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Abstract: Aflatoxin B1 (AFB,) is a recalcitrant metabolite produced by fungi species, and due to
its intoxications in animals and humans, it has been classified as a Group 1 carcinogen in humans.
Preserving food products with Sorghum bicolor sheath can minimise the contamination of agricultural
products and avert ill health occasioned by exposure to AFB;. The current study investigated the
ameliorating effect of Sorghum bicolor sheath hydrophobic extract (SBE-HP) enriched in Apigenin
(API) on the hepatorenal tissues of rats exposed to AFB1. The SBE-HP was characterised using
TLC and LC-MS and was found to be enriched in Apigenin and its methylated analogues. The
study used adult male rats divided into four experimental cohorts co-treated with AFB1 (50 ug/kg)
and SBE-HP (5 and 10 mg/kg) for 28 days. Biochemical, enzyme-linked immunosorbent assays
(ELISA) and histological staining were used to examine biomarkers of hepatorenal function, oxidative
status, inflammation and apoptosis, and hepatorenal tissue histo-architectural alterations. Data were
analysed using GraphPad Prism 8.3.0, an independent ¢-test, and a one-way analysis of variance.
Co-treatment with SBE-HP ameliorated an upsurge in the biomarkers of hepatorenal functionality in
the sera of rats, reduced the alterations in redox balance, resolved inflammation, inhibited apoptosis,
and preserved the histological features of the liver and kidney of rats exposed to AFB;. SBE-HP-
containing API is an excellent antioxidant regiment. It can amply prevent the induction of oxidative
stress, inflammation, and apoptosis in the hepatorenal system of rats. Therefore, supplementing
animal feeds and human foods with SBE-HP enriched in Apigenin may reduce the burden of AFB1
intoxication in developing countries with a shortage of effective antifungal agents.

Keywords: aflatoxin By; hepatorenal toxicity; Sorghum bicolor sheath hydrophobic fraction; LC-MS
and HPLC protocols; apigenin; redox and inflammatory balance

1. Introduction

Aflatoxins (AFs) are mycotoxins produced by fungi species, especially the genus
Aspergillus, including A. flavus, A. parasiticus, A. nomius, A. niger, and A. pseudotamarii [1-3].
The biosynthesis of AFs by fungi is driven under certain climatic conditions, including
a temperature range of 25-35 °C and relative humidity of 80 to 100%, as typical in Sub-
Saharan Africa [2,4], resulting in food spoilage [2,5,6] and significant economic loss [7].
AFs are classified, based on absorbance wavelengths and chromatographic mobility, into
aflatoxin B; (AFB,), aflatoxin B, (AFB,), aflatoxin G; (AFGq), and aflatoxin G, (AFG),).
In this classification guideline, the letters ‘B’ and ‘G’ are delineated as blue and green
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florescent colours emitted under UV light on thin-layer chromatographic plates. In contrast,
subscripts 1 and 2 refer to the major and minor compounds, respectively [8]. Based on
toxicity, the potency of AFs to mediate mutagenicity, carcinogenicity, and teratogenicity
in humans and animals is in the order: AFB; > AFG; > AFB; > AFG, [9-11]. The class
AFB; is the most toxic of all the known aflatoxins, and it has been recognised by the
World Health Organization (WHO) and the International Agency for Research on Cancer
(IARC) as a group I carcinogenic hazard to humans [12]. The LDsq (lethal dose) of AFB;
highly depends on the species of organisms, with organisms such as rats, dogs, sheep, and
monkeys being susceptible, while chickens and mice are resistant species [13,14]. Initially,
it was claimed that humans could tolerate exposure to AFB;. However, recent carcinogenic
potency established by the Joint FOA/WHO Expert Committee on Food Additives (JECFA)
in Africa defined a maximum tolerable limit. It revealed that exposure to AFB; is attributed
to growth retardation, malnutrition, and immune suppression [15,16].

AFB; toxicity depends on the absorption routes, distribution pattern, differences in the
expression of CPY450 isoforms, and excretory pathways. AFB; is absorbed and distributed
to the enterocytes and hepatocytes, where different CYP450 enzymes act upon AFBj, includ-
ing CYP3A4, 1A2, 2E6, and 3A5 [17,18] and NADPH-dependent reductase [19]. Specifically,
NADPH-dependent reductase converts AFB; into aflatoxicol (AFL), CYP3A4 and CYP1A2
convert AFB; into aflatoxin Q; (AFQq), CYP1A1 and CYP1A2 convert AFB; into aflatoxin
M; (AFM;), CYP3A4 converts AFB; to aflatoxin P; (AFP;) through an O-demethylation
reaction, and CYP1A1, CYP1A2, CYP2E6, CPY3A4, and CYP3A5 convert AFB; to aflatoxin
B1-8, 9-epoxide (AFBO), an extremely reactive and toxic metabolite (Figure 1). Unlike
AFBO, AFL, AFQ,, AFM, and AFP; are clinically insignificant as they are not heavily
implicated in mutagenicity, carcinogenicity, and teratogenicity. The mechanisms of AFBO
toxicity are known to be through the formation of protein adducts, DNA adducts, and
lipid peroxidation. Uncontrolled degradation of functional biological molecules following
unfettered exposure to AFB; has been observed to deplete the redox buffering system
of rats, thereby predisposing cells to oxidative stress, inflammation, and programmed
cell death [20-22]. Nonetheless, there is a safe pathway for removing AFBO from the
enterocytes and hepatocytes via the second phase of biotransformation mediated by glu-
tathione S-transferase (GST). GST is known to mediate the conjugation of AFBO with GSH
to form the AFB1-5-G complex. This complex may bind to the 190-kDa multi-drug resistant
protein (MRP) and the 170-kDa P-glycoprotein [23] and is extruded from the hepatocytes
and enterocytes into bile and urine. Depleting GST and other innate antioxidant defence
systems activities is known to increase the concentration of AFBO in the cells, leading to
enhanced oxidative stress, oxidative DNA damage, chronic inflammation, and apoptosis in
the hepatocytes and nephrons of rats [22,24].

Previous studies reported the harmful effects of AFB; on the reproductive system [21],
the endocrine system [25], the central nervous system [26], the cardiovascular system [27],
and the immune system [28]. These reports reiterate that direct exposure to AFB; could
promote the development of disease and infection in animals and humans, hence the need
to mitigate indiscriminate exposure to AFB; and its associated health sequela.

Sorghum (Sorghum bicolor (L.) Moench is majorly cultivated as food in the semi-arid
tropical regions of Asia and Africa [29]. Sorghum is a rich source of bioactive phyto-
chemicals, including the two major 3-deoxyanthocyanidins, apigeninidin [30] and lute-
olinidin [31], and flavonoids such as apigenin, which are known to promote good health.
Compounds extracted from Sorghum have been shown in in vivo and in vitro studies to
have therapeutic effects against non-infectious disorders such as obesity, diabetes, dyslipi-
demia, cardiovascular disease, cancer, and hypertension [30,32]. Extracts from Sorghum
enriched in certain phytochemicals such as apigenin (API), luteolin, luteolinidin, and
apigeninidin in S. bicolor extracts have been shown to reduce oxidative stress by upreg-
ulating antioxidant enzymes while reducing the generation of reactive oxygen species
(ROS) [30,33-35]. Based on the structural-activity relationship (SAR), the abilities of these
compounds to stall oxidative stress may be attributed to their possession of several aro-
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matic rings and phenolic groups [36]. These properties endow the leaf sheath extract of
S. bicolor with high antioxidant potential and increase its free radical scavenging activity
against ROS such as hydroxyl radicals and superoxide anions [37], one of the chief culprits
of AFB;-induced hepatorenal toxicities. Experimental studies revealed that extracts of
Sorghum bicolor (S. bicolor) significantly diminished ROS production by immune cells [37].
This report demonstrates the anti-inflammatory and immunomodulatory properties. Re-
cently our laboratory developed a method to separate phytochemicals in S. bicolor into
apigeninidin-enriched alcoholic extracts and a hydrophobic (CH,Cl,) extract (S. bicolor
extract—SBE-HP). We observed that apigeninidin-enriched extracts of the plant protected
the liver and kidney of male rats from AFB;-mediated increase in hepatorenal dysfunctional
molecules, generation of ROS, pro-inflammatory molecules, and apoptotic proteins [30].
To further probe the ethnomedicinal benefits of the SBE-HP, we herein characterised the
components of this hydrophobic extract using chromatographic and LC-MS techniques. We
found SBE-HP devoid of apigeninidin and enriched in apigenin and apigenin analogues.
Subsequently, we investigated the potential impact of this apigenin-rich SBE-HP in abating
liver and kidney derangements following sub-acute exposure to AFB; in male Wistar rats.
The intention is to determine if SBE-HP could abrogate the AFB;-induced liver and kidney
toxicities via antioxidative, anti-inflammatory, and apoptotic mechanisms. To this end, we
treated rats with AFB; and SBE-HP for 28 days and evaluated the effect of this treatment
on endogenous antioxidant defence systems and levels of anti-inflammatory cytokines. We
observed that SBE-HP improved endogenous antioxidant defence systems and upregu-
lated anti-inflammatory cytokines while reversing the basal concentrations of hepatorenal
dysfunction molecules, ROS, pro-inflammatory and apoptotic mediators, and histological
lesions in the liver and kidney of rats challenged with AFB;.
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Figure 1. Metabolism of AFB1. Following chronic exposure to AFB1, AFB1 is rapidly absorbed into
the enterocytes by passive diffusion and is absorbed into the liver for metabolism by arrays of CYP
isoforms. Specifically, NADPH-dependent reductase converts AFB1 into aflatoxicol (AFL), CYP3A4
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and CYP1A2 convert AFB1 into aflatoxin Q1 (AFQ1), CYP1A1 and CYP1A2 convert AFB1 into
aflatoxin M1 (AFM1), or aflatoxin P1 (AFP1) through an O-demethylation reaction. These interme-
diates are clinically irrelevant as they are not heavily implicated in mutagenicity, carcinogenicity,
and teratogenicity. The hepatic expression of CYP1A1, CYP1A2, CYP2E6, CPY3A4, and CYP3A5
is associated with AFBO formation, a clinically relevant intermediate, implicated in AFB; toxicity
and carcinogenicity. The mechanisms of AFBO toxicity are through the formation of protein adducts,
DNA adducts, and lipid peroxidation. Specifically, epoxide hydrolase at PH 7.4 hydrolyses AFBO to
AFB; 8,9-dihydrodiol, which can form a Schiff’s base with primary amino groups in lysine residues,
forming a protein adduct with lysine. This adduct is known to inhibit protein synthesis. In addition,
AFBO binds to the guanine of DNA and forms a DNA adduct known as 8,9-dihydro-8-(N7-guanyl)-9-
hydroxy-AFB1, leading to double-strand break, point mutation, activation of pro-oncogenes, and
suppression of tumour suppressor genes. There is a safe pathway (blue arrow) for degrading AFBO,
mediated by GST, an enzyme that mediates the conjugation of AFBO and GSH to form the AFB1-5-G
complex. MRP binds to this complex and removes them from the hepatocytes for excretion in the bile
and urine. Created by ChemDraw.

2. Results
2.1. Characterisation of the Key Components in SBE-HP

The identities of the key components in SBE-HP, a CH,Cl, extract of S. bicolor, were
probed using a combination of TLC and LC-MS analyses. TLC using CH,Cl, /MeOH 12:1
revealed that the components of SBE_HP clustered into three spots with retention factors
(Rf) of 0.27, 0.83, and approx. 1 (migrated with the solvent front). The Rf 0.27 is identical
to API in this solvent system (Figure 2A), suggesting that the SBE-HP components with
this Rf contain API and close analogues. Subsequent LC-MS analysis revealed that the
main components of SBE-HP are API, apigenin O-methyl ethers—acacetin and glycitein
(or genkwanin), apigenin dimethyl ethers, hispidulin or luteolin methyl ethers, luteolin
dimethyl ether, naringenin, 7-O-methyl apigeninidin, and protocatechuic acid methyl ester
(Figure 2B).

2.2. SBE-HP Prevented AFB1-Orchestrated Alterations in Body Weight and Organosomatic
Indices, Rat Survivability, and Biomarkers of Hepatorenal Functions in Rats

The preventive effects of SBE-HP on AFB;-induced hepatorenal derangements in
adult male Wistar rats were investigated in the current study. We explored the abrogative
potential of SBE-HP on body weight and organosomatic indices (Figure 3B), overall survival
(Figure 3C), and biomarkers of the functions and integrity of the hepatorenal system
(Figure 4) in rats. Our results showed that the mean final body weights of the experimental
animals increased significantly (p < 0.05) in all groups compared to the initial body weight
of rats. However, there was no significant difference (p > 0.05) in the mean organ weight
and relative organ weight of rats. Compared to the control, AFB; slightly decreased
the mean weight change of rats. However, this was abated in the group treated with
only 5 mg/kg SBE-HP (Figure 3B). Despite the slight decrease in organ-to-somatic ratio
and mean body weights, rats had no mortality during the study period, indicating 100%
overall survival (Figure 3C). In addition, the administration of AFB; significantly increased
(p < 0.0001) the serum activities and levels of ALT, AST, ALP, urea, and creatinine compared
to the control, indicative of hepatorenal toxicities. However, this was counterbalanced
by SBE-HP at 5 and 10 mg/kg. At5 mg/kg, SBE-HP significantly decreased the serum
activities and levels of ALT (p < 0.001), AST (p = 0.0387), ALP (p < 0.0001), urea (p = 0.0124),
and creatinine (p < 0.0001) compared to the cohort of rats treated with alone AFB;. The
restoration in the serum concentrations of these hepatic and renal function biomarkers was
significantly prominent (p < 0.0001) in a cohort of rats co-treated with 10 mg/kg SBE-HP
compared to the AFB; alone group (Figure 4).
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Figure 2. Characterisation of the key components in SBE-HP using TLC and LC-MS analyses.
(A) TLC analysis on a normal phase silica plate, eluted with CH,Cl,/MeOH 12:1, revealed that
SBE-HP separated into three clusters with RFs of 0.27, 0.83, and approx. 1. (B) LC-MS traces of key
compounds in SBE-HP. Negative ion mode was presented for clarity.
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adult male Wistar Albino rats for 28 consecutive days, (B) effect of SBE-HP on the mean body weight
change of AFB1-treated treated, and (C) Kaplan-Meier curve of rats treated with SBE-HP and AFB;.
Created by https://app.biorender.com/ (accessed on 8 July 2022).
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Figure 4. Effect of SBE-HP on the liver and kidney function of rats treated with AFB; for 28 d.
Experimental doses: AFB; at 50 pg/kg; SBE-HP-D1 at 5 mg/kg; SBE-HP-D2 at 10 mg/kg. Values
are expressed as mean + SD for six rats per treatment cohort. Connecting lines indicate groups
compared to one another. The significance level was set at (p < 0.05); p < 0.05 suggests the level
of significance; p > 0.05: not significant. AFB;: Aflatoxin B1; D1: lower dose; D2: higher quantity;
ALT: Alanine aminotransferase; AST: aspartate aminotransferase, ALP: Alkaline phosphatase; GGT:
gamma-glutamyl transferase.

2.3. SBE-HP Mitigates Oxidative Stress and Restores Antioxidant Activities and Levels in the
Liver and Kidney of AFB;-Treated Rats

The induction of oxidative stress is a probable mechanism of action of AFB;-induced
hepatic and renal derangements. To this end, we probed the mitigating effect of SBE-HP
against AFB;-mediated oxidative stress in rats’ hepatic and renal tissues, as presented
in Figures 5-7. In comparison to the control, our results showed that AFB; significantly
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decreased (p < 0.0001) the hepatic activities of SOD, CAT, and GPx as well as the renal
activities of SOD (p = 0.0084), CAT (p < 0.0001), and GPx (p < 0.0001) in rats, denoting the
induction of oxidative stress. However, the administration of SBE-HP at 5 and 10 m/kg
restores the activities of these antioxidants. At 5 mg/kg, SBE-HP increased the activities
of SOD (p < 0.0001), CAT (p > 0.6186), and GPx (p > 0.9999) compared to the AFB; alone
group. However, at a higher concentration of SBE-HP (10 mg/kg), the activities of SOD,
CAT, and GPx were prominent (p < 0.0001) relative to AFB; alone treated rats (Figure 5).
Furthermore, our results divulged that AFB; markedly waned (p < 0.0001) the activities of
GST (a phase-2 antioxidant molecule) and the levels of GSH and TSH in the liver and kidney
of rats compared to the untreated group. In contrast, the co-ingestion of SBE-HP at the
tested doses resulted in a positive trend in GST activity and GSH and TSH levels in the liver
and kidney of rats. Rats co-treated with 5 mg/kg SBE-HP showed increased hepatic GST
activity (p = 0.0501) and GSH (p < 0.0001) and TSH (p < 0.0001) levels. Renal GST activity
(p =0.0008) and GSH (p > 0.9999) and TSH (p = 0.0007) levels were also increased compared
to the AFB, alone treated group. The observed effects on GST activity and GSH and TSH
levels were further reinforced (p < 0.001) in cohorts of rats co-treated with 10 mg/kg in the
liver and kidney tissues of rats relative to the AFB; alone treated rats (Figure 6). In addition,
for oxidative stress to manifest in rats exposed to toxicants, there must be an imbalance
between antioxidants and pro-oxidants in favour of pro-oxidants. In the current study,
AFB; significantly elevated (p < 0.0001) the hepatic and renal levels of LPO and RONS
compared to the control. Nevertheless, co-treatment with SBE-HP offset this effect, thus
scavenging available free radicals in the liver and kidney of rats. Specifically, co-treatment
at 5 mg/kg waned the hepatic levels of LPO (p = 0.0070) and RONS (p < 0.0001) as well as
significantly decreased (p < 0.0001) the renal levels of LPO and RONS relative to the AFB;
treated group. Furthermore, at 10 mg/kg, the decline in the levels of LPO and RONS was
significantly prominent (p < 0.0001) compared to the AFB; alone group in the liver and the
kidney tissues, indicating that the extract mediates the antioxidative effect (Figure 7).
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Figure 5. Effect of SBE-HP on the tissue concentrations of CAT, SOD, and GPx in the liver and kidney
of rats treated with AFB; for 28 d. AFB; at 50ug/kg; SBE-HP-D1 at 5 mg/kg; SBE-HP-D2 at 10 mg/kg.
Values are expressed as mean =+ SD for six rats per treatment cohort. Connecting lines indicate groups
compared to one another. The significance level was set at (p < 0.05); p < 0.05 indicates the level of
significance; p > 0.05: not significant. AFB;: Aflatoxin B1; D1: lower dose; D2: higher dose; SOD:
Superoxide dismutase; CAT: Catalase; GPx: Glutathione peroxidase.
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Figure 6. Effect of SBE-HP on the tissue concentrations of GST, GSH, and TSH in the liver and
kidney of rats treated with AFB; for 28 d. AFB; at 50 ug/kg; SBE-HP-D1 at 5 mg/kg; SBE-HP-D2 at
10 mg/kg. Values are expressed as mean =+ SD for six rats per treatment cohort. Connecting lines
indicate groups compared to one another. The significance level was set at (p < 0.05); p < 0.05 suggests
the level of significance; p > 0.05: not significant. AFB;: Aflatoxin B1; D1: lower dose; D2: higher
dose; GST: Glutathione S-transferase; GSH: reduced glutathione; TSH: Total sulfhydryl group.
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Figure 7. Effect of SBE-HP on the concentrations of LPO and RONS in the liver and kidney of rats
treated with AFB; for 28 d. AFB; at 50 pug/kg; SBE-HP-D1 at 5 mg/kg; SBE-HP-D2 at 10 mg/kg.
Values are expressed as mean =+ SD for six rats per treatment cohort. Connecting lines indicate groups
compared to one another. The significance level was set at (p < 0.05); p < 0.05 suggests the level of
significance; p > 0.05: not significant. AFB;: Aflatoxin B1; D1: lower dose; D2: higher dose; LPO:
Lipid peroxidation; RONS: Reactive oxygen and nitrogen species.
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2.4. SBE-HP Resolves Inflammation and Abrogates Apoptosis in the Liver and Kidney of
AFB1-Treated Rats

In the current study, we hypothesise that unquenched free radicals may trigger the
release of pro-inflammatory molecules and initiate the programmed cell death pathways
through extrinsic or intrinsic pathways. We, therefore, probe the ameliorative effect of
SBE-HP against AFB;-mediated inflammation and apoptosis, as shown in Figures 8-10. The
treatment of rats with AFB; significantly increased pro-inflammatory mediators, including
XO, MPO, and NO, compared to the untreated group (p < 0.0001). However, co-treatment
with SBE-HP counteracted the upsurge in pro-inflammatory mediators at the test doses.
Specifically, 5 and 10 mg/kg of SBE-HP markedly waned (p < 0.0001) the activities of XO
and MPO and the level of NO in the liver and kidney compared to the cohort of rats treated
with AFB;, with the higher dose (10 mg/kg) exhibiting higher anti-inflammatory property
(Figure 8). We hypothesise that the pro-inflammatory and anti-inflammatory cytokines ratio
may induce hepatorenal toxicity. To this end, we probe the effect of SBE-HP in lowering
the proportion of pro-inflammatory cytokines to anti-inflammatory in rats exposed to
AFB;. Compared to the control, the rat cohort treated with AFB; alone exhibited increased
levels of IL-1f in the liver (p = 0.0031) and in the kidney (p < 0.0001) while reducing the
level of IL-10 in the liver (p = 0.0014) and the kidney (p = 0.0003). In contrast, cohorts of
rats co-treated with SBE-HP at the test doses decreased the hepatic and renal levels of
IL-1p while elevating IL-10. At 5 mg/kg, SBE-HP reduced the level of IL-1f3 in the liver
(p = 0.2208) and kidney (p = 0.0018) while increasing the level of IL-10 in the liver (p = 0.024)
and kidney (p = 0.0043) of rats compared to AFB; alone treated rats. The anti-inflammatory
effect of SBE-HP was more prominent in cohorts of animals co-treated at 10 mg/kg, as
this dose decreased the level of IL-1f3 in the liver (p = 0049) and kidney (p < 0.0001) while
increasing the level of IL-10 in the liver (p < 0.0001) and kidney (0.0004). SBE-HP at both
doses lowered IL-13 /IL-10, favouring anti-inflammatory cytokines (Figure 9). In addition,
we hypothesised that if oxidative stress and inflammation are not resolved, they may drive
apoptosis and therefore probe that SBE-HP can inhibit the ability of AFB; to orchestrate
apoptosis in the liver and kidney of rats. Our results showed that AFB;, compared to the
untreated group, triggered apoptosis by increasing the hepatic activities of caspase-9 and
caspase-3 (p < 0.0001) as well as renal activities of caspase-9 (p = 0.0018) and caspase-3
(p < 0.0001) compared to the control. In contrast, SBE-HP at the tested doses prevented
apoptosis in the liver and kidney of rats. Cohorts of rats co-treated with 5 mg/kg SBE-HP
decreased hepatic activities of caspase-9 (p = 0.0062) and caspase-3 (p = 0.0008) and renal
activities of caspase-9 (p = 0.0283) and caspase-3 (p = 0.0020) compared to the AFB; alone
treated rats. This effect was enhanced in cohorts of rats co-treated with 10 mg/kg SBE-HP
as this decreased the hepatic activities of caspase-9 and caspase-3 (p < 0.0001) as well as
hepatic activities of caspase-9 (p = 0.0012) and caspase-3 (p < 0.0001) relative to the AFB,
alone treated rats (Figure 10).

2.5. SBE-HP Abrogates Histological Lesions in the Liver and Kidney of AFB;-Exposed Rats

Finally, we probe that exposure to AFB; after 28 days can orchestrate alterations in the
architectural structures of the kidney and liver tissues and that co-treatment with SBE-HP
can reduce the burden of AFB;-hepatorenal toxicity and preserve the architectural forms of
the rat kidney and liver, as presented in Figure 11a,b. In comparison to the untreated group,
cohorts of rats treated with AFB; manifested dispersed glomerular messangialisation
and infiltration of intraglomerular mesangial cells into the cortex in the kidney tissues
(Figure 11a), as well as focal congestion, trafficking, and infiltration of Kupffer cells into
zone 2, slight ballooning and degeneration of the liver cells and micro-vesicular steatosis
in the liver tissues (Figure 11b). However, SBE-HP at 5 and 10 mg/kg minimised AFB1-
mediated toxicities and preserved the histoarchitectural structures of the liver and kidney
tissues, approximating histo-architecture like the control.
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Figure 8. Effect of SBE-HP on the tissue concentrations of XO, MPO, and NO in the liver and
kidney of rats treated with AFB; for 28 d. AFB; at 50 ug/kg; SBE-HP-D1 at 5 mg/kg; SBE-HP-D2 at
10 mg/kg. Values are expressed as mean & SD for six rats per treatment cohort. Connecting lines
indicate groups compared to one another. The significance level was set at (p < 0.05); p < 0.05 indicates
the level of significance; p > 0.05: not significant. AFB;: Aflatoxin B1; D1: lower dose; D2: higher
dose; XO: Xanthine oxidase; MPO: Myeloperoxidase; NO: Nitric oxide.
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Figure 9. Effect of SBE-HP on tissue concentrations of IL-13 and IL-10 in the liver and kidney of rats
treated with AFB; for 28 d. AFB; at 50 pg/kg; SBE-HP-D1 at 5 mg/kg; SBE-HP-D2 at 10 mg/kg.
Values are expressed as mean =+ SD for six rats per treatment cohort. Connecting lines indicate groups
compared to one another. The significance level was set at (p < 0.05); p < 0.05 suggests the level of
significance; p > 0.05: not significant. AFB;: Aflatoxin B1; D1: lower dose; D2: higher dose; IL-13:
Interleukin-1beta; IL-10: Interleukin-10.
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Figure 10. Effect of SBE-HP on tissue concentrations of caspase-9 and caspase-3 in the liver and kidney
of rats treated with AFB; for 28 d. AFB; at 50 pug/kg; SBE-HP-D1 at 5 mg/kg; SBE-HP-D2 at 10 mg/kg.
Values are expressed as mean =+ SD for six rats per treatment cohort. Connecting lines indicate groups
compared to one another. The significance level was set at (p < 0.05); p < 0.05 suggests the level of
significance; p > 0.05: not significant. AFBy: Aflatoxin B1; D1: lower dose; D2: higher dose.

b. Liver

Figure 11. (a) Control Plates of the kidney show a focal area of mild congestion and apoptotic bodies
with typical tissue architecture. AFB; alone plates show disseminated glomerular messangialisation
(thin arrow) and the extent of infiltration of the cortex by inflammatory cells (bold arrowhead). SBE-
HP alone plate (not shown) tissues appear normal and relatively like those from control tissue sections.
AFB, with SBE-HP-D1 and SBE-HP-D2 plates dose-dependently improved histo-architecture of the
kidney with the mild presence of inflammatory cells. (b) AFB; alone shows areas of focal congestion
(bold arrows), infiltration of zone 2 by inflammatory cells, mild hydropic/ballooning degeneration
of the hepatocytes, and moderate microvesicular steatosis (tiny arrows). SBE-HP alone (plate not
shown) tissue morphologies are similar to the control plate. AFB; with SBE-HP-D1 and SBE-HP-D2
plates improved hepatic cytoarchitecture with mild focal congestion and infiltration of zone 2 by
inflammatory cells. H and E-stained sections; magnification at x400.

3. Discussion

Exposure of animals and humans to AFB; continues to be of severe concern in semi-
arid tropical regions of Asia and Africa. Accidental ingestion of AFB; through contaminated
food products can cause toxicity to organs such as the liver, kidney, hypothalamus, testis,
epididymis, and heart [21,22,24,27]. The concomitant effects of AFB;-induced toxicities in-
clude growth retardation, malnutrition, and immune suppression [15,16]. Efforts to reduce
AFB; contamination in food products have continually waned due to the recalcitrant nature
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of the fungal species that mediate the biosynthesis of mycotoxins [38,39] and the induction
of metabolic pathways for the breakdown of AFB; [30,33,40]. Bioactive compounds in
plants can remediate AFB;-mediated toxicities by inhibiting ROS production, resolution of
inflammation, and preventing programmed cell death [41,42]. To further narrow the gap in
the search for potential drug regimens that can effectively lessen the side events associated
with AFB, toxicity, the current study explores the ameliorative effects of the SBE-HP against
AFBj-mediated hepatorenal derangements. The results show slight alterations in mean
body weight and organosomatic indices and a significant increase (p < 0.05) in the activities
of liver and kidney function biomarkers (ALT, AST, ALP, urea, and creatinine). There was a
considerable decrease (p < 0.05) in the levels of antioxidant (SOD, CAT, GPx, GST, GSH,
and TSH) and anti-inflammatory (IL-10) biomarkers; a significant increase (p < 0.05) in the
levels of oxidative stress (MDA, RONS), pro-inflammatory (XO, MPO, NO, and IL-1§3), and
apoptotic (caspase-9 and -3) biomarkers; atypical histological structures observed in AFB;
alone treated group were reversed, counteracted, resolved, and refurbished by co-treatment
with 5 and 10 mg/kg SBE-HP. This study established three definitive mechanisms for AFB;
toxicities: high ROS generation, dampening the innate antioxidant defences, and activating
pro-inflammatory molecules to activate, expand, and differentiate pro-inflammatory cells.
Collectively, these caused the release of pro-inflammatory cells and increased the ratio of
pro-inflammation to anti-inflammation in the hepatorenal system, resulting in the induction
of apoptosis via the intrinsic or extrinsic pathway.

Oxidative stress is established when an imbalance between the antioxidant defence
system and the pro-oxidants occurs [43,44]. AFB; is a known hepatoxic and nephrotoxic
agent in humans and experimental animals [22,40,45]. AFB; toxicity stems from the activi-
ties of CYP540 isoforms, which mediate the bioactivation of AFB; into a toxic metabolite,
AFBO [17,18]. Continual bioactivation of AFB; into AFBO by these enzymes releases su-
peroxide anion radicals (O27) into the hepatorenal system, thereby orchestrating SOD, an
enzyme known to detoxify (O27) into hydrogen peroxide (H,O5), a less toxic free radical.
The accumulation of HyO; rouses the catalase activity to degrade the hepatic and renal
levels of HyO; into molecular water. GPx can detoxify H,O, in the presence of GSH or
TSH. These innate antioxidant defence systems, including SOD, CAT, GPx, GSH, and TSH,
were diminished, as seen in the current study. Concomitantly, free radicals accumulate in
the hepatocytes and nephrons and trigger the formation of hydroxyl radicals (HO") in the
presence of ferrous ions (Fe?*) in either the Haber—Weiss or Fenton reactions. These radicals
interact with important biological molecules such as membrane lipids, proteins, and nucleic
acids, triggering lipid peroxidation, as observed in this study. We observed that AFB1
significantly increased the hepatic and renal levels of MDA, a marker of lipid peroxidation
and protein cross-link and DNA and RNA damage established in other studies [22,40].
These biochemical reactions evolve more ROS and RNS in the liver and kidney cells, further
hampering the capacity of the innate antioxidant defence systems to mop up hepatic and
renal free radicals.

As observed in this study following treatment with AFB1, a significant increase in
RONS levels in tissues is correlated to hepatorenal toxicities [46]. Nevertheless, the toxicities
associated with AFB; and AFBO can be averted by the phase-2 antioxidant defence system
via the expression of GST. GST interaction with AFBO mediated by GSH and other sundry
enzymes forms the AFB1-5-G complex. This complex binds to MRP or p-glycoprotein and
is excreted in the bile and urine. This study shows that suppressing GST’s hepatic and renal
activities further exposes the target organs to ROS-mediated toxicities, as more AFBOs are
formed with the simultaneous evolution of abundant free radicals. Findings from previous
studies on the oxidative/nitrosative stress-promoting effects of AFB; in rats agree with our
current observations [22,47,48].

Interestingly, we observed that cohorts of rats co-treated with SBE-HP at 5 and 10 mg/kg
remediated oxidative/nitrosative stress in the liver and kidney tissues by significantly increas-
ing the hepatic and renal levels of SOD, CAT, GPx, GSH, TSH, and GST. At the same time,
SBE-HP markedly decreased LPO and RONS levels in rats’ livers and kidneys. The observed
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antioxidative effect is attributed to the unique antioxidant activities of the key compounds in
SBE-HP. API, apigenin methyl ether analogues (acacetin, glycitein (or genkwanin), apigenin
dimethyl ethers, hispidulin or luteolin methyl ethers, luteolin dimethyl ether, naringenin,
7-O-methyl apigeninidin, and protocatechuic acid methyl ester identified in SBE-HP are
antioxidants that have been previously detected in S. bicolor [49]. We show that API inhibited
the activity of CYP1A2, one of the CYP isoforms involved in the bioactivation of AFB; into a
toxic intermediate.

Unquenched oxidative/nitrosative stress could activate signalling pathways, espe-
cially NF-kB, a known regulator of inflammation [49], and other pro-inflammatory me-
diators, including MPO, XO, and NO [22]. MPO, a member of the heme peroxidase
superfamily, is expressed in pro-inflammatory cells such as neutrophils and monocytes [50].
It mediates the biochemical reaction in which H,O,, in the presence of chlorine, is con-
verted to hypochlorous acid (HOCI), which decomposes to release harmful free radicals,
including 'O, and OH. An increase in MPO activity during inflammation has been shown
to drive oxidative stress by promoting the release of more harmful pro-oxidants in the target
tissues [51]. The interaction of these pro-oxidants and other free radicals with nucleic acid
precursors such as purine bases may increase the activity of XO in the target tissues, leading
to the transformation of hypoxanthine and xanthine into their end-product, urea acid, with
concomitant release of O, ~. While O, ~ increases the hepatorenal system’s oxidative and
nitrosative stress burdens, uric acid acts as a danger-associated molecular pattern (DAMP)
to activate several inflammasome pathways and NF-«B within the hepatorenal system
and orchestrate the expression of pro-inflammatory mediators [52,53]. As a biomarker of
hepatorenal derangements, an increase in the level of NO in the tissues of rats correlates
with prolonged oxidative stress and inflammation [44,54]. Under the basal condition, NO
mediates an anti-inflammatory effect and regulates several biochemical processes, includ-
ing vasodilation in the cardiovascular system, neurotransmission in the central nervous
system, and cytokine-mediated activation of macrophages in the immune system [55].
However, NO may accumulate and induce chronic inflammation in tissues exposed to
oxidative and inflammatory stimuli. In addition, loss of redox homeostasis can trigger an
increase in NO synthase activities, an enzyme that converts L-arginine to L-ornithine and
NO in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH)
and molecular O; as co-factors. As NO accumulates in the hepatorenal system, it interacts
with O,.- and produces another toxic free radical, peroxynitrite (ONOO™). These reactive
nitrogen species (RNS) mediate chronic information through DNA damage, increased
Cox-2 expression, elevation in the expression of pro-inflammatory cytokines, angiogenesis,
and nitration of functional proteins in the hepatorenal tissues [21,56]. In our findings, AFB,
orchestrated inflammation by increasing the hepatic and renal activities of MPO and XO
and the levels of NO and IL-1f while decreasing the hepatic and renal levels of IL-10, an
anti-inflammatory cytokine. These changes alter the pro-inflammatory/anti-inflammatory
ratio favouring pro-inflammatory cues, thus increasing hepatic and renal inflammation. The
induction of oxidative stress and subsequent inflammation creates suitable links between
oxidative stress and inflammation. Alteration in the pro-inflammatory/anti-inflammatory
ratio following exposure to AFB; was reverted and normalised in cohorts of rats treated
with API-containing SBE-HP as hepatic and renal MPO, XO, NO, and IL-1§ in these rats
significantly waned while that of IL-10 increased markedly. These alterations may have
been possible due to bioactive compounds’ anti-inflammatory and antioxidative effects in
the SBE-HP [30,36,57].

If the pro-oxidants resulting from the exposure to AFB; are not scavenged, the resul-
tant pro-inflammatory cues in rats’ liver and kidney tissues will not resolve. Signalling
networks impairing mitochondrial dysfunction and committing cells to apoptosis may be
switched upstream and downstream [58-60]. Specifically, free radicals produced during
the metabolism of AFB; and activating pro-inflammatory cells may bind to DNA and
functional proteins to trigger the formation of DNA adducts in rats” hepatic and renal
tissues [22], causing genomic instability and committing the hepatocytes and nephrons
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to short-term cell cycle arrest. The duration of the cell cycle arrest will depend on when
the AFB; insults are completely detoxified and removed. However, programmed cell
death may ensue if these insults persist in the liver and kidney cells. Specifically, p53
directs the expression of PUMA (p53 upregulated modulator of apoptosis), which alters
the Bax/Bcl-2 ratio in favour of Bax [61]. The translocation of Bax into the hepatic and
renal cells mitochondria causes cytochrome C release into the cytoplasm, where it interacts
with apoptotic peptidase activating factor 1 (APAF-1) pro-caspase-9, forming apoptosome
and active caspase-9, the initiator of apoptosis. Caspase-9 then activates caspase-3, the
executioner of apoptosis, thereby committing the cells to die. Based on this syllogism,
previous studies infer that increased activities of Caspase-9 and -3 in hepatic and renal
tissue are an indication of programmed cell death of the affected tissues [22,23,62,63], and
this was validated in the current studies where we observed that ingestion of AFB1 to rats
significantly increased the activities of caspase-9 and -3. Any compound that can dampen
the actions of these caspases could possess anti-apoptotic activity and might be used to
construct a novel biologic against AFB intoxication.

Interestingly, the current study’s findings reveal that co-treatment of rats exposed to
AFB; with API-containing SBE-HP significantly decreased the activities of caspase-9 and -3,
indicating an interruption in AFB1-mediated apoptosis and restoration of wholeness to the
hepatorenal system. The role of bioactive compounds in S. bicolor on apoptosis depends on
cell types. In normal hepatic and renal tissues, S. bicolor mediates the anti-apoptotic effect,
thereby preserving the tissues from environmental toxicants capable of committing a cell to
apoptosis. However, in tumours, these plant extractives portend a pro-apoptotic function,
thus enhancing the death of cancer cells [30,39,64].

Alterations in the typical histological features of the liver and kidney tissues are
clinically relevant in assessing the toxicities of AFB;. It also validates the outcomes of
numerous biochemical assays, as established in this study. During oxidative stress, in-
flammation, and apoptosis, DAMPs are released into the cells, interacting with pattern
recognition receptors expressed on the surface of pro-inflammatory cells [65,66]. The
Kupffer cells and intraglomerular mesangial cells activate, proliferate, and differentiate
into pro-inflammatory phenotypes in the liver and kidney. These cells release abundant
soluble factors, including IL-1f3, TNF-«, IL-17, IL-6, IL-8, NO, Cox-2, and PGE,, into the
hepatocytes and nephrons, thus making the cell lose their normal histology [30], as seen in
the current study. However, this effect was minimised by SBE-HP through the resolution of
inflammation, inhibition of oxidative stress, and apoptosis, further validating the plant’s
antioxidative, anti-inflammatory, and anti-apoptotic effects.

4. Materials and Methods
4.1. Chemicals, Reagents, and Kits

AFBjy, thiobarbituric acid (TBA), 2’, 7’-dichlorodihydrofluorescin diacetate (DCFH-
DA), 5’, 5’-dithiobis-2-nitrobenzoic acid (DTNB), 1-chloro-2,4-dinitrobenzene (CDNB),
hydrogen peroxide (H,O;), potassium chloride (KCl), trichloroacetic acid (TCA), sodium
azide, glutathione (GSH), epinephrine, sulphosalicylic acid, xanthine, Griess reagent, and
O-dianisidine were bought from Sigma-Aldrich Chemical (St. Louis, MO, USA). Biomarkers
of hepatic and renal functions such as alanine aminotransferase (ALT), aspartate amino-
transferase (AST), alkaline phosphatase (ALP), urea, and creatinine were purchased from
Randox™ Laboratories Limited, (Crumlin, UK). Enzyme-linked immunosorbent assay
(ELISA) kits for interleukin 1-beta (IL-13), interleukin-10 (IL-10), caspase-9, and caspase-3
were purchased from Elabscience Biotechnology Company (Wuhan, China).

4.2. Collection, Identification, and Processing of Plant Sample

Overall, 5 kg dried S. bicolor sheaths were purchased from Bodija Market, Ibadan, Oyo
State, Nigeria. The samples were brought to the Department of Botany, the University of
Ibadan, Ibadan, Nigeria, in a polythene bag for taxonomist identification, and a voucher
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specimen (Accession No: UIH-23118) was deposited there for reference purposes. The plant
was sorted to remove dirt and other extraneous materials and ground into fine powder.

4.3. Extraction and Phytochemical Characterisation of S. bicolor

SBE-HP was obtained as a CH,Cl, extract of S. bicolor, as described previously [30]. The
isolated brownish-red paste was analysed by thin-layer chromatography (TLC) (Supelco,
TLC Silica gel 60 Fzs4, 1.05554.0001; Sigma-Aldrich) and LC-MS (Figure 2A,B). For LC-MS
analysis, 0.6 mL isopropanol, one scoop of 0.5 mm glass beads, and one scoop of 2 mm
ZrO beads were added to the SBE-HP sample in a microcentrifuge vial. The mixture was
homogenised in a Tissuelyzer II at 30 Hz for 5 min, vortexed, centrifuged at 21,100 x g for
5 min, and transferred to an LC vial for analysis. Chromatography was performed on a
Waters BEH C18 100 x 2.1 mm, a 1.7-micron column with Mobile Phase A: 60%acetonitrile
40%water 0.1% FA 10 mM ammonium formate and Mobile Phase B: 10% ACN 90% IPA,
0.1% FA 10 mM ammonium formate. The column temperature was maintained at 60 °C,
and a 0.5 pL sample was injected for each run. MS data were acquired in positive and
negative ion modes.

4.4. Animal Welfare, Sample Size Estimation, and Experimental Design

The 3R’s protocols, including replacement, reduction, and refinement, were adopted in
this study. The sample size was estimated using the G*Power software version 3.1.9.4 [67].
With an effect size of 0.40, 95% power, and 0.05 p-value for one-way analysis of variance
(ANOVA) [42], a sample size of 125 was estimated. Of this calculated value, 24 adult male
Wistar Albino rats (consisting of n = six rats, i = 4) with a mean weight of approximately
165 g b.w. were bought from the experimental animal facility of the Faculty of Veterinary
Medicine, University of Ibadan, Nigeria. The experimental rats were kept in the animal
facility of the Department of Biochemistry, Faculty of Basic Medical Sciences, University of
Ibadan, Nigeria, and humanely maintained in natural photoperiod conditions. Rats were
fed with standard chows, allowed access to clean water ad libitum, and then acclimatised
for 14 days before dosing with AFB; and the hydrophobic S. bicolor extract (SBE-HP). The
study was conducted in line with the ethics of animal use as certified by the Animal Care
and Use Research Ethics Committee (ACUREC) of the University of Ibadan (Approval
number: UI-ACUREC/032-0521/7).

The different cohorts of rats were exposed to 28 days of repeated treatment with AFB;
and SBE-HP (Figure 3A). AFB; and the SBE-HP stocks for dosing were prepared each day
and used for intubation per os (p.0). The AFB; (50 ng/kg) dose used in this study was
determined from previous reports [24,68], while the SBE-HP amount was extrapolated
from a dose-response study [30]. Experimental rats were grouped as designated below:

Control: 0.05% Carboxymethyl cellulose (CMC);

AFB; alone: Aflatoxin By, 50 pg/kg;

AFB{+SBE-HP-Dy: AFB; (50 ug/kg) + SBE-HP-D; (5 mg/kg);

AFB{+SBE-HP-Dy: AFB; (50 ug/kg) + SBE-HP-D; (10 mg/kg).

CMC (0.05%) was used as a vehicle for the extracts. SBE-HP was prepared by dissolv-
ing in 0.05% CMC [69]. Control animals received 0.05% CMC (0.32 mL per rat), animals
in AFB; alone group received 0.16 mL AFB; while animals in AFB;+SBE-HP-D; and
AFB1+SBE-HP-D; received 0.16 mL and 0.32 mL of SBE-HP, respectively. Treatments were
carried out between 09:30 and 11:30 h on the designated dates for 28 days. The 28-day treat-
ment protocol was based on earlier experimental design and findings from our previous
studies [22,30].

4.5. Termination of the Experiment, Organ Harvest, and Tissue Processing

At the expiration of 28 d, all the rats’ final body weight was measured 24 h after the
last intubation, followed by exsanguination through the retro-orbital venous plexus system
into well-labelled non-heparinised tubes. Afterwards, the rats were sacrificed through
cervical dislocation. The whole blood was allowed to clot at 25 °C for 30 min, and the
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coagulated blood was subjected to centrifugation at 3000x g for 10 min at 4 °C. The clear
supernatant (serum) was transferred into clean labelled Eppendorf tubes and preserved
at —20 °C before quantifying the biomarkers of hepatorenal functions. In addition, the
liver and kidney of the sacrificed rats were instantly removed, cleaned in ice-cold KCI
solution, and then weighed using a USS-DBS16 Analytical Balance (Cleveland, OH, USA).
The relative organ weights of the liver and kidney were determined as follows:

Weight of organ (g)

Weight of the body (g) X 100.

Organ weight Relative to the bodyweight =

Portions of the liver and kidney were used for biochemical and histological investiga-
tions. Samples for biochemical estimations were prepared by homogenising in a phosphate
buffer (0.1 M, pH 7.4). The tissue homogenate was prepared by homogenising the liver (2 g
in 8 mL of phosphate buffer) and the kidney (1.12 g in 4 mL of phosphate buffer) using a
glass-Teflon homogeniser. The resultant homogenates were centrifuged at 12,000 rpm at
4 °C for 15 min to obtain a clear mitochondrial fraction. The supernatants were collected in
aliquots and frozen before quantifying oxidative, inflammatory, and apoptotic biomarkers.

4.6. Estimation of Function and Integrity of the Hepatorenal System

The functionality and integrity of the liver and kidney of rats co-exposed to AFB; and
SBE-HP after 28 d was evaluated by measuring the activities and levels of ALT, AST, ALP,
creatinine, and urea using commercial kits as previously reported [22].

4.7. Estimation of the Biomarkers of Oxidative Stress, Inflammation, and Apoptosis

The oxidative stress, inflammation, and apoptosis levels were measured in the liver
and kidney of rats co-exposed to AFB; and SBE-HP post 28 d. The levels of total protein in
the liver and kidney of rats were estimated according to the method described by ref. [46];
hepatic and renal activities of superoxide dismutase (SOD) were assessed by the methods
described by Misra and Fridovich [70], as previously reported [71]; hepatic and renal
activities of catalase (CAT) were assessed by the protocols of Clairborne [72] using HyO,
as a substrate as previously reported [73]; hepatic and renal activities of Glutathione-S-
transferase (GST) and glutathione peroxidase (GPx) were quantified by the procedures
of Habig [74] and Rotruck et al. [75], respectively, as previously reported [76]; hepatic
and renal levels of reduced glutathione (GSH) and total sulfthydryl group (TSH) were
estimated by the method of Jollow et al. [77] and Ellman [78], as previously reported [22,57];
hepatic and renal activities of xanthine oxidase (XO) were measured by the procedures
of Bergmeyer et al. [79]; hepatic and renal levels of malondialdehyde (MDA), otherwise
termed lipid peroxidation (LPO) were assessed by the method described by Okhawa [80];
hepatic and renal levels of reactive oxygen and nitrogen species (RONS) were assayed
by the protocols of Owumi and Dim [81]; hepatic and renal nitric oxide (NO) level and
myeloperoxidase (MPO) activity were quantified by the protocols of Green et al. [60,82]
and Granell et al. [83,84], respectively, as previously reported by Owumi et al. [85]; hepatic
and renal levels of IL-13 and IL-10 and the caspase-9 and -3 activities were assayed using
ELISA Kkits, as previously reported [22]. All measurements were carried out using a Spectra
Max™ plate reader.

4.8. Examination of the Histological Sections of the Liver and Kidney

The portions of the liver and kidney for histological assessment were fixed in neutral
buffered formalin (10%) before the preparation of histological sectioning and staining. With
the aid of a standard paraffin-wax method, the hepatic and renal tissues were processed
for histopathological examination in line with the description of Bancroft and Gamble [86].
Approximately five pm thickness of the portion of the liver and kidney were dyed with
haematoxylin and eosin and processed for light microscopy. All prepared slides were coded
and probed with a Carl Zeiss Axio light microscope (Gottingen, Germany). On inspection,
images were taken using a Zeiss Axiocam 512 camera (Gottingen, Germany) attached to
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the microscope by a pathologist unaware of the various treatment cohorts from which the
slides were prepared.

4.9. Statistical Analysis of Results

At the end of the experiments, data were generated, quantified, and subjected to
statistical analyses using quantitative measures such as mean and standard deviation. The
results were expressed as the mean + SD of replicates. A test of statistical inferences was
performed by student t-test to compare the significance between the initial body weight
(IBW) and final body weight (FBW) of rats. A one-way analysis of variance (ANOVA)
followed by a post hoc test (Tukey’s test) set at a 95% probability level was used to test the
significance difference across the four experimental groups using GraphPad Prism, version
8.3.0 for Mac (www.graphpad.com, accessed on 9 July 2022; GraphPad, San Diego, CA,
USA).

5. Conclusions

We have shown that API-containing SBE-HP prevented, in adult male Wistar Albino
rats, oxidative/nitrosative stress, inflammation, and apoptosis induction. The probable
mechanisms may be activating the aryl hydrocarbon receptor (which promotes IL-10
expression), de-repression of estrogen receptor alpha (known to mediate anti-inflammatory
activity), activation of the expression of p53 and mitochondrial membrane potential, and
upregulation of Nrf2, NQOI1, and HO-1 signalling. At the same time, mediating the
suppression of cytochrome P450 (CYP) 1A2 expression, inhibition of NF-kB, upregulation
of Bax expression and the activities of caspase-3 and caspase-3 and suppression of signalling
along JNK, p38 MAKP, ERK, and Keap1 axis as depicted in our proposed mechanism of
protection Figure 12. These findings recapitulate the ethnomedicinal relevance of the
SBE-HP and emphasise its usefulness in preventing AFB; intoxications, including hepatic
steatosis, hepatitis, cirrhosis, hepatocellular carcinoma, and glomerulonephritis in animal
and human models. Finally, our studies validate the three defined mechanisms of AFB;
intoxications, including oxidative stress, inflammation, and apoptosis, and warrant further
investigation to explore more mechanistic pathways of AFB1 intoxication in rats and other
experimental models.
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Figure 12. Proposed mechanism of SBE-HP ameliorative effect on AFB;-mediated toxicities in the
liver and kidney of an experimental rat model. SBE-HP prevented AFB;-induced oxidative and
nitrosative stress and inflammation by reducing the activity of CYP1A2, NF-kB-mediated generation
of pro-inflammatory cytokines, and IL-13. SBE-HP also reduced apoptosis by altering the Bcl-2/Bax
ratio favouring caspase 9 and caspase 3 activity. Created by https://app.biorender.com/ (accessed
on 9 July 2022).
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