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Abstract: Theranostics combines therapeutic and imaging diagnostic techniques that are extremely
dependent on the action of imaging agent, transporter of therapeutic molecules, and specific target
ligand, in which fluorescent probes can act as diagnostic agents. In particular, naphthoimidazoles
are potential bioactive heterocycle compounds to be used in several biomedical applications. With
this aim, a group of seven naphth[1,2-d]imidazole compounds were synthesized from β-lapachone.
Their optical properties and their cytotoxic activity against cancer cells and their compounds were
evaluated and confirmed promising values for molar absorptivity coefficients (on the order of
103 to 104), intense fluorescence emissions in the blue region, and large Stokes shifts (20–103 nm).
Furthermore, the probes were also selective for analyzed cancer cells (leukemic cells (HL-60). The
naphth[1,2-d]imidazoles showed IC50 between 8.71 and 29.92 µM against HL-60 cells. For HCT-116
cells, values for IC50 between 21.12 and 62.11 µM were observed. The selective cytotoxicity towards
cancer cells and the fluorescence of the synthesized naphth[1,2-d]imidazoles are promising responses
that make possible the application of these components in antitumor theranostic systems.

Keywords: heterocycle; anticancer; fluorescent probe; theranostic; naphthoimidazole

1. Introduction

The multifunctionality of theranostic agents introduces several advantages for medicine,
overcoming pharmacokinetic and selectivity issues of conventional therapy and diagnostic
agents [1], while providing the image monitoring of pathology progression as well as the
pharmacokinetic profile of the drug in the body [2].

The design of a theranostic agent requires a combination of different areas, such
as chemistry, physics, nanotechnology, biochemistry, and engineering, with the aim of
obtaining a multifunctional platform capable of performing non-invasive therapy and
diagnosis of a pathological condition [3]. Typically, a theranostic agent is composed of
(i) an imaging agent, (ii) a therapeutic molecule, (iii) a target-specific ligand, and (iv) a
carrier. The diagnostic agent is a fundamental part of a theranostic system. It favors the
non-invasive visualization of cellular and subcellular processes of a pathological condition
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through image emission. Examples of these components include fluorophores with the
ability to respond to specific stimuli regarding the identification of biological species [4,5].

Fluorescent compounds, such as naphthoxazoles, have been explored as active molecules
in biological systems [6]. Imidazoles and oxazoles can be synthesized through a multicom-
ponent reaction, the Debus–Radziszewski reaction, employing α-dicarbonyl compounds
and aldehydes [7,8]. The same reaction generates naphthoimidazoles and naphthoxazoles
in which 1,2-naphthoquinones are used as α-dicarbonyl compounds [9,10]. β-Lapachone is a
1,2-naphthoquinone originally isolated from the heartwood of Handroanthus impetiginosus [11],
which can be considered a potential antitumor agent [12–14]. The efficacy of β-lapachone
for cancer treatment was evaluated through phase I and II clinical trials, with the naph-
thoquinone in the form of ARQ 501 and ARQ 761 [15–18]. However, several drawbacks
of β-lapachone, such as low water solubility and narrow therapeutic windows, limited its
clinical applications [19,20].

Based on the cytotoxicity of β-lapachone and the fluorescent properties of naphthoa-
zole heterocycles, the scaffold 1,2-naphtho[1,2-d]imidazole was designed to be a fluorescent
emitter with antitumor action, being considered a promising component of theranostic
systems, as shown in Figure 1.

Figure 1. Molecular design of the naphth[1,2-d]imidazoles with anticancer and fluorescent properties.

Herein, it is reported the synthesis of different naphth[1,2-d]imidazoles, with modifi-
cation of substituents at the C2 position of the naphthoimidazole ring, and the following
evaluation of their photophysical and anticancer activity as a part of a strategy to provide a
new class of materials with promising biomedical applicability.

2. Results and Discussion

Naphth[1,2-d]imidazoles IM1–IM7 were prepared in two steps (Scheme 1) from la-
pachol 1, in which the natural 1,4-naphthoquinone was extracted from the heartwood of
trees of the genus Tabebuia. In the first step, β-lapachone (β-Lap 2) was obtained from the
acid-catalyzed cyclization of lapachol 1 using sulfuric acid (H2SO4). In the following step,
the compounds IM1–IM7 were synthesized through the Debus–Radziszewski reaction, in
a one-pot process between β-Lap 2 and the corresponding aldehyde, using ammonium
acetate as a source of ammonia (Scheme 1). The reactions were established at 70 ◦C in acetic
acid with a reaction time range of 0.5–4.0 h. The crude reactions were treated with sodium
bisulfite (NaHSO3), and the products were purified using column chromatography or
recrystallization. The naphthoimidazoles returned yields in the range of 9.9 to 52.0%, and
their structures were scrutinized by analyzing the 1D and 2D Nuclear Magnetic Resonance
(NMR) spectra, mass spectroscopy, and Fourier Transform Infrared (FTIR).
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2.1. Optical Properties—Studies of Absorption and Fluorescence Spectra

Fluorescent molecules with the ability to absorb ultraviolet radiation and to emit in a
range of wavelengths greater than that absorbed, that is, in the visible region, are extremely
important to biomedical applications [21]. The characteristic time for the fluorescence pro-
cess (on the order of 10−9 s) depends on the interaction of molecules with the surrounding
environment, being attractive for the evaluation of several phenomena from the biophysical
properties of molecules [21]. Thus, the photophysical study of the naphth[1,2-d]imidazoles
IM1–IM7 synthesized was carried out to verify their potential to emission of molecules for
potential use in theranostic systems. The data for Ultraviolet–visible (UV–vis) absorption
and fluorescence spectroscopy from naphth[1,2-d]imidazoles IM1–IM7 are summarized
in Table 1.

2.1.1. Solvatochromism Study

The dispersed molecules in a specific solvent can interact with other molecules of
a fluorophore, affecting their emissive properties [22]. This phenomenon is called solva-
tochromism and depends on factors such as the polarity of the solvent, hydrogen bonding
ability, pH, and viscosity of the solvent [22,23]. Considering the application of fluorescent
probes in living cells and tissues, the solvatochromism study can evaluate the sensitivity
and selectivity of the new compounds [24].

The influence of the solvent on optical characteristics of the synthesized naphth[1,2-
d]imidazoles IM1–IM7 was evaluated from the solvatochromism study that considered four
solvents: hexane, dichloromethane (CH2Cl2), dimethyl sulfoxide (DMSO), and methanol
(CH3OH) (Table S1). From the UV–vis absorption spectra of the naphtha[1,2-d]imidazoles
(for different solvents), it was possible to determine the most suitable solvents and wave-
lengths for further photophysical studies. The criteria considered solvents for naphth[1,2-
d]imidazoles that presented positive solvatochromism, i.e., redshift with increasing polarity
of the solvent.

The absorption spectra of 2-substituted naphth[1,2-d]imidazoles (IM2–IM7) showed
two absorption bands in the ultraviolet region, corresponding to the π→π* transition of the
substituent at the carbon C2 of the naphthoimidazole ring (~314 nm) and of the imidazole
ring (~363 nm) [25–27] (Table S1).
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The naphth[1,2-d]imidazoles IM2 and IM6 showed a higher bathochromic shift for
polar solvents, a strong influence of the increasing solvent polarity on the absorption
spectrum of these derivatives. On the other hand, IM7 showed a positive bathochromic
effect in comparison to hexane, a nonpolar solvent. The other naphthoimidazoles (IM1,
IM3, IM4, and IM5) exhibited an increasing redshift in CH2Cl2 (Table S1).

2.1.2. Molar Absorption Coefficient

The molar absorption coefficient (εAbs) is also an important parameter for the devel-
opment of fluorescent probes. Samples prepared with naphth[1,2-d]imidazoles IM1–IM7
showed high εAbs on the order of 103 to 104 M−1 cm−1 (Table 1), which is consistent with the
allowed transition π→π* of π-conjugated systems [26,28–30] characteristic of the imidazole
nucleus [25,31].

Table 1. Photophysical properties of the naphth[1,2-d]imidazoles IM1–IM7.

Compound Solvent λmax
(nm)

εAbs
a

(104 M−1cm−1)
λemis

b

(nm)
∆ST

c

(nm)

IM1 CH2Cl2 316 0.61 366 50
IM2 DMSO 342 2.43 402 60
IM3 CH2Cl2 354 1.57 457 103
IM4 CH2Cl2 344 1.48 393 49
IM5 CH2Cl2 368 2.71 422 54
IM6 CH3OH 411 1.85 391 20
IM7 Hexane 337 1.35 385 48

DAPI H2O 343 d - 452 112
a: Molar absorptivity coefficient at the concentration of 20 µM. b: Emission wavelength after excitation at 345 nm.
c: Stokes shift. d: Data obtained from Farahat et al. (2017) [32].

2.1.3. Fluorescence Spectroscopy Experiments

Considering the UV–vis absorption spectra of the naphth[1,2-d]imidazoles IM1–IM7,
the excitation wavelength of 345 nm was chosen to obtain the fluorescence spectra. Analyz-
ing the fluorescence emission spectra of compounds IM1–IM7, the emission was observed
in the UV–vis region, between the λemis values of 366 and 457 nm (Figure 2). IM3 (λemis
457 nm) and IM5 (λemis 422 nm), emitted at lower energy wavelengths, shifted more to
the blue region. On the other hand, IM1, emitted at a higher energy wavelength, shifted
toward the violet region (Figure 2).
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In addition, IM2 (2.49× 106 au) and IM3 (1.41× 106 au) showed fluorescence emission
intensities that were thirty-six and twenty-three times greater, respectively, than IM1
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(6.90 × 104 au), indicating that the substitution at the carbon C2 of the naphthoimidazole
ring favored the fluorescence emission of naphth[1,2-d]imidazoles IM1–IM7 (Figure 2). The
increase in the fluorescence evaluated by the substitution of the carbon C2 position is due
to the increase in the conjugation of double bonds, providing more-effective intramolecular
displacement of electrons [25,33].

By comparison between the fluorescence of IM4, IM5, and IM6, a positive influence
on fluorescence was observed in compounds containing electron-donor substituents in the
aromatic ring located at C2 of the naphth[1,2-d]imidazoles with IM4 and IM5 substituted
with 4-hydroxyphenyl and 4-dimethylaminophenyl, respectively, showing higher fluores-
cence intensity than IM6, substituted with 4-nitrophenyl. The higher fluorescence of IM4
and IM5, if compared with other fluorophores, is attributed to a possible intramolecular
charge transfer (ICT) [34].

Considering the fluorescence intensity emitted, the IM2, followed by the IM3, IM4,
and IM5 compounds, showed the best results. All samples presented higher fluorescence
than that observed for the 4′,6-diamidino-2-phenylindole (DAPI), the fluorescent DNA
marker [35].

DAPI exhibits photophysical characteristics of absorption and emission (λabs 340 nm
and λemis 453–461 nm) similar to the synthesized naphth[1,2-d]imidazoles. By comparison
of the fluorescence emission of DAPI (1.13 × 105 au) to that of IM2 (2.49 × 106 au), IM3
(1.41 × 106 au), IM4 (1.36 × 106 au), and IM5 (7.04 × 105 au), it was observed that IM
compounds also present more intense fluorescence in the blue region than DAPI. This
may be due to the extension of the conjugated double-bond system of the synthesized
naphth[1,2-d]imidazoles enhanced by the presence of the naphthalene system associated
with the 2-substituted imidazole (Figure 3).
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Figure 3. Structural similarity of DAPI and synthesized naphth[1,2-d]imidazoles.

2.1.4. Stokes Shift

Fluorophores with large Stokes shifts (∆ST) are considered promising fluorescent
probes for application in vivo cell-imaging studies, since they could minimize the back-
ground fluorescence in live tissues [36–40]. The naphth[1,2-d]imidazoles IM1–IM7 pre-
sented ∆ST between 20 and 103 nm (Table 2). If compared with the structure and ∆ST of
naphth[1,2-d]imidazoles IM1–IM7, it was observed that the substituents at C2 affect the
ability of this compound to be a fluorophore. IM1 has no substituents on C2 and was
the one with the smallest ∆ST, as well as the lowest fluorescence emission (6.90 × 104 au).
IM3 presented the largest displacement, which is substituted at C2 with a naphthyl group.
It was also observed that the introduction of electron-withdrawing substituents, such as
nitrophenyl, produced naphthoimidazoles with narrow ∆ST, as shown for IM6 (∆ST 20 nm)
and IM7 (∆ST 48 nm).

2.2. Cytotoxicity Assay

The cytotoxic activity of the naphth[1,2-d]imidazoles IM1–IM7 was assessed through
colorimetric MTT assay [41,42]. The ability of these compounds to inhibit cell growth
against human glioblastoma (SNB-19), human colorectal carcinoma (HCT-116), and human
promyelocytic leukemia (HL-60) cell lines was evaluated. The IC50 was determined for
those compounds, returning a percentage inhibition of cell growth above 75% in at least
two tested cell lines. Thus, from all seven naphth[1,2-d]imidazoles tested (IM1–IM7),
only IM3 displayed low growth inhibition against all cell lines and did not have the IC50
calculated due to low cytotoxic activity. Doxorubicin was used as the positive control, and
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cytotoxic activities were expressed as IC50 for all the naphth[1,2-d]imidazoles in Table 2.
The substances that displayed significant results against the cancer cell lines were also
investigated against a nontumor cell line of murine fibroblast (L929) to evaluate their
selectivity index (SI) (Table 2).

Table 2. Cytotoxic activity of IM1, IM2, IM4, IM5, IM6, and IM7 after a 72 h exposure expressed by
IC50 (µM) and confidence interval.

Cell Line

Compound
L929 SNB-19 HCT-116 HL-60

IC50 (µM) a IC50 (µM) a SI b IC50 (µM) a SI b IC50 (µM) a SI b

IM1 186.17 46.44
(38.59–55.76) 4.00 62.11

(54.14–71.31) 3.00 24.23
(22.32–21.41) 7.68

IM2 104.85 26.97
(24.44–26.96) 3.89 21.69

(18.34–25.66) 4.83 29.92
(14.44–19.87) 3.50

IM4 >363.21 31.90
(28.39–35.83) >11.38 23.04

(21.56–24.67) >15.76 8.71
(7.46–10.22) >41.70

IM5 52.84 21.05
(18.20–24.39) 2.51 44.07

(37.42–51.87) 1.20 12.35
(10.22–14.55) 4.28

IM6 151.55 22.27
(20.23–24.49) 6.81 21.12

(19.56–22.78) 7.18 13.67
(14.79–18.09) 11.09

IM7 NE >67.00 NE 35.11
(28.94–42.56) NE 14.90

(10.64–14.17) NE

Doxorubicin 3.16 2.21
(1.90–2.56) 1.43 0.20

(0.15–0.26) 15.80 0.04
(0.035–0.039) 79.00

NE—not evaluated. a: IC50 is the concentration at which 50% of cells were undergoing cytotoxic cell death due to
synthesized compound treatment. b: SI (selectivity index) equals the ratio of IC50 for fibroblasts L929/IC50 for the
cancer cell lines.

As shown in Table 2, most of the naphth[1,2-d]imidazoles are characterized by a
certain degree of cytotoxicity against at least one of the malignant cell lines tested. The
IC50 data showed that IM1 was the least potent imidazole of the series, demonstrating the
importance of the substitution at the C2 carbon of the naphth[1,2-d]imidazole ring for the
cytotoxic activity against the tested cancer cell lines. If considering the comparison of the
influence of substituents at the C2 position, a significant decrease in cell growth inhibition
was observed for naphthoimidazole with a naphthyl ring at C2 (IM3), suggesting that
the phenyl substituent at the C2 position of the naphthoimidazole ring is relevant for the
evaluated activity.

Against glioblastoma cells (SNB-19), the most cytotoxic compound was IM5 (IC50
21.05 µM). As for HCT-116 cells and leukemia cells (HL-60), the most active naphth[1,2-
d]imidazoles were IM6 and IM4, with IC50 of 21.12 and 8.71 µM, respectively. Comparing
the three most cytotoxic imidazoles (IM4, IM5, and IM6) for each cancer cell line tested, it
was observed that all of them presented as a substituent at the C2 position a 4-substituted
phenyl ring with an electronegative group: -OH, -N(CH3)2, and NO2, respectively. Thus,
it is possible to suggest that the substituted phenyl group located at the C2 carbon of the
naphthoimidazole ring improves cytotoxicity activity and promotes selectivity.

In addition, for the cytotoxic activity of IM6 and IM7 (Table 2) for each cancer cell
line tested, it can be seen that the 2-nitrophenyl substituent group at the C2 carbon of the
naphthoimidazole ring makes the compound less cytotoxic to the evaluated tumor cell
lines. Comparing the cytotoxic activity against three cancer cell lines, the tested naphthoim-
idazoles showed to be more active against the leukemia cell line (HL-60), presenting IC50
between 8.71 and 29.92 µM. Among them, IM4 was the most active compound, with an
emphasis on its high selectivity for leukemic cells (SI > 41.67).
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By considering that high εAbs values combined with large ∆ST are desirable for fluorescent
probes [43] and the photophysical and cytotoxic properties of each naphth[1,2-d]imidazole,
one can infer that IM3 (fluorescence intensity 1.41 × 106 au, εAbs 1.57× 104 M−1 cm−1 and
∆ST 103 nm) fits as a good fluorescent probe; however, it showed low cytotoxicity on the
cell lines tested. One can also infer that IM2 (fluorescence intensity 2.49 × 106 au; εAbs
2.43 × 104 M−1 cm−1 and ∆ST 60 nm) has photophysical properties that qualify it as a
fluorescent probe, and it has cytotoxicity against HCT-116 (IC50 21.69 µM) and selectivity
(SI 4.83).

IM4 stands out for cytotoxicity against HL-60 (IC50 8.71 µM) and selectivity (SI > 41.70);
at the same time, it appears to have a high intensity of fluorescence (1.36 × 106 au) and
moderate εAbs (1.48 × 104 M−1 cm−1) and ∆ST 49 nm. IM5 was cytotoxic to SNB-19
(IC50 21.05 µM and SI 2.51) and showed promising photophysical properties (fluorescence
7.04 × 105 au; εAbs 2.71 × 104 M−1 cm−1 and ∆ST 54 nm).

3. Materials and Methods
3.1. Materials

All chemicals were purchased from commercial suppliers and used without further
purification. Melting points were determined through a PFM-II (Instrumentation MS
Tecnopon®) melting-point apparatus. The purity of the compounds synthesized was
determined by thin-layer chromatography (TLC) using several solvent systems of different
polarities. Purification of these compounds was done by column chromatography. Infrared
(IR) spectra were recorded on a PerkinElmer (model 10.4.00) spectrophotometer equipped
with an Attenuated Total Reflectance ATR sampling unit. NMR spectra were recorded on
a Bruker Ascend 400 spectrometer, operating at 400 MHz for 1H NMR and 100 MHz for
13C NMR. CDCl3 and DMSO-d6 were used as solvents with tetramethylsilane (TMS) as
the internal standard; chemical shifts (δ) are given in ppm and coupling constants (J) in
Hz. Mass spectra were recorded with a Bruker Daltonics (TOF-Q-II) spectrometer using
electrospray ionization. UV–vis absorption spectra were obtained using a Hach/Lange
spectrophotometer (model DR 5000). Fluorescence emission spectra were obtained using
the ISS spectrofluorometer (model PC1).

3.2. Synthesis of Naphth[1,2-d]imidazoles IM1–IM7
3.2.1. Synthesis of β-Lapachone 2

Lapachol 1 was extracted from the wood of a plant of the genus Tabebuia and used
after purification and identification, as described previously [44]. The access was regis-
tered in the National System of Genetic Heritage and Associated Traditional Knowledge
(SISGEN) under the A5FDA89. Yield: 1.5% (m/m). Yellow solid, mp: 138.3–140.3 ◦C (Lit
139.0–141.0 ◦C) [45].

In a 25 mL reaction flask, the lapachol (484 mg, 2 mmol) was weighed and incorporated
into a concentrated sulfuric acid (H2SO4) solution (5 mL). The reaction mixture was stirred
at room temperature for 1.0 h, then poured into 400 mL of ice-cold deionized water. The
solid obtained was vacuum filtered and allowed to dry at room temperature [44], which
resulted in a yield of 95%. Orange solid, mp: 155 ◦C (Lit 154–155 ◦C) [46]. 1H NMR
(400 MHz, DMSO-d6) δ [ppm]: 7.91 (d, J = 7.6 Hz, 1H), 7.77 (m, 2H), 7.61 (m, 1H), 2.40 (t,
J = 6.6 Hz, 2H), 1.82 (t, J = 6.6 Hz, 2H), 1.43 (s, 6H). 13C NMR (100 MHz DMSO-d6) δ (ppm):
179.1, 177.8, 160.6, 135.0, 132.1, 130.8, 129.9, 127.8, 123.7, 112.5, 79.0, 30.8, 26.3, 15.9.

3.2.2. General Synthesis of the Naphth[1,2-d]imidazoles

The solution of β-Lap 2 (242 mg; 1.0 mmol) was prepared in glacial acetic acid (6 mL),
and was added aldehyde adequate (2.5 mmol). The reaction mixture was placed at a
temperature of 70 ◦C and added to ammonium acetate (1.27 g; 16.5 mmol) that was di-
vided into three parts and remained at this temperature under stirring until the end of
the reaction [10]. The reactions were followed by Thin Layer Chromatography (TLC),
and the reaction times varied in the range of 30 min to 4 h. In experiments using 4-
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dimethylaminobenzaldehyde and 4-nitrobenzaldehyde, there was a precipitate forma-
tion in the reaction. However, in experiments employing formaldehyde, benzaldehyde,
1-naphthaldehyde, 4-hydroxybenzaldehyde, and 2-nitrobenzaldehyde, there was no pre-
cipitate formation in the reaction. Then, after the reaction time, the reaction mixture was
poured into a cold solution of 5.0% (m/v) of NaHSO3 for precipitate formation. The solid
was filtered and washed with a solution of 5.0% (m/v) of NaHCO3, and water was deionized
at neutral pH and dried at room temperature.

Synthesis of 4,5-dihydro-6,6-dimethyl-6H-2-pyran[b-4,3]naphth[1,2-d]imidazole (IM1)

The reaction was heated to 70 ◦C for 4.0 h. Compound IM1 was obtained as a yellow
crystalline solid (131 mg, 0.519 mmol, yield: 52.0%), mp: 255–259 ◦C. 1H NMR (400 MHz,
DMSO-d6) δ [ppm]: 8.30 (d, J = 8.0 Hz, 1H), 8.17 (s, 1H), 8.12 (d, 1H), 7.54 (t, 1H), 7.42 (t,
1H), 2.98 (t, 2H), 1.94 (t, 2H), 1.40 (s, 6H). 13C NMR (100 MHz, DMSO-d6) δ [ppm]: 143.9,
132.9, 138.4, 127.7, 125.7, 124.1, 123.3, 122.7, 122.1, 121.0, 104.4, 74.2, 31.5, 26.5, 18.5. IR (KBr)
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max/cm−1: 3432, 3067, 2972, 2852, 2928, 1600, 1520, 1256, 1157, and 1056. HRMS (ESI-TOF)
calculated for C22H20N2O [M+H]+: 329.1609. Found: 329.1646, Figure S2.

Synthesis of 4,5-dihydro-6,6-dimethyl-6H-2-(naphthalenyl)-pyran[b-4,3]naphth[1,2-d]
imidazole (IM3)

The reaction was heated to 70 ◦C for 2.0 h. Compound IM3 was obtained as a pale-
yellow solid (83 mg, 0.22 mmol, yield: 25.4%). 1H NMR (400 MHz, DMSO-d6) δ [ppm]:
13.39 (s, 0.4H); 12,92 (s, 0.6H); 9.15 (dd, 1H); 8.45 (dd, 1H); 8.19 (d, J = 7.9 Hz, 1H); 8.02–8.12
(m, 3H); 7.55–7.74 (m, 4H); 7.41–7.49 (m, 1H); 3.06 (m, 1.2H); 3.18 (m, 0.8H); 2.00 (m, 2H);
1.45 (s, 6H). 13C NMR (100 MHz, DMSO-d6) δ [ppm]: 147.7, 144,5, 133.6, 132.2, 130.6, 130.5,
129.4, 129.2, 128.0, 128.2, 127.5, 126.5, 126.1, 125.8, 125.7, 125.2, 123.3, 122.8, 122.1, 121.1,
102.3, 74.3, 31.4, 26.4, 18.7. IR (KBr)
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Synthesis of 4,5-dihydro-6,6-dimethyl-6H-2-(4-dimethylaminophenyl)-pyran[b-4,3]
naphth[1,2-d]imidazole (IM5)

The reaction was heated to 70 ◦C for 3.0 h. Compound IM5 was obtained as a light-
yellow solid (121 mg, 0.326 mmol, yield: 32.6%), mp: 182-184 ◦C. 1H NMR (400 MHz,
DMSO-d6) δ [ppm]: 12.87 (s, 0.4H), 12.42 (s, 0.5H), 8.30–8.42 (m, 1H), 8.03–8.17 (m, 3H),
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7.53 (t, J = 7.3 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 2.95–3.14 (m, 8H),
1.93–2,01 (m, 2H), 1.41 (s, 6H). 13C NMR (100 MHz, DMSO-d6) δ [ppm]: 150.7, 150.6, 143.8,
130.8, 127.1, 125.5, 123.0, 122.4, 122.1, 121.2, 120.3, 112.0, 102.5, 74.1, 40.0, 31.5, 26.5, 18.9. IR
(KBr) vmax/cm−1: 3432, 3067, 2979, 2841, 2930, 1610, 1518, 1256, 1159, and 1055. HRMS
(ESI-TOF) calculated for C24H25N3O [M+H]+: 372.2031. Found: 372.2073, Figure S5.

Synthesis of 4,5-dihydro-6,6-dimethyl-6H-2-(4-nitrophenyl)-pyran[b-4,3]naphth[1,2-d]
imidazole (IM6)

The reaction was heated to 70 ◦C for 30 min. Compound IM6 was obtained as a red
crystalline solid (183 mg, 0.490 mmol, yield: 49.1%), mp: 259–260 ◦C. 1H NMR (400 MHz,
DMSO-d6) δ [ppm]: 13.61 (s, 0.3H), 13.10 (s, 0.6H), 8.36–8.52 (m, 5H), 8.13–8.22 (m, 1H),
7.56–7.67 (m, 1H), 2.96–3.16 (m, 2H), 1.90–2.09 (m, 2H), 1.42, 144 (s, 6H). 13C NMR (100 MHz,
DMSO-d6) δ [ppm]: 146.8, 146.6, 144.2, 136.6, 133.0, 132.1, 126.6, 126.3, 125.7, 124.3, 124.0,
123.2, 122.3, 121.2, 102.2, 74.7, 31.3, 26.5, 18.7. IR (KBr)
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The reaction was heated to 70 °C for 3.0 h. Compound IM5 was obtained as a light-

yellow solid (121 mg, 0.326 mmol, yield: 32.6%), mp: 182-184 °C. 1H NMR (400 MHz, 

DMSO-d6) δ [ppm]: 12.87 (s, 0.4H), 12.42 (s, 0.5H), 8.30–8.42 (m, 1H), 8.03–8.17 (m, 3H), 

7.53 (t, J = 7.3 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 2.95–3.14 (m, 8H), 

1.93–2,01 (m, 2H), 1.41 (s, 6H). 13C NMR (100 MHz, DMSO-d6) δ [ppm]: 150.7, 150.6, 143.8, 

130.8, 127.1, 125.5, 123.0, 122.4, 122.1, 121.2, 120.3, 112.0, 102.5, 74.1, 40.0, 31.5, 26.5, 18.9. 

max/cm−1: 3348, 2975, 2845, 2929,
1604, 1511, 1258, 1155, and 1057. HRMS (ESI-TOF) calculated for C22H19N3O3 [M+H]+:
374.1460. Found: 374.1511, Figure S6.

Synthesis of 4,5-dihydro-6,6-dimethyl-6H-2-(2-nitrophenyl)-pyran[b-4,3]naphth[1,2-d]
imidazole (IM7)

The reaction was heated to 70 ◦C for 2.5 h. Compound IM7 was obtained as a red
solid (194 mg, 0.520 mmol, yield: 52.0%), mp: 139-141 ◦C. 1H NMR (400 MHz, DMSO-d6) δ
[ppm]: 13.52 (s, 0.3H), 13.08 (s, 0.7H), 8.27 (d, 1H), 8.20–8.11 (m, 1H), 8.03 (t, J = 8.7 Hz, 2H),
7.83–7.92 (m, 1H), 7.68–7.77 (m, 1H), 7.53–7.63 (m, 1H), 7.41–7.50 (m, 1H), 2.99 (t, J = 6.5 Hz,
2H), 1.99 (t, J = 6.6 Hz, 2H), 1.43, 1.41 (s, 6H). 13C NMR (100 MHz, DMSO-d6) δ [ppm]:
148.8, 144.7, 143.8, 132.4, 132.6, 131.2, 130.9, 130.3, 126.1, 125.6, 124.6, 124.4, 123.7, 123.2,
122.2, 121.1, 102.2, 74.6, 31.4, 26.5, 18.7. IR (KBr)
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solution of 5.0% (m/v) of NaHSO3 for precipitate formation. The solid was filtered and 

washed with a solution of 5.0% (m/v) of NaHCO3, and water was deionized at neutral pH 

and dried at room temperature. 

Synthesis of 4,5-dihydro-6,6-dimethyl-6H-2-pyran[b-4,3]naphth[1,2-d]imidazole (IM1) 

The reaction was heated to 70 °C for 4.0 h. Compound IM1 was obtained as a yellow 

crystalline solid (131 mg, 0.519 mmol, yield: 52.0%), mp: 255–259 °C. 1H NMR (400 MHz, 

DMSO-d6) δ [ppm]: 8.30 (d, J = 8.0 Hz, 1H), 8.17 (s, 1H), 8.12 (d, 1H), 7.54 (t, 1H), 7.42 (t, 

1H), 2.98 (t, 2H), 1.94 (t, 2H), 1.40 (s, 6H). 13C NMR (100 MHz, DMSO-d6) δ [ppm]: 143.9, 

132.9, 138.4, 127.7, 125.7, 124.1, 123.3, 122.7, 122.1, 121.0, 104.4, 74.2, 31.5, 26.5, 18.5. IR (KBr) 

ʋmax/cm−1: 3435, 3088, 2971, 2925, 2841, 1608, 1538, 1484, 1453, 1362, 1252, 1164, 1122, 1054, 

947, and 770, Figure S1. 

Synthesis of 4,5-dihydro-6,6-dimethyl-6H-2-(phenyl)-pyran[b-4,3]naphth[1,2-d]imidazole 

(IM2) 

The reaction was heated to 70 °C for 1.0 h. Compound IM2 was obtained as a light-

yellow solid (60 mg, 0.183 mmol, yield: 18.3%), mp: 278–279 °C. 1H NMR (400 MHz, 

DMSO-d6) δ [ppm]: 13.24 (s, 0.3H), 12.76 (s, 0.5H), 8.37–8.46 (m, 1H), 8.20–8.29 (m, 2H), 

8.10–8.20 (m, 1H), 7.51–7.63 (m, 3H), 7.39-7.51 (m, 2H), 3.00–3.17(m, 2H), 1.87–2.06 (m, 2H), 

1.43 (s, 6H). 13C NMR (100 MHz, DMSO-d6) δ [ppm]: 147.9, 144.5, 132.2, 131.2, 130.6, 129.1, 

128.8, 126.0, 125.9, 125.7, 123.4, 122.8, 122.1, 121.2, 102.4, 74.4, 31.4, 26.5, 18.8. IR (KBr) 

ʋmax/cm−1: 3432, 3067, 2972, 2852, 2928, 1600, 1520, 1256, 1157, and 1056. HRMS (ESI-TOF) 

calculated for C22H20N2O [M+H]+: 329.1609. Found: 329.1646, Figure S2. 

Synthesis of 4,5-dihydro-6,6-dimethyl-6H-2-(naphthalenyl)-pyran[b-4,3]naphth[1,2-

d]imidazole (IM3) 

The reaction was heated to 70 °C for 2.0 h. Compound IM3 was obtained as a pale-

yellow solid (83 mg, 0.22 mmol, yield: 25.4%). 1H NMR (400 MHz, DMSO-d6) δ [ppm]: 

13.39 (s, 0.4H); 12,92 (s, 0.6H); 9.15 (dd, 1H); 8.45 (dd, 1H); 8.19 (d, J = 7.9 Hz, 1H); 8.02–

8.12 (m, 3H); 7.55–7.74 (m, 4H); 7.41–7.49 (m, 1H); 3.06 (m, 1.2H); 3.18 (m, 0.8H); 2.00 (m, 

2H); 1.45 (s, 6H). 13C NMR (100 MHz, DMSO-d6) δ [ppm]: 147.7, 144,5, 133.6, 132.2, 130.6, 

130.5, 129.4, 129.2, 128.0, 128.2, 127.5, 126.5, 126.1, 125.8, 125.7, 125.2, 123.3, 122.8, 122.1, 

121.1, 102.3, 74.3, 31.4, 26.4, 18.7. IR (KBr) ʋmax/cm−1: 3405, 3061, 2977, 2929, 1588, 1518, 1257, 

1121, and 1054. HRMS (ESI-TOF) calculated for C26H22N2O2 [M+H]+: 378.1732. Found: 

379.1802, Figure S3. 

Synthesis of 4,5-dihydro-6,6-dimethyl-6H-2-(4-hidroxyphenyl)-pyran[b-4,3]naphth[1,2-

d]imidazole (IM4) 

The reaction was heated to 70 °C for 1.0 h. Compound IM4 was obtained as a gray 

amorphous solid (34 mg, 0.099 mmol, yield: 9.9%). 1H NMR (400 MHz, DMSO-d6) δ [ppm]: 

12.97 (s, 0.3H), 12.49 (s, 0.5H), 9.85 (s, 1H), 8.32-8.41 (m, 1H), 8.13 (d, 1H), 8.08 (d, 2H), 

7.49–7.59 (m, 1H), 7.33–7.44 (m, 1H), 6.92 (d, J = 8.2 Hz, 2H), 2.96–3.14 (m, 2H), 1.89–1.98 

(m, 2H), 1.42 (s, 6H). 13C NMR (100 MHz, DMSO-d6) δ [ppm]: 158.3, 148.4, 143.9, 131.9, 

130.7, 127.5, 125.5, 125.4, 123.0, 121.9, 121.9, 121.7, 121.0, 115.4, 102.3, 74.1, 31.3, 26.4, 18.7. 

IR (KBr) ʋmax/cm−1: 3422, 3071, 2974, 2849, 2929,1613, 1533, 1265, 1160, and 1055. HRMS 

(ESI-TOF) calculated for C22H20N2O2 [M+H]+: 345.1558. Found: 345.1590, Figure S4. 

Synthesis of 4,5-dihydro-6,6-dimethyl-6H-2-(4-dimethylaminophenyl)-pyran[b-

4,3]naphth[1,2-d]imidazole (IM5) 

The reaction was heated to 70 °C for 3.0 h. Compound IM5 was obtained as a light-

yellow solid (121 mg, 0.326 mmol, yield: 32.6%), mp: 182-184 °C. 1H NMR (400 MHz, 

DMSO-d6) δ [ppm]: 12.87 (s, 0.4H), 12.42 (s, 0.5H), 8.30–8.42 (m, 1H), 8.03–8.17 (m, 3H), 

7.53 (t, J = 7.3 Hz, 1H), 7.38 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 8.7 Hz, 2H), 2.95–3.14 (m, 8H), 

1.93–2,01 (m, 2H), 1.41 (s, 6H). 13C NMR (100 MHz, DMSO-d6) δ [ppm]: 150.7, 150.6, 143.8, 

130.8, 127.1, 125.5, 123.0, 122.4, 122.1, 121.2, 120.3, 112.0, 102.5, 74.1, 40.0, 31.5, 26.5, 18.9. 

max/cm−1: 3415, 3116, 2973, 2850, 2923,
1602, 1521, 1260, 1162, and 1057. HRMS (ESI-TOF) calculated for C22H19N3O3 [M+H]+:
374.1460. Found: 374.1495, Figure S7.

3.3. Evaluation of Photophysical Properties
3.3.1. Obtaining Visible Ultraviolet Absorption Spectra

A stock solution in dichloromethane (CH2Cl2) of each compound was prepared at a
concentration of 4000 µM. From the stock solution, solutions were prepared at a concen-
tration of 20 µM of each compound in four different solvents: hexane, CH2Cl2, dimethyl
sulfoxide (DMSO), and methanol (CH3OH). Then, measurement in the range of 190 to
800 nm was performed, with the wavelengths of maximum absorption (λmax) of the com-
pounds in the different solvents shown in Table S1 and Figure S8.

3.3.2. Molar Absorptivity Coefficient

The molar absorptivity coefficient (εAbs) was determined using an equation applied
by Lambert–Beer (εAbs = A/LxC, where A—maximum absorbance; L—the optical path of
the cuvette used (1 cm); and C—concentration of the analyzed sample in M).

3.3.3. Fluorescence Emission Spectrum and Stokes Shift

Stock solutions used for each compound, at a concentration of 4000 µM, in the solvents
in which the sample showed better resolution of the maximum absorption band, were
DMSO for IM2, CH3OH for IM6, hexane for IM7, and CH2Cl2 for the others. The stock
solutions were diluted to a concentration of 20 µM, and readings used the excitation
wavelength of 345 nm for all compounds. The Stokes shift (∆ST) was calculated from the
difference between the absorbance and excitation wavelengths (λAbs–λEmis), Figure S8.
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3.4. Evaluation of the Cytotoxic Activity
3.4.1. Cell Lines

Brain tumor (SNB-19), human colorectal carcinoma (HCT-116), and human promye-
locytic leukemia (HL-60) cells were obtained from the National Cancer Institute (NCI)
(Bethesda, MD, USA). The L929 cells (mouse fibroblast L cells NCTC clone 929) were
purchased from the American Type Culture Collection (Manassas, VA, USA). The cells
were grown on RPMI 1640 medium supplemented with 10% fetal bovine serum and 1%
antibiotics (penicillin/streptomycin) at 37 ◦C with 5% CO2.

3.4.2. Assessment of In Vitro Anticancer Activity

Cytotoxic potential of the naphth[1,2-d]imidazoles IM1–IM7 was assessed after 72 h
of exposure to the tumor cell lines of human SNB-19, HCT-116, HL-60, and normal
cell line L929. Cells were plated in 96-well plates (0.7 × 105 cells/well for SNB-19,
0.3 × 106 cells/well for HCT-116, and 0.3 × 106 cells/well for HL-60). Compounds were
dissolved with DMSO at concentrations in the 0.078–10 µg.mL−1 range. Doxorubicin
(0.001–1.10 µM) was used as the positive control, and negative control groups received the
same amount of vehicle (DMSO). The cell viability was determined by the reduction of
the yellow dye 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT) to a
blue formazan product [35]. At the end of the incubation time (69 h), the plates were cen-
trifuged, and the medium was replaced with fresh medium (200 µL) containing 0.5 mg/mL
of MTT. Three hours later, the MTT formazan product was dissolved in DMSO (150 µL),
and the absorbance was measured using a multi-plate reader (Spectra Count, Packard, ON,
Canada). The drug effect was quantified as the percentage of control absorbance of the
reduced dye at 550 nm. All experiments were performed in three independent assays, and
the half maximal inhibitory concentration (IC50) and their 95% confidence intervals were
achieved by nonlinear regression.

4. Conclusions

Naphth[1,2-d]imidazoles IM1–IM7 showed high levels of cytotoxic activity and se-
lectivity against the tested cancer cells and promising optical properties. The cytotoxicity
results and photophysical properties presented by naphth[1,2-d]imidazoles IM2, IM3, IM4,
and IM5 qualify them for further studies in the development of fluorescent anticancer
probes using this scaffold, making possible the use of naphth[1,2-d]imidazoles as fluorescent
probes/therapeutic molecules in theranostic systems for cancer treatment/diagnosis.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28073008/s1. Figure S1: NMR spectra of 4,5-dihydro-
6,6-dimethyl-6H-2-pyran[b-4,3]naphth[1,2-d]imidazole (IM1) in DMSO-d6; Figure S2: NMR spectra
of 4,5-dihydro-6,6-dimethyl-6H-2-(phenyl)-pyran[b-4,3]naphth[1,2-d]imidazole (IM2) in DMSO-d6
and ESI-MS; Figure S3: NMR spectra of 4,5-dihydro-6,6-dimethyl-6H-2-(naphthalenyl)-pyran[b-
4,3]naphth[1,2-d]imidazole (IM3) in DMSO-d6and ESI-MS; Figure S4: NMR spectra of 4,5-dihydro-
6,6-dimethyl-6H-2-(4-hidroxyphenyl)-pyran[b-4,3]naphth[1,2-d]imidazole (IM4) in DMSO-d6 and
ESI-MS; Figure S5: NMR spectra of 4,5-dihydro-6,6-dimethyl-6H-2-(4-dimethylaminophenyl)-pyran[b-
4,3]naphth[1,2-d]imidazole (IM5) in DMSO-d6 and ESI-MS; Figure S6: NMR spectra of 4,5-dihydro-
6,6-dimethyl-6H-2-(4-nitrophenyl)-pyran[b-4,3]naphth[1,2-d]imidazole (IM6) in DMSO-d6 and ESI-
MS; Figure S7: NMR spectra of 4,5-dihydro-6,6-dimethyl-6H-2-(2-nitrophenyl)-pyran[b-4,3]naphth[1,2-
d]imidazole (IM7) in DMSO-d6and ESI-MS; Figure S8: Absorbance and emission spectra of naph-
thoimidazoles IM1–IM7; Table S1: Wavelength (nm) and absorbance of the scanning spectra of the
naphth[1,2-d]imidazoles obtained in the solvatochromism study.
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