is moving towards zero, indicating the completely ideal irreversible process
than unity, meaning a completely reversible process [36].
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3.5. IAST Selectivity of CO2 and CH4

The IAST method is also applicable to calculate the mixed gas selectivity (IAST selec-
tivity) [37]. Adsorption selectivity occurs due to the difference in affinity of the various
components of the gas mixture to be adsorbed on the pore surface of adsorbents. Selectivity
can be simply understood as the affinity of Mg-gallate to adsorb CO2 compared to CH4.
The adsorption selectivity established based on IAST calculations are shown in Figure 12.
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Figure 12. IAST selectivity of CO2 and CH4 at: (a) 273 K; (b) 298 K and (c) 313 K, respectively.

The high IAST selectivity values for CO2/CH4 represented that CO2 was a strong
adsorbate and adsorbed more favorably on Mg-gallate compared to CH4. A high selectivity
for CO2 over the other components of a gas mixture is necessary in CO2 capture applications.
The IAST selectivity increased rapidly as the gas-phase mole fraction of CO2 approached
unity. However, it could be said that IAST overpredicted the selectivity of the CO2/CH4
mixture, especially at 273 and 298 K. It usually happens because one component (CO2)
strongly adsorbed compared to the other component (CH4). Furthermore, uncertainty arose
as IAST was applied in regimes that required extrapolation beyond the experimental data.
Despite these drawbacks, IAST is known as the established standard in multicomponent
adsorption predictions [3].
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As the temperature decreased, the IAST selectivity increased, confirming that Mg-
gallate performed better at low temperature for both single-component and mixed gas
adsorption. Adsorption is an exothermic process in which low temperature conditions
are favored. Since adsorption is inversely proportional to temperature, the adsorbate
molecules tend to desorb from the adsorbent under high temperature conditions, and this
process is called desorption. This is the reason behind lower adsorption uptake under
high temperature conditions. The IAST selectivity of Mg-gallate in this work is compared
to the other gallate-based MOFs at 298 K and 1 bar for CO2/CH4 composition of 50:50.
This Mg-gallate could offer an IAST selectivity of 5236, higher than Ni-gallate (3171), Mg-
gallate (2497) and Co-gallate (198) under the same operating conditions, done in previous
work [38].

Even at high content of CH4 (low content of CO2), Mg-gallate could still offer the
potential IAST selectivity. The composition of CH4 in natural gas is normally in the range
of 75–98 vol% [39]. Therefore, these outcomes are relevant to the practical challenges of
natural gas purification and Mg-gallate can be considered as the promising adsorbent for
CO2/CH4 separation.

4. Materials and Methods
4.1. Materials

Magnesium (II) chloride anhydrous, MgCl2 (98%), gallic acid anhydrous, C7H6O5
(98%), potassium hydroxide, KOH (85%), and ethanol absolute, C2H5OH (99.8%) were
obtained from Merck without any further purification. CO2 (99.99%) and CH4 (99.995%)
purified grade gas tanks were obtained from Linde Malaysia.

4.2. Synthesis of Mg-Gallate

Mg-gallate was prepared by hydrothermal synthesis according with previously re-
ported work [17]. 50 mmol of MgCl2 and 100 mmol of gallic acid were added to 250 mL
of 0.5 M KOH aqueous solution in a round-bottomed flask. Then, the mixture was heated
and refluxed at 80 ◦C and ambient pressure with continuous stirring for 24 h. After being
naturally cooled, the product was collected and washed two times with deionized water.
Then, the product was immersed in ethanol with double replenishment.

4.3. Characterization of Mg-Gallate

The Powder X-ray Diffraction (PXRD) pattern for Mg-gallate was recorded using
X’Pert Powder Panalytical equipped with Cu Kα radiation (λ = 1.54 Å). The data was
collected in the range of 5–50◦ (2θ angle range) with a scan step size of 0.02◦.

The Fourier Transform Infrared Spectroscopy (FTIR) spectrum was performed with
a potassium bromide flakelet (KBr) method using a Thermo Scientific Nicolet IS5 in the
wavenumber range of 500–4000 cm−1 with 16 scans. Background scanning was performed
to determine the presence of air impurities such as the carbon dioxide peak.

The Thermogravimetric Analysis (TGA) of Mg-gallate was measured using a Perkin
Elmer STA 6000. Approximately 5.0 mg of sample was weighed in a crucible pan and
placed on the sample holder. The measurement was conducted at a 283 K/min heating rate
under a temperature range of 323–973 K under N2 condition.

The porous properties of Mg-gallate were investigated via N2 adsorption-desorption
isotherms measured at 77 K using 3FLEX Micromeritics Surface Characterization.

For every characterization analysis, Mg-gallate was degassed at 393 K for 24 h under
an ultrahigh vacuum.

4.4. Single-Component Gas Adsorption

Prior to the adsorption measurement, Mg-gallate was first degassed at 393 K for 24 h
under an ultrahigh vacuum. The single-component isotherms for both CO2 and CH4 were
measured at 273, 298 and 313 K using 3FLEX Micromeritics Surface Characterization.
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4.5. IAST Calculation

The mixed gas adsorption isotherms were predicted from experimental CO2 and CH4
single-component adsorption isotherms using IAST calculations with the Python package
(pyIAST), as studied in previous work [15]. The detailed methodology was explained there,
here the highlighted points were simplified.

First, pyIAST characterized the experimental CO2 and CH4 single-component adsorp-
tion isotherms by fitting the suitable analytical models such as the Langmuir, quadratic,
BET, Henry, approximated Temkin, and Dual-site Langmuir to the data. Second, pyIAST
linearly interpolated the data. Finally, pyIAST performed IAST calculations to predict
the mixed gas adsorption isotherms. The compositions of the CO2/CH4 mixed gas were
varied to 10:90, 25:75, 50:50 and 75:25. From the mixed gas adsorption isotherms, the IAST
selectivity was calculated.

5. Conclusions

IAST is a method to describe the multicomponent adsorption equilibrium in which
adsorption selectivity can be predicted solely based on experimental single-component
adsorption isotherms. The IAST calculation came with model fittings of the experimental
data where the Langmuir model gave the best fit based on the RMSE value with relevant
parameter values. The predicted amount of adsorbed CO2 and CH4 on Mg-gallate is lower
than experimental amount due to competitive adsorption among the different components
of the gas mixture. The stronger interaction between CO2 and Mg-gallate contributed to the
higher predicted adsorbed amount of CO2 than CH4, which increased as the compositions
of CO2/CH4 increased. It is also confirmed that the CO2 adsorption was favorable based
on the values of RL. IAST selectivity increased rapidly as the gas-phase mole fraction
of CO2 approached unity. Therefore, Mg-gallate is a promising adsorbent for separation
of CO2/CH4 based on IAST calculations. In summary, the main purpose of this work
was achieved that is using IAST calculations to predict the potential selectivity of Mg-
gallate based on simple measurements of single-component adsorption isotherms, since
selectivity is the important factor when working with multicomponent gas adsorption.
These predicted multicomponent adsorption behaviors can be applied in the design of
practical gas adsorption and separation processes.
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