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Abstract: Glycogen phosphorylase (GP) is a key regulator of glucose levels and, with that, an im-
portant target for the discovery of novel treatments against type 2 diabetes. β-D-Glucopyranosyl
derivatives have provided some of the most potent GP inhibitors discovered to date. In this re-
gard, C-β-D-glucopyranosyl azole type inhibitors proved to be particularly effective, with 2- and
4-β-D-glucopyranosyl imidazoles among the most potent designed to date. His377 backbone C=O
hydrogen bonding and ion–ion interactions of the protonated imidazole with Asp283 from the 280s
loop, stabilizing the inactive state, were proposed as crucial to the observed potencies. Towards
further exploring these features, 4-amino-3-(β-D-glucopyranosyl)-5-phenyl-1H-pyrazole (3) and
3-(β-D-glucopyranosyl)-4-guanidino-5-phenyl-1H-pyrazole (4) were designed and synthesized with
the potential to exploit similar interactions. Binding assay experiments against rabbit muscle GPb
revealed 3 as a moderate inhibitor (IC50 = 565 µM), but 4 displayed no inhibition at 625 µM con-
centration. Towards understanding the observed inhibitions, docking and post-docking molecular
mechanics—generalized Born surface area (MM-GBSA) binding free energy calculations were per-
formed, together with Monte Carlo and density functional theory (DFT) calculations on the free
unbound ligands. The computations revealed that while 3 was predicted to hydrogen bond with
His377 C=O in its favoured tautomeric state, the interactions with Asp283 were not direct and there
were no ion–ion interactions; for 4, the most stable tautomer did not have the His377 backbone
C=O interaction and while ion–ion interactions and direct hydrogen bonding with Asp283 were
predicted, the conformational strain and entropy loss of the ligand in the bound state was significant.
The importance of consideration of tautomeric states and ligand strain for glucose analogues in the
confined space of the catalytic site with the 280s loop in the closed position was highlighted.

Keywords: glycogen phosphorylase inhibitor; C-glycosyl pyrazole; glucose analogues; ligand strain;
MM-GBSA; tautomers; type 2 diabetes

1. Introduction

Glycogen phosphorylase (GP; EC 2.4.1.1) is the rate-determining enzyme in the glycogenol-
ysis pathway and a validated target for the development of new anti-hyperglycemic agents [1].
Diabetes is a major socio-economic burden with over 0.5 billion people living with diabetes
worldwide, and with this predicted to increase by 643 million by 2030 and 783 million in 2045,
the problem urgently requires more effective interventions that those currently available [2].
GP is a validated target for type 2 diabetes (T2D) and has considerable potential in this regard.
A number of studies demonstrated the anti-diabetic potential of GP inhibitors in vivo [3,4].
Additionally, GP modulators have potential for treatment of other serious conditions such
as myocardial and cerebral ischemias [5–7], and cancer [5,8]. Indeed, there was much recent
interest with respect to control of glycogenolysis through GP inhibition for different cancers, that
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includes glioblastoma (GBM) [9,10]. GBM is the most common type of malignant brain tumour
in adults and with a median survival rate measured in months (15 months) and 5-year survival
of ~5% after initial diagnosis [11], novel strategies are crucial in the drug discovery pipeline.

GP has three isoforms: liver, muscle and brain with 842–847 residues. It exists as
a dimer and is an allosteric enzyme with a number of different binding sites, offering
multiple opportunities for design of diverse chemotypes as GP inhibitors [12]. Studies on
the catalytic, inhibitor, allosteric, new allosteric, quercetin binding [13], benzimidazole [14]
and the glycogen storage sites were all reported. The GP enzyme exists in two states, the
phosphorylated GPa form which is predominantly active (R state) and the unphosphory-
lated GPb form, which is predominantly inactive (T state) [1]. The inactive state is stabilized
by the closed position of the 280s loop in the catalytic site.

By far, the most explored binding site for GP inhibitor design is the catalytic site, where
glucose analogues proved to be particularly effective [15,16]. The physiological inhibitor
of GP is α-D-glucose with a Ki of 1.7 mM; its anomer β-D-glucose has a Ki of 7.4 mM [17].
Design of glucose analogues with carefully chosen β-substituents at the anomeric carbon
were proven to be particularly effective, with the most successful inhibitor designs having
a carefully chosen linker group between the glucose moiety and an aromatic group, the
latter extending into the so-called β-cavity [15,18]. The chemotype of the linker is crucial
to the inhibitory potential, where azole type heterocycles were proven to be particularly
effective in recent work for inhibition of the isolated purified enzyme [19,20] and also
in cellular experiments for reduction in glycogenolysis [19]. The most effective azole-
linked inhibitors are those that can form a hydrogen bond with the His377 backbone C=O,
whose presence is generally crucial to good activity. The imidazole linker revealed potent
nanomolar inhibitors (e.g., 1 in Scheme 1 with a Ki of 0.28 µM [21]) which, in addition, also
proved to result in the first reported dual GP-SGLT inhibitors [22]. With the pKa for the
protonated imidazole calculated as ~ 5.5–6.2, it was proposed that while the predominantly
unprotonated neutral state favours cell permeation, on binding to GP, there is a shift in the
equilibrium with the protonated state favoured [19]. The predicted binding of the phenyl
analogue (1) demonstrated that the protonated heterocycle state forms the aforementioned
important hydrogen bond with His377 C=O, but is also able to exploit favourable ion–ion
interactions with the Asp283 from the 280s loop (Scheme 1), stabilizing the inactive state
(closed position of the loop) [19].

Considering the binding features of 1, it was speculated whether modifications of
hydrogen bonding potential of an azole substituent with the Asp283 sidechain and/or
its 3D arrangement in forming ion–ion interactions with the carboxylate sidechain group
might be favourable, while maintaining the critical hydrogen bond interaction with His377
backbone C=O. In that regard, 3 and 4—the C-4 substituted derivatives of pyrazole 2
(Scheme 1)—were considered for synthesis in this study. The pyrazole linker of 3 has a
potential for both His377 C=O (as shown earlier [21]) and Asp283 side-chain hydrogen
bonding, while 4 has the same hydrogen bonding potential but an additional possibility for
ion–ion interactions with the Asp283 side-chain. In theory, the T state conformation of the
enzyme would be favoured by stabilisation of the closed conformation of the 280s loop,
blocking access of the substrate to the catalytic site. In this paper, we describe syntheses
of compounds 3 and 4, as well as their inhibitory potencies against rabbit muscle GPb
(rmGPb). Additionally, extensive computations on the bound and unbound states of the
ligands (Monte Carlo conformational searches, DFT, docking and post-docking molecular
mechanics—generalized Born surface area (MM-GBSA)) are presented, to rationalize the
observed binding assay results.
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Scheme 1. C-Glucopyranosyl imidazole 1, with the important interactions in the catalytic site
highlighted and pyrazole 2 type GP inhibitors, together with their efficacy against rabbit muscle GPb
(rmGPb). The target compounds in this work are shown as 3 and 4.

2. Results and Discussion
2.1. Synthesis

For the preparation of the target compounds, we chose a straightforward method
based on the reaction of a sugar derived 1,3-dielectrophile and hydrazine. The C-N bond of
the amino substituent of the heterocycle was formed at the level of dielectrophile, since we
failed to produce the necessary intermediate from the known O-perbenzoylated 3-(β-D-
glucopyranosyl)-5-phenyl-1H-pyrazole [21] by C-4 nitration/nitrosation of the pyrazole.

The dielectrophilic precursor was prepared from glucosyl cyanide 5 [23] with phenacyl
bromide under Blaise conditions [24] (Scheme 2). Acidic workup at low temperature gave
enaminone 6, while hydrolysis of the Blaise reaction mixture at 85 ◦C gave enol 7, which,
upon treatment with NaNO2 under acidic conditions [25], furnished oxyme 10. Ring clo-
sure of 10 with an excess of hydrazine monohydrate resulted in 4-aminopyrazole 8 as the
main product together with the non-reduced 4-nitrosopyrazole 9. The latter compound was
identified based on its green colour; furthermore, the C-4 chemical shift difference of the ni-
trosated pyrazole 9 (157.1 ppm) compared to its non-nitrosated counterpart (101.4 ppm) [21]
was 55.7 ppm, which is in good agreement with literature data [26]. Catalytic hydrogena-
tion of the nitroso compound 9 led to the amino derivative 8, from which we obtained
one of the target compounds (3) via O-deprotection under Zemplén conditions. Treatment
of 8 with N,N′-di-Boc-1H-pyrazole-1-carboxamidine [27] resulted in the protected guani-
dine derivative 11, from which the other target molecule 4 was obtained after N-Boc and
O-benzoyl cleavage.
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Scheme 2. Synthesis of the target C-glucopyranosyl pyrazoles. Reagents and conditions: (a) Zn
powder, Me3SiCl, phenacyl bromide, anh. THF, Ar, reflux, 2. 10% w/w aqueous HCl, 85 ◦C, 33%;
(b) 1. Zn powder, Me3SiCl, phenacyl bromide, anh. THF, Ar, reflux, 2. 10% w/w aqueous HCl, 0 ◦C,
37%; (c) 10% w/w aqueous HCl, 85 ◦C, 27%; (d) H2, Pd(C), EtOAc, r.t., 74%; (e) N2H4·H2O, EtOH, 0
◦C—r.t. 8: 47%, 9: 18%; (f) NaNO2, AcOH, H2O, 10 ◦C—r.t., 82%; (g) NaOMe, anh. MeOH, CHCl3,
r.t., 58%; (h) N,N′-di-Boc-1H-pyrazole-1-carboxamidine, pyridine, r.t., 39%; (i) 1. CF3COOH, anisole,
anh. DCM, r.t., 2. NaOMe, MeOH, r.t., 83%.

2.2. Glycogen Phosphorylase Binding Assays

The inhibitory potency of 3 and 4 was assessed using binding assay experiments
against rmGPb. The determined IC50 values are shown in Table 1, together with the
previously determined Ki value for benchmark compound 1. Compound 3 (IC50 = 565 µM)
was a moderate inhibitor of rmGPb and, while better than compound 2 (IC50 = 850 µM),
it was much less potent than compound 1 (Ki = 0.28 µM); compound 4 was revealed as a
poor inhibitor (no inhibition at 625 µM). Towards understanding the observed potencies,
extensive computations on the bound and unbound states of the ligands were performed.
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Table 1. Results from the binding assay experiments for the target compounds 3 and 4 against rabbit
muscle glycogen phosphorylase b (rmGPb). Reference compounds 1 and 2 are shown for comparison.

Compound IC50 [µM]

1 a
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2.3. In-Silico Studies

The binding assay results necessitated structural studies to elucidate the nature of
protein–ligand interactions leading to the observed low potencies. Computational studies
have proven to be a useful tool to rationalize GP inhibitor efficiency [28,29], including pre-
viously reported glucose analogues containing heterocyclic linkers [19,30,31]. As the initial
design hoped to exploit interactions with the His377 backbone C=O and strong interactions
with the Asp283 sidechain carboxylate stabilizing the closed position of the 280s loop, it
was important to first establish the most stable states of the free unbound ligands, prior to
the protein–ligand binding calculations. For this purpose, ionization and tautomeric state
stabilities of the ligands [32] were explored using Monte Carlo conformational searches
supplemented by DFT post-processing minimizations (M06-2X/6-31+G*) to determine the
stable unbound conformations. In a very recent benchmarking study of drug-like scaffolds,
the M06-2X method outperformed a range of semi-empirical and quantum mechanical
methods in terms of accurate calculation of relative tautomeric energies [33]. Furthermore,
the M06-2X/6-31+G* level of theory was previously successfully applied to study tau-
tomeric states of glucose-azole type inhibitors [19]. The chemical structures of the relevant
unbound states (ionization/tautomeric) of the ligands 3 and 4 are shown in Figure 1. In a
study of tautomer preferences in PDB complexes, the most stable water state tautomer is
predominantly the most favoured binding state tautomer, depending on the ∆G between
the two tautomers [34]. Solution phase energies were calculated for the optimized DFT
conformations using M06-2X/6-31+G* with solvation effects included with the SM8 water
solvation model.
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Figure 1. The predicted relevant ionization/tautomeric states of the unbound ligands based on
LigPrep, Jaguar pKa and DFT calculations. Rotation around key dihedral angleω (C1H-C1-C2-N3)
for the different conformations is highlighted. Atoms are numbered for discussion in the text.

With respect to the protein–ligand bound states, the end point method MM-GBSA
is recognised as an effective post-docking strategy for the calculation of relative binding
free energies (∆Gbind) [35]. Glide-SP docking poses of 3 and 4 were post-processed using
MM-GBSA using two equations.

∆G′bind(NS) = ∆EMM + ∆Gsolv (1)

In Equation (1), EMM represents the total molecular mechanics energy (internal, elec-
trostatic and van der Waals); Gsolv, the solvation free energy calculated using the variable-
dielectric generalized Born solvation model. As MM-GBSA is an endpoint method, it
considers the differences ∆ between the bound and unbound states of the complex, calcu-
lated with the OPLS3e forcefield, yielding a ∆G′bind(NS) in which strain/reorganisation
effects on binding are neglected (NS = no strain). To further include both the ligand strain
energy (protein was treated as rigid throughout), as well as an estimate for the loss of ligand
vibrational, rotational and translational (VRT) entropy on binding, a corrected ∆Gbind was
calculated by Equation (2) as follows:

∆Gbind = ∆G′bind(NS) + Strain Energyligand − T∆SMM (2)

Benchmark ligand 1 was also recalculated [19] and included for comparative purposes.
Analysis of 3. Results of the DFT calculations for predicted conformations of com-

pound 3 are shown in Table 2. The unbound state calculations for 3 revealed, as expected,
that the -NH2 azole ring substituent would not be protonated using Jaguar pKa (predicted
pKa for the protonated -NH3+ state was 4.69), as was also predicted by LigPrep [36]. There
are two neutral tautomeric states t1 and t2 for compound 3 (Figure 1) and the calculated
key dihedral angle ω (C1H-C1-C2-N3) for the lowest energy solution phase unbound
conformation of each was ω = 72.3◦ and −107.2◦ (Table 2), respectively, from the DFT
calculations. The same conformations were also the most stable in the gas phase. The most
stable solution phase tautomer was predicted as t1 (ω = 72.3◦), but just by 0.1 kcal/mol.
These most stable solution phase tautomeric conformations are shown in Figure 2A, where
we can also see that intra-molecular hydrogen bonds stabilize the conformations and also,
that the geometry around the -N(7)H2 substituent is not co-planar with its heterocycle. In
line with expectations, the t1 tautomer is the preferred binding tautomer from MM-GBSA
calculations (Table 3), with a ∆Gbind value of −40.9 kcal/mol (compared to −23.4 kcal/mol
for t2). The ∆Gbind value is, therefore, significantly less favourable than that of benchmark
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ligand 1 (−53.1 kcal/mol), which binds in the protonated state [19]. The predicted bind-
ing modes of both compounds 1 and 3 are shown in Figure 3, (A) and (B), respectively.
Compound 1 (ω = −163.7◦) exploits favourable hydrogen-bonding with His377 backbone
C=O and ion–ion interactions with the Asp283 sidechain carboxylate; the bound state is
consistent with its solved crystallographic complex (PDB code: 5JTT),with a ligand RMSD
for heavy atoms of 0.152 Å. Compound 3 also adopts a conformation (ω = −173.0◦) to have
an N(3)H to His377 backbone C=O hydrogen bond. However, for 3, there are no ion–ion
interactions with Asp283 and the -N(7)H2 substituent cannot form direct hydrogen bonds
with the carboxylate side-chain, although water-bridging interactions may be possible.
Analysing the breakdown of contributions to ∆Gbind (Table 3), it is these less favourable
contacts as well as potential contributions from competing tautomeric states (the unbound
state tautomeric energy differences are predicted as low, as mentioned just above) that is
the likely source of the much lower potency of 3 compared to 1; the ∆G′bind(NS) value is
less favourable by 14.3 kcal/mol, while the strain energy and entropy contributions are
more similar.

Table 2. Relative energies (kcal/mol) of the predicted conformations of compound 3 tautomers t1
and t2 calculated using DFT at the M06-2X/6-31+G* level of theory (gas phase), with water solvation
effects additionally accounted for with the SM8 model (solution phase). The most stable calculated
state/conformation of the compound is highlighted in bold for each phase.
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Molecules 2023, 28, x FOR PEER REVIEW 8 of 19 
 

 

Table 2. Relative energies (kcal/mol) of the predicted conformations of compound 3 tautomers t1 
and t2 calculated using DFT at the M06-2X/6-31+G* level of theory (gas phase), with water solvation 
effects additionally accounted for with the SM8 model (solution phase). The most stable calculated 
state/conformation of the compound is highlighted in bold for each phase. 

Conformation a  
3 tautomer 1 (t1) 

 
3 tautomer 2 (t2) 

Dihedral Angle, ω 
(Degrees)b 

Relative Energies 
(kcal/mol) Dihedral Angle, ω 

(Degrees)b  

Relative Energies 
(kcal/mol) 

Gas Phase Solution 
Phase c 

Gas Phase Solution 
Phase c 

1 66.6 1.9 1.7 −104.8 0.3 0.7 
2 65.8 1.1 0.6 −114.9 0.8 1.1 
3 147.6 4.6 4.3 −89.9 1.5 1.2 
4 118.0 2.0 2.5 −102.0 0.9 0.4 
5 100.8 1.9 1.4 −100.7 0.7 0.6 
6 82.7 2.2 1.4 −107.2 0.0 0.1 
7 95.4 0.7 0.7 −88.7 2.0 1.8 
8 72.3 0.5 0.0 −100.1 0.8 0.8 
9 141.3 7.3 5.6 −135.9 8.4 5.1 
10 84.3 2.2 1.5 −164.5 8.9 4.8 

a Conformations were predicted using Monte Carlo prior to optimizations using DFT, as described 
in the computational details. b Dihedral C1H-C1-C2-N3. c Single point energy calculations at the M06-
2X/6-31+G* optimized geometries. 

Table 3. Results of MM-GBSA post-docking calculations with the predicted binding tautomer/state 
highlighted in bold italics. 

Ligand  
and State 

Dihedral Angle, ω  
C1H-C1-C2-N3 (Degrees)a 

Post-Docking MM-GBSA (kcal/mol) b ∆𝑮 𝒃𝒊𝒏𝒅(𝑵𝑺) 𝑺𝒕𝒓𝒂𝒊𝒏 𝑬𝒏𝒆𝒓𝒈𝒚𝒍𝒊𝒈𝒂𝒏𝒅 −𝑻∆𝑺𝑴𝑴 ∆𝑮𝒃𝒊𝒏𝒅 
1 c      
t1 −167.5 −64.8 10.1 18.8 −35.9 
t2 −146.5 −51.7 10.7 18.9 −22.1 

+1 charged  −163.7 −81.4 10.2 18.1 −53.1 
3       
t1 −173.0 −67.1 7.9 18.3 −40.9 
t2 −170.3 −52.8 11.4 18.0 −23.4 
4       
t1 −166.2 −82.5 18.3 20.7 −43.5 
t2 −177.1 −67.9 17.7 22.0 −28.2 

a Dihedral angle ω in the bound state. c.f. Tables 1, 2 and 4 for dihedral atoms of compounds 1, 3 and 
4, respectively. b c.f. Equations (1) and (2). c c.f. Table 1, t1 = N3H; t2 = N6H; +1 charged = N3H and 
N6H. 

Analysis of 4. Results of the DFT calculations for predicted conformations of com-
pound 4 are shown in Table 4. In the case of 4, the azole ring C6 substituent has a resonat-
ing +1 charge on N9/N10 atoms and hence, the potential to form strong ion – ion interac-
tions with the Asp283 side-chain carboxylate, as was observed for 1. As with 3, compound 
4 can exist in two tautomeric states t1 and t2 (Figure 1). DFT calculations on the different 
conformations of t1 and t2 revealed tautomer t2 with a dihedral angle (ω = −97.7°) as the 
most favoured tautomeric state and conformation in solution phase (also in the gas phase). 
In comparison, the lowest energy t1 solution phase conformation (ω = 161.4°) is 2.2 

3 tautomer 1 (t1)

Molecules 2023, 28, x FOR PEER REVIEW 8 of 19 
 

 

Table 2. Relative energies (kcal/mol) of the predicted conformations of compound 3 tautomers t1 
and t2 calculated using DFT at the M06-2X/6-31+G* level of theory (gas phase), with water solvation 
effects additionally accounted for with the SM8 model (solution phase). The most stable calculated 
state/conformation of the compound is highlighted in bold for each phase. 

Conformation a  
3 tautomer 1 (t1) 

 
3 tautomer 2 (t2) 

Dihedral Angle, ω 
(Degrees)b 

Relative Energies 
(kcal/mol) Dihedral Angle, ω 

(Degrees)b  

Relative Energies 
(kcal/mol) 

Gas Phase Solution 
Phase c 

Gas Phase Solution 
Phase c 

1 66.6 1.9 1.7 −104.8 0.3 0.7 
2 65.8 1.1 0.6 −114.9 0.8 1.1 
3 147.6 4.6 4.3 −89.9 1.5 1.2 
4 118.0 2.0 2.5 −102.0 0.9 0.4 
5 100.8 1.9 1.4 −100.7 0.7 0.6 
6 82.7 2.2 1.4 −107.2 0.0 0.1 
7 95.4 0.7 0.7 −88.7 2.0 1.8 
8 72.3 0.5 0.0 −100.1 0.8 0.8 
9 141.3 7.3 5.6 −135.9 8.4 5.1 
10 84.3 2.2 1.5 −164.5 8.9 4.8 

a Conformations were predicted using Monte Carlo prior to optimizations using DFT, as described 
in the computational details. b Dihedral C1H-C1-C2-N3. c Single point energy calculations at the M06-
2X/6-31+G* optimized geometries. 

Table 3. Results of MM-GBSA post-docking calculations with the predicted binding tautomer/state 
highlighted in bold italics. 

Ligand  
and State 

Dihedral Angle, ω  
C1H-C1-C2-N3 (Degrees)a 

Post-Docking MM-GBSA (kcal/mol) b ∆𝑮 𝒃𝒊𝒏𝒅(𝑵𝑺) 𝑺𝒕𝒓𝒂𝒊𝒏 𝑬𝒏𝒆𝒓𝒈𝒚𝒍𝒊𝒈𝒂𝒏𝒅 −𝑻∆𝑺𝑴𝑴 ∆𝑮𝒃𝒊𝒏𝒅 
1 c      
t1 −167.5 −64.8 10.1 18.8 −35.9 
t2 −146.5 −51.7 10.7 18.9 −22.1 

+1 charged  −163.7 −81.4 10.2 18.1 −53.1 
3       
t1 −173.0 −67.1 7.9 18.3 −40.9 
t2 −170.3 −52.8 11.4 18.0 −23.4 
4       
t1 −166.2 −82.5 18.3 20.7 −43.5 
t2 −177.1 −67.9 17.7 22.0 −28.2 

a Dihedral angle ω in the bound state. c.f. Tables 1, 2 and 4 for dihedral atoms of compounds 1, 3 and 
4, respectively. b c.f. Equations (1) and (2). c c.f. Table 1, t1 = N3H; t2 = N6H; +1 charged = N3H and 
N6H. 

Analysis of 4. Results of the DFT calculations for predicted conformations of com-
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tions with the Asp283 side-chain carboxylate, as was observed for 1. As with 3, compound 
4 can exist in two tautomeric states t1 and t2 (Figure 1). DFT calculations on the different 
conformations of t1 and t2 revealed tautomer t2 with a dihedral angle (ω = −97.7°) as the 
most favoured tautomeric state and conformation in solution phase (also in the gas phase). 
In comparison, the lowest energy t1 solution phase conformation (ω = 161.4°) is 2.2 

3 tautomer 2 (t2)

Dihedral
Angle,ω

(Degrees) b

Relative Energies
(kcal/mol)

Dihedral
Angle,ω

(Degrees) b

Relative Energies
(kcal/mol)

Gas Phase Solution Phase c Gas Phase Solution Phase c

1 66.6 1.9 1.7 −104.8 0.3 0.7

2 65.8 1.1 0.6 −114.9 0.8 1.1

3 147.6 4.6 4.3 −89.9 1.5 1.2

4 118.0 2.0 2.5 −102.0 0.9 0.4

5 100.8 1.9 1.4 −100.7 0.7 0.6

6 82.7 2.2 1.4 −107.2 0.0 0.1

7 95.4 0.7 0.7 −88.7 2.0 1.8

8 72.3 0.5 0.0 −100.1 0.8 0.8

9 141.3 7.3 5.6 −135.9 8.4 5.1

10 84.3 2.2 1.5 −164.5 8.9 4.8
a Conformations were predicted using Monte Carlo prior to optimizations using DFT, as described in the
computational details. b Dihedral C1H-C1-C2-N3. c Single point energy calculations at the M06-2X/6-31+G*
optimized geometries.
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Figure 2. Predicted most stable conformations of tautomers 1 (t1) and 2 (t2) of compounds (A) 3
and (B) 4 (c.f. Figure 1) in solution phase from Monte Carlo simulations post-processed by DFT
calculations. Intramolecular hydrogen bond distances are given and shown as dashed lines, together
with the dihedral angle value ω (as defined in Figure 1). The solution phase relative energies
of the two tautomers of each ligand are listed, with gas phase relative energies in parentheses
for comparison.
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Table 3. Results of MM-GBSA post-docking calculations with the predicted binding tautomer/state
highlighted in bold italics.

Ligand and State
Dihedral Angle,
ω C1H-C1-C2-N3

(Degrees) a

Post-Docking MM-GBSA (kcal/mol) b

∆G’
bind(NS) Strain Energyligand −T∆SMM ∆Gbind

1 c

t1 −167.5 −64.8 10.1 18.8 −35.9

t2 −146.5 −51.7 10.7 18.9 −22.1

+1 charged −163.7 −81.4 10.2 18.1 −53.1

3

t1 −173.0 −67.1 7.9 18.3 −40.9

t2 −170.3 −52.8 11.4 18.0 −23.4

4

t1 −166.2 −82.5 18.3 20.7 −43.5

t2 −177.1 −67.9 17.7 22.0 −28.2
a Dihedral angle ω in the bound state. c.f. Tables 1, 2 and 4 for dihedral atoms of compounds 1, 3 and 4,
respectively. b c.f. Equations (1) and (2). c c.f. Table 1, t1 = N3H; t2 = N6H; +1 charged = N3H and N6H.

Table 4. Relative energies (kcal/mol) of the predicted conformations of compound 4 tautomers t1
and t2 calculated using DFT at the M06-2X/6-31+G* level of theory (gas phase), with water solvation
effects additionally accounted for with the SM8 model (solution phase). The most stable calculated
state of the compound is highlighted in bold for each phase.

Conformation a
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Solution 
Phase c 
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4 tautomer 2 (t2)

Dihedral
Angle,ω

(Degrees) b

Relative Energies
(kcal/mol)

Dihedral
Angle,ω

(Degrees) b

Relative Energies
(kcal/mol)

Gas Phase Solution Phase c Gas Phase Solution Phase c

1 160.9 10.7 2.4 −141.7 3.9 0.9

2 9.8 17.0 5.0 −120.6 10.2 4.0

3 131.7 8.3 3.0 −97.7 0.0 0.0

4 132.6 11.7 5.7 −140.9 3.7 0.4

5 −154.2 9.7 4.0 −32.9 6.4 3.2

6 161.4 10.7 2.2 −178.2 13.2 2.1

7 −155.2 9.8 4.3 −144.1 5.5 2.7

8 158.8 10.7 3.4 175.8 10.0 1.5

9 −19.1 10.4 6.2 −143.4 5.1 2.1

10 159.6 13.6 3.5 −99.0 3.2 0.2
a Conformations were predicted using Monte Carlo prior to optimizations using DFT, as described in the
computational details. b Dihedral C1H-C1-C2-N3. c Single point energy calculations at the M06-2X/6-31+G*
optimized geometries.
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Analysis of 4. Results of the DFT calculations for predicted conformations of com-
pound 4 are shown in Table 4. In the case of 4, the azole ring C6 substituent has a resonating
+1 charge on N9/N10 atoms and hence, the potential to form strong ion – ion interactions
with the Asp283 side-chain carboxylate, as was observed for 1. As with 3, compound 4 can
exist in two tautomeric states t1 and t2 (Figure 1). DFT calculations on the different confor-
mations of t1 and t2 revealed tautomer t2 with a dihedral angle (ω = −97.7◦) as the most
favoured tautomeric state and conformation in solution phase (also in the gas phase). In
comparison, the lowest energy t1 solution phase conformation (ω = 161.4◦) is 2.2 kcal/mol
higher in energy (or 8.3 kcal/mol in the gas phase withω = 131.7◦). These most stable solu-
tion phase conformations are shown in Figure 2B. The most stable tautomer t2 has a strong
network of intra-molecular hydrogen bonds stabilizing the structure, but for a conformation
and tautomeric state that is not consistent with forming desired hydrogen bonding with
His377 C=O and ion – ion interactions with Asp283 sidechain carboxylate on binding to
GP. As mentioned, in a study of ligand tautomeric preferences in PDB complexes, the most
stable solution phase tautomer (in this case t2) is predominantly the binding state tautomer
(depending on the ∆G between the two tautomers) [34]. In agreement with this study,
and of particular significance, we observed for other β-D-glucopryranosyl-azole inhibitors,
considering the binding and MM-GBSA ∆Gbind values of the most stable (solution phase)
free state tautomer gave better agreement with experiment [19]. The ∆Gbind value of 4 (t2) is
−28.2 kcal/mol (Table 3), much less favourable than that of 3 (t1; ∆Gbind = −40.9 kcal/mol),
which is consistent with the experimental binding assay results (Table 1). The binding of t2
is shown in Figure 3C, where the ligand is seen to adopt the expected binding conformation
(ω = −177.1◦) that does allow for strong ion–ion and hydrogen bonding interactions with
Asp283 sidechain carboxylate. However, there is no hydrogen bond with His377 C=O
for this tautomer (∆G

′
bind(NS) = −67.9 kcal/mol). Additionally, the guanidino ligand

substituent due to its steric bulk also extends somewhat towards the positively charged
side-chain of Lys574, forming unfavourable ion–ion interactions with this group. Cor-
respondingly, the strain energy effects on ∆Gbind are considerably more (~+18 kcal/mol)
compared to 3 (~+8 kcal/mol) or 1 (~+10 kcal/mol). The strain from Prime MM-GBSA cal-
culations is estimated from a (local) minimization of bound ligand conformation. Likewise,
the ligand entropy cost (−T∆SMM) on binding for 4 is ~4 kcal/mol more than both 1 and
3, all of which is consistent with its poor observed binding potential.

3. Conclusions

The search for potent GP inhibitors acting at the catalytic site has focussed on glucose
analogues, with C-β-D-glucopyranosyl azole type inhibitors proving to be among the
most successful. Two new analogues of this type, compounds 3 and 4, were synthesized
that, in theory, had the potential to exploit key interactions with key binding site residues
His377 and Asp283, but only 3 demonstrated a moderate potency. Extensive computations
were performed on the free/unbound (Monte Carlo, DFT) and bound state protein–ligand
complexes (docking, MM-GBSA) and revealed tautomeric state preferences and ligand
strain/reorganization energies as key reasons. We observed that taking the ∆Gbind value for
the most stable (unbound) state tautomer produced results more in line with the experiment,
consistent with a previous work on related analogues [19]; however, this is likely to be
system dependent and sensitive to relative tautomeric state stabilities (comparing bound
and unbound) [34]. Although some experimental techniques such as neutron scattering
can sometimes be employed to determine ligand-bound state tautomeric states, routine
X-ray crystallography structures of protein–ligand complexes will not show the H-atom
positions [37–39]. The importance of careful consideration of ligand tautomeric/ionization
state preferences in structure-based inhibitor design using computation was, therefore,
highlighted, as well as consideration of tautomeric state conformational preferences (bound
versus unbound) that limits the reorganization/strain energy on binding. This information
can be exploited in further studies of this type targeting GP, but also other drug targets
where ionization/tautomerism of ligand designs plays an important role.
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4. Experimental Section
4.1. Synthetic Methods

Thin-layer chromatography was carried out on aluminium sheets coated with silica
gel 60 F254. TLC plates were inspected under UV light and developed by spraying with a
staining reagent (5% of cc. H2SO4 and 1% of p-anisaldehyde in EtOH) followed by heating.
Column chromatography was performed on silica gel 60 (63–200 µm). Optical rotations
were measured using a Perkin Elmer 241 polarimeter. 1H and 13C NMR spectra (supple-
mentary materials) were recorded using Bruker DRX 360 or Bruker DRX 400 spectrometers
with TMS (1H spectra in CDCl3) or the residual solvent peak (1H spectra in CD3OD, 13C
spectra in CDCl3 and CD3OD) as the internal standard. Mass spectra were recorded using
a Bruker maXis II UHR ESI-TOF MS spectrometer. Anhydrous THF was distilled from
sodium benzophenone ketyl and then, stored over sodium wires. Anhydrous MeOH was
prepared by distillation over Mg turnings and iodine. Anhydrous CHCl3 was dried by
distillation from P4O10, and was then stored over 4Å molecular sieves.

Pyrazole tautomerization results in signal broadening; therefore, the 13C peaks of the
heterocycle (and, in one case, the anomeric carbon of the sugar) cannot be identified in the
carbon spectrum. In these cases, HRMS confirms the presence of the pyrazole moiety in the
molecules.

(Z)-3-amino-3-(2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl)-1-phenylprop-2-en-1-one (6)
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(Z)-3-amino-3-(2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl)-1-phenylprop-2-en-1-

one (6) 

 
Prior to use, zinc powder was activated as described in the literature [40]. On a sin-

tered glass funnel, zinc powder (100 mesh) was washed sequentially with 10% w/w aque-
ous HCl, distilled water, ethanol and diethyl ether and dried in a desiccator over P2O5. 

Prior to use, zinc powder was activated as described in the literature [40]. On a
sintered glass funnel, zinc powder (100 mesh) was washed sequentially with 10% w/w
aqueous HCl, distilled water, ethanol and diethyl ether and dried in a desiccator over P2O5.

In a flame dried three-neck round bottom flask, activated Zn powder (2 equiv.,
1.65 mmol, 108 mg) and Me3SiCl (0.03 equiv., 0.03 mmol, 3 µL) were refluxed in anhydrous
THF (4 mL) under argon atmosphere for 25 min. To this boiling suspension, the solution
of cyanide (5, 1 equiv., 0.83 mmol, 500 mg) and phenacyl bromide (1.5 equiv., 1.24 mmol,
247 mg) in anhydrous THF (4 mL) was added dropwise in 45 min and the reflux was
maintained for another 45 min. After cooling down to room temperature, the solution
and the insoluble materials were separated by decantation and the residual solid was
washed with THF (3 mL). The combined THF solutions were cooled down to 0 ◦C, 10%
w/w aqueous HCl (4 mL) was added and the solution was stirred for 20 min at this temper-
ature. Water (20 mL) was added and the mixture was extracted with DCM (3 × 20 mL).
The combined organic layers were washed with saturated NaHCO3, dried over MgSO4,
filtered and the solvent was removed. The resulting crude product was purified by column
chromatography (eluent: hexane/EtOAc 2:1) to yield 223 mg (37%) colourless syrup.

Rf = 0.22 (hexane/EtOAc 2:1); [α]D = −4 (c = 0.16, CHCl3)
1H NMR (360 MHz, CDCl3) δ (ppm): 9.93 (1H, brs, NH, exchangable) 8.07–7.83 (8H, m,

Ar), 7.57–7.23 (15H, m, Ar), 7.09 (2H, t, J = 7.7 Hz, Ar), 6.04 (1H, pt, J = 9.6 Hz, H-2 or H-3 or
H-4), 6.02 (1H, brs, NH, exchangable, overlaps with the previous signal), 5.87 (1H, pt, J = 9.8,
9.7 Hz, H-2 or H-3 or H-4), 5.71–5.66 (2H, m, H-2 or H-3 or H-4, C(NH2)=CHCOPh), 4.72
(1H, dd, J = 12.4, 2.6 Hz, H-6a), 4.56 (1H, dd, J = 12.4, 5.1 Hz, H-6b), 4.40 (1H, d, J = 9.6 Hz,
H-1), 4.29 (1H, ddd, J = 9.6, 4.8, 2.6 Hz, H-5). 13C NMR (90 MHz, CDCl3) δ (ppm): 189.9
(C(NH2)=CHCOPh), 166.3, 165.9, 165.3, 164.7 (4 × OCOPh), 158.4 (C(NH2)=CHCOPh),
139.5 (Ar), 133.7–126.9 (Ar), 91.3 (C(NH2)=CHCOPh), 77.7, 76.4, 73.9, 71.1, 69.2 (C-1–C-5),
62.9 (C-6).

(Z)-3-hydroxy-3-(2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl)-1-phenylprop-2-en-1-
one (7)
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(C-6). 
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It was prepared from cyanide (5, 1 equiv., 0.83 mmol, 500 mg) in the same way as
compound 6, but the hydrolysis with aqueous HCl was carried out for 20 min at 85 ◦C.
Yield: 195 mg (33%) colourless syrup.

Hydrolysis of enaminone 6 (657 mg, 0.91 mmol) in THF (10 mL) with 10% w/w
aqueous HCl (1 mL) as described above gave 180 mg (27%) of 7.

Rf = 0.47 (hexane/EtOAc 1:1); [α]D = −61 (c = 0.90, CHCl3)
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2-Hydroxyimino-3-(2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl)-1-phenylpropan-1,3-
dione (10)
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To the stirred solution of compound 7 (1 equiv., 0.28 mmol, 200 mg,) in AcOH (6 mL),
aqueous solution (1 mL) of NaNO2 (6 equiv., 1.65 mmol, 114 mg) was added at 10 ◦C.
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Rf = 0.32 (hexane/EtOAc 1:1); [α]D = +8 (c = 1.03, CHCl3)
1H NMR (360 MHz, CDCl3) δ (ppm): 9.67 (1H, brs, NOH), 8.03–7.71 (8H, m Ar),

7.54–7.26 (17H, m, Ar), 6.02 (1H, pt, J = 9.4 Hz, H-2 or H-3 or H-4), 5.95 (1H, pt, J = 9.6 Hz,
H-2 or H-3 or H-4), 5.72 (1H, pt, J = 9.6 Hz, H-2 or H-3 or H-4), 5.20 (1H, d, J = 9.6 Hz, H-1),
4.55 (1H, dd, J = 12.6, 2.6 Hz, H-6a), 4.43 (1H, dd, J = 12.0, 4.8 Hz, H-6b), 4.24–4.21 (1H, m,
H-5). 13C NMR (90 MHz, CDCl3) δ (ppm): 190.4, 188.6 (COC(NOH)COPh), 166.4, 166.3,
165.3, 165.0 (4 × OCOPh), 155.2 (COC(NOH)COPh), 134.8, 134.4 (Ar), 133.7–128.5 (Ar),
77.3, 77.1, 74.5, 69.7, 69.5 (C-1–C-5), 63.1 (C-6).
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Rf = 0.32 (hexane/EtOAc 1:1); [α]D = +8 (c = 1.03, CHCl3) 
1H NMR (360 MHz, CDCl3) δ (ppm): 9.67 (1H, brs, NOH), 8.03–7.71 (8H, m Ar), 7.54–

7.26 (17H, m, Ar), 6.02 (1H, pt, J = 9.4 Hz, H-2 or H-3 or H-4), 5.95 (1H, pt, J = 9.6 Hz, H-2 
or H-3 or H-4), 5.72 (1H, pt, J = 9.6 Hz, H-2 or H-3 or H-4), 5.20 (1H, d, J = 9.6 Hz, H-1), 4.55 
(1H, dd, J = 12.6, 2.6 Hz, H-6a), 4.43 (1H, dd, J = 12.0, 4.8 Hz, H-6b), 4.24–4.21 (1H, m, H-
5). 13C NMR (90 MHz, CDCl3) δ (ppm): 190.4, 188.6 (COC(NOH)COPh), 166.4, 166.3, 165.3, 
165.0 (4 × OCOPh), 155.2 (COC(NOH)COPh), 134.8, 134.4 (Ar), 133.7–128.5 (Ar), 77.3, 77.1, 
74.5, 69.7, 69.5 (C-1–C-5), 63.1 (C-6). 

 
4-Amino-5-phenyl-3-(2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl)-1H-pyrazole (8) 

 
4-Nitroso-5-phenyl-3-(2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl)-1H-pyrazole 

(9) 

 
To the stirred solution of oxyme (10, 1 equiv., 0.07 mmol, 50 mg) in EtOH (1 mL), 

hydrazine monohydrate (10 equiv., 0.66 mmol, 32 µL) was added at 0 °C and the mixture 
was allowed to warm up to room temperature. After 1.5 h, DCM (5 mL) was added and 
the solution was washed with 1% w/w aqueous HCl (3 mL). The separated organic layer 
was dried over MgSO4, filtered, the solvent was removed by evaporation and the compo-
nents of the mixture were separated by column chromatography (eluent: hexane/EtOAc 
3:2) to yield 8 (23 mg, 47%, brownish solid) and 9 (9 mg, 18%, green solid). 

Reduction in the nitroso derivative (9) was accomplished under general hydrogena-
tion conditions in EtOAc (3 mL) over Pd(C) (15 mg of 10 wt.% Pd loading) under atmos-
pheric pressure of hydrogen at room temperature overnight. 4-Aminopyrazole 8 was iso-
lated by column chromatography (eluent: hexane/EtOAc 3:2) after filtration and evapora-
tion of the reaction mixture. Yield: 40 mg (74%). 
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166.3, 166.0, 165.3, 165.1 (4 × OCOPh), 153.4 (pyrazole C-4), 133.5–125.0 (Ar), 76.6, 75.5, 
74.6, 70.5, 69.6 (C-2–C-5), 63.2 (C-6). 
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To the stirred solution of oxyme (10, 1 equiv., 0.07 mmol, 50 mg) in EtOH (1 mL),
hydrazine monohydrate (10 equiv., 0.66 mmol, 32 µL) was added at 0 ◦C and the mixture
was allowed to warm up to room temperature. After 1.5 h, DCM (5 mL) was added and the
solution was washed with 1% w/w aqueous HCl (3 mL). The separated organic layer was
dried over MgSO4, filtered, the solvent was removed by evaporation and the components
of the mixture were separated by column chromatography (eluent: hexane/EtOAc 3:2) to
yield 8 (23 mg, 47%, brownish solid) and 9 (9 mg, 18%, green solid).

Reduction in the nitroso derivative (9) was accomplished under general hydrogenation
conditions in EtOAc (3 mL) over Pd(C) (15 mg of 10 wt.% Pd loading) under atmospheric
pressure of hydrogen at room temperature overnight. 4-Aminopyrazole 8 was isolated by
column chromatography (eluent: hexane/EtOAc 3:2) after filtration and evaporation of the
reaction mixture. Yield: 40 mg (74%).

8: Rf = 0.27 (hexane/EtOAc 1:1); [α]D = −65 (c = 1.65, CHCl3)
1H NMR (360 MHz, CDCl3) δ (ppm): 8.04–7.80 (8H, m Ar), 7.55–7.22 (17H, m, Ar),

6.13–6.03 (2H, m, H-2 and/or H-3 and/or H-4), 5.87 (1H, pt, J = 9.5 Hz, H-2 or H-3 or H-4),
5.11 (1H, d, J = 9.3 Hz, H-1), 4.68 (1H, dd, J = 12.2, 2.6 Hz, H-6a), 4.52 (1H, dd, J = 12.2,
4.5 Hz, H-6b), 4.36–4.33 (1H, m, H-5), 3.37 (2H, brs, NH2). 13C NMR (90 MHz, CDCl3) δ
(ppm): 166.3, 166.0, 165.3, 165.1 (4 × OCOPh), 153.4 (pyrazole C-4), 133.5–125.0 (Ar), 76.6,
75.5, 74.6, 70.5, 69.6 (C-2–C-5), 63.2 (C-6).

9: Rf = 0.42 (hexane/EtOAc 1:1); [α]D = +15 (c = 0.48, CHCl3)
1H NMR (360 MHz, CDCl3) δ (ppm): 8.03–7.69 (10H, m Ar), 7.53–7.13 (15H, m, Ar),

6.25 (1H, pt, J = 9.6 Hz, H-2 or H-3 or H-4), 6.11 (1H, pt, J = 9.4 Hz, H-2 or H-3 or H-4), 6.02
(1H, pt, J = 9.3 Hz, H-2 or H-3 or H-4), 5.25 (1H, d, J = 10.0 Hz, H-1), 4.58–4.48 (3H, m, H-6a,
H-6b, H-5). 13C NMR (90 MHz, CDCl3) δ (ppm): 166.4, 166.3, 165.7, 165.2 (4 × OCOPh),
157.1 (pyrazole C-4), 133.7–127.2 (Ar), 75.2, 73.6, 70.9, 69.8, 69.5 (C-2–C-5), 63.4 (C-6).

4-Amino-3-(β-D-glucopyranosyl)-5-phenyl-1H-pyrazole (3)
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6a, H-6b, H-5). 13C NMR (90 MHz, CDCl3) δ (ppm): 166.4, 166.3, 165.7, 165.2 (4 × OCOPh), 
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4-Amino-3-(β-D-glucopyranosyl)-5-phenyl-1H-pyrazole (3) 

 
O-Perbenzoylated compound 8 (150 mg, 0.20 mmol) was dissolved in a mixture of 

anhydrous methanol (2 mL) and chloroform (2 mL), and pH was adjusted to 10 with  
NaOMe (1M in MeOH). The reaction mixture was stirred at room temperature overnight 
and then the solution was neutralized using Amberlyst 15 acidic ion exchange resin until 
pH 7. The resin was filtered off and the filtrate was concentrated. The product was purified 
by column chromatography (eluent: CHCl3/MeOH 8:2) to yield 38 mg (58%) colourless 
syrup. 

Rf = 0.24 (CHCl3/MeOH 7:3); [α]D = −1 (c = 1.35, MeOH) 
1H NMR (400 MHz, CD3OD) δ (ppm): 7.62 (2H, m Ar), 7.44 (2H, t, J = 7.7 Hz, Ar), 7.33 

(1H, m, Ar), 4.45 (1H, d, J = 9.6 Hz, H-1), 3.89 (1H, dd, J = 12.0, 2.2 Hz, H-6a), 3.76 (1H, dd, 
J = 12.0, 4.9 Hz, H-6b), 3.76 (1H, pt, J = 9.1 Hz, H-2 or H-3 or H-4), 3.55–3.48 (2H, m, H-2 
and/or H-3 and/or H-4), 3.45–3.41 (1H, m, H-5). 13C NMR (100 MHz, CD3OD) δ (ppm): 
129.9, 128.6, 127.7, 124.5 (Ar), 82.0, 79.6, 76.2, 74.9, 71.2 (C-1–C-5), 62.6 (C-6). 

HRMS (positive mode, m/z): 344.1216 (calculated value for C15H19N3O5Na: 344.1217) 
 
4-(2,3-Bis(tert-butoxycarbonyl)guanidino)-5-phenyl-3-(2,3,4,6-tetra-O-benzoyl-β-

D-glucopyranosyl)-1H-pyrazole (11) 

 
The solution of 8 (280 mg, 0.38 mmol) and N,N′-di-Boc-1H-pyrazole-1-carboxamidine 

(2 equiv., 0.76 mmol, 236 mg) in pyridine (3 mL) was stirred at room temperature for 10 
days. After evaporation of the reaction mixture, the product was isolated by column chro-
matography (eluent: hexane/acetone 4:1 → 3:1) as a colourless syrup. Yield: 146 mg (39%).  

Rf = 0.56 (hexane/acetone 1:1); [α]D = +19 (c = 0.70, CHCl3) 
1H NMR (360 MHz, CDCl3) δ (ppm): 11.48 (1H, brs, NH), 9.86 (1H, brs, NH), 7.97–

7.79 (8H, m Ar), 7.47–7.21 (17H, m, Ar), 6.01–5.94 (2H, m, H-2 and/or H-3 and/or H-4), 5.77 
(1H, pt, J = 9.5 Hz, H-2 or H-3 or H-4), 5.38 (1H, d, J = 8.6 Hz, H-1), 4.65 (1H, dd, J = 12.2, 
3.4 Hz, H-6a), 4.57 (1H, dd, J = 12.2, 4.4 Hz, H-6a), 4.26 (1H, m, H-5), 1.50 (9H, s, OC(CH3)3), 
1.35 (9H, s, OC(CH3)3). 

13C NMR (90 MHz, CDCl3) δ (ppm): 166.3, 166.1, 165.3, 165.2 (4 × OCOPh), 163.2 
(NHC(=NBoc)NHBoc), 154.8, 153.2 (2 × NC(=O)OtBu), 140.4, 140.2 (pyrazole C-2, C-5), 
133.4–127.3 (Ar), 114.1 (pyrazole C-4), 83.9, 79.6 (2 × OC(CH3)3), 76.5, 74.9, 74.3, 71.2, 70.2 
(C-1–C-5), 63.8 (C-6), 28.2, 28.1 (2 × OC(CH3)3). 

HRMS (positive mode, m/z): 1002.3535 (calculated value for C54H53N5O13Na: 
1002.3532) 
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Rf = 0.24 (CHCl3/MeOH 7:3); [α]D = −1 (c = 1.35, MeOH)
1H NMR (400 MHz, CD3OD) δ (ppm): 7.62 (2H, m Ar), 7.44 (2H, t, J = 7.7 Hz, Ar), 7.33

(1H, m, Ar), 4.45 (1H, d, J = 9.6 Hz, H-1), 3.89 (1H, dd, J = 12.0, 2.2 Hz, H-6a), 3.76 (1H, dd,
J = 12.0, 4.9 Hz, H-6b), 3.76 (1H, pt, J = 9.1 Hz, H-2 or H-3 or H-4), 3.55–3.48 (2H, m, H-2
and/or H-3 and/or H-4), 3.45–3.41 (1H, m, H-5). 13C NMR (100 MHz, CD3OD) δ (ppm):
129.9, 128.6, 127.7, 124.5 (Ar), 82.0, 79.6, 76.2, 74.9, 71.2 (C-1–C-5), 62.6 (C-6).

HRMS (positive mode, m/z): 344.1216 (calculated value for C15H19N3O5Na: 344.1217)
4-(2,3-Bis(tert-butoxycarbonyl)guanidino)-5-phenyl-3-(2,3,4,6-tetra-O-benzoyl-β-D-
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The solution of 8 (280 mg, 0.38 mmol) and N,N′-di-Boc-1H-pyrazole-1-carboxamidine
(2 equiv., 0.76 mmol, 236 mg) in pyridine (3 mL) was stirred at room temperature for
10 days. After evaporation of the reaction mixture, the product was isolated by column
chromatography (eluent: hexane/acetone 4:1 → 3:1) as a colourless syrup. Yield: 146
mg (39%).

Rf = 0.56 (hexane/acetone 1:1); [α]D = +19 (c = 0.70, CHCl3)
1H NMR (360 MHz, CDCl3) δ (ppm): 11.48 (1H, brs, NH), 9.86 (1H, brs, NH), 7.97–7.79

(8H, m Ar), 7.47–7.21 (17H, m, Ar), 6.01–5.94 (2H, m, H-2 and/or H-3 and/or H-4), 5.77
(1H, pt, J = 9.5 Hz, H-2 or H-3 or H-4), 5.38 (1H, d, J = 8.6 Hz, H-1), 4.65 (1H, dd, J = 12.2,
3.4 Hz, H-6a), 4.57 (1H, dd, J = 12.2, 4.4 Hz, H-6a), 4.26 (1H, m, H-5), 1.50 (9H, s, OC(CH3)3),
1.35 (9H, s, OC(CH3)3).

13C NMR (90 MHz, CDCl3) δ (ppm): 166.3, 166.1, 165.3, 165.2 (4 × OCOPh), 163.2
(NHC(=NBoc)NHBoc), 154.8, 153.2 (2 × NC(=O)OtBu), 140.4, 140.2 (pyrazole C-2, C-5),
133.4–127.3 (Ar), 114.1 (pyrazole C-4), 83.9, 79.6 (2 × OC(CH3)3), 76.5, 74.9, 74.3, 71.2, 70.2
(C-1–C-5), 63.8 (C-6), 28.2, 28.1 (2 × OC(CH3)3).

HRMS (positive mode, m/z): 1002.3535 (calculated value for C54H53N5O13Na: 1002.3532)
3-(β-D-Glucopyranosyl)-4-guanidino-5-phenyl-1H-pyrazole (4)
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Protected pyrazole (11, 146 mg, 0.15 mmol) was dissolved in anhydrous dichloromethane
(1.5 mL), anisole (324 µL, 20 equiv.) and trifluoroacetic acid (1.5 mL) were added and the
mixture was stirred at room temperature. After 2 h, the volatiles were removed, the residue
was dissolved in anhydrous methanol (3 mL) and NaOMe was added (1M in methanol)
until pH 9. The cleavage of the benzoyl groups took place in 3 h at room temperature. The
solution was neutralized using Amberlyst 15 resin and the resin was filtered and the filtrate
was concentrated. The residue was purified by column chromatography on aluminium oxide
(neutral, Brockmann I, 40–300 µm, 60A, eluent: MeCN/water/isopropyl alcohol/toluene
3:1.5:3.5:2) to yield 45 mg (83%) colourless syrup.

Rf = 0.24 (DCM/MeOH/NH3 (25% w/w in water) 3:4:3); [α]D = +5 (c = 2.9, MeOH)
1H NMR (400 MHz, CD3OD) δ (ppm): 7.67–7.65 (2H, m Ar), 7.50–7.40 (3H, m, Ar),

4.37 (1H, d, J = 9.6 Hz, H-1), 3.89 (1H, d, J = 11.9 Hz, H-6a), 3.76–3.68 (2H, m, H-6b, H-2 or
H-3 or H-4), 3.53 (1H, pt, J = 8.3 Hz, H-2 or H-3 or H-4), 3.50–3.42 (2H, m, H-2 and/or H-3
and/or H-4, H-5). 13C NMR (100 MHz, CD3OD) δ (ppm): 159.3 (NHC(=NH)NH2), 130.1,
127.9 (Ar), 112.6 (pyrazole C-4), 82.0, 79.4, 74.6, 71.4 (C-2–C-5), 62.7 (C-6).

HRMS (positive mode, m/z): 386.1434 (calculated value for C16H21N5O5Na: 386.1435)

4.2. Computational Details
4.2.1. Protein Preparation

The GPb protein was prepared for computations using the solved 1.85 Å resolution
co-crystallized complex with compound 1 (PDB code: 5JTT, 1.85 Å resolution [41]) and
Schrödinger’s Protein Preparation Wizard [36]. The waters within 5 Å of the native ligand
were initially retained, bond orders assigned and hydrogens added, and the protonation
states for basic and acidic residues assigned using PROPKA calculated pKa’s at a pH of
7 [42]. The subsequent optimization of hydroxyl groups, histidine protonation states and
their potential side-chain C/N atom flips, as well as the side-chain O/N atom flips of
Gln and Asn residues was based on optimizing protein hydrogen bonding patterns. The
pyridoxal-phosphate (PLP) co-factor had the phosphate group assigned in a monoanionic
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state. Lastly, the system was gently minimised using the OPLS3e forcefield [43] but with
the RMSD (heavy atoms) kept to within 0.3 Å of the crystallographic positions.

4.2.2. Ligand Preparation

Ligands for the calculations were prepared using Maestro and LigPrep 5.6 [36] with
the tautomeric and ionization states assigned based on the default pH of 7 +/− 2. Pre-
ferred protonation states of the heterocycles were also considered the using Jaguar pKa
predictions [36]. The generated states were all used in the docking and post-docking cal-
culations. To more accurately consider the relative stabilities of the free unbound ligand
tautomeric states [33], DFT gas phase optimizations (Jaguar 11.0 [36]) were performed
at the M06-2X/6-31+G* [44–46] level of theory, given its previous successful application
to analogues of this type [19]. Input structures for these DFT calculations were based on
Monte Carlo conformational searches using Macromodel 13.0 [36], with the predicted 10
lowest energy conformations for each ligand tautomeric state used. The conformational
search employed 20,000 steps of the Monte Carlo Multiple Minima (MCMM) approach;
each step was accompanied by a 100 steps minimization with the truncated Newton con-
jugate gradient (TNCG) algorithm; OPLS3e forcefield was employed, together with the
Generalized-Born/Surface-Area (GB/SA) model for water solvation effects. For the DFT-
optimized gas phase geometries, solution phase single point energy calculations were
performed, with water solvation effects included with the SM8 continuum model [47].

4.2.3. Docking

Docking of the ligands was performed using the program Glide 8.9 [36]. Using the
prepared GPb protein from PDB code:5JTT, the shape and properties of the catalytic site
were mapped onto a grid with dimensions 24.3 × 24.3 × 24.3 Å that was centred on the
cognate ligand (1). Docking positional constraints were placed on the glucopyranosyl
hydroxyl hydrogens (radius 1.0 Å) to maintain the well-defined consistent position of the
moiety from crystallographic studies. Otherwise, standard parameters were employed that
included default atomic charges and van der Waals scaling (0.8) for nonpolar ligand atoms
to include modest induced-fit effects.

Calculations were performed in SP mode and included post-docking minimization
with strain correction. Up to 5 output poses per ligand structure docked were saved.
Redocking of the cognate ligand gave a top-ranked ligand pose with RMSD (heavy atoms)
of just 0.152 Å compared to in the co-crystallized complex, for an initial validation of the
applied protocol.

4.2.4. MM-GBSA Calculations

The docking poses for each ligand structure were used as input for post-docking
Prime MM-GBSA 3.0 binding free energy calculations [36], which were calculated using
Equations (1) and (2) described earlier, with Equation (2) accounting for the effects of
ligand strain and entropy effects. The Strain Energyligand was calculated by minimization
of the bound ligand and T∆SMM was calculated using the Rigid Rotor Harmonic Oscillator
approximation with MacroModel 13.0 and the OPLS_2005 forcefield [36]. All output Glide-
SP docking poses for each input ligand structure were used for these calculations and the
best ∆Gbind values taken as the predicted value for each compound.

4.2.5. Determination of Inhibitory Constants (Ki) for Glycogen Phosphorylase

Enzyme activity was assayed into the direction of glycogen synthesis as previously
presented [22]. Kinetic data were collected using the muscle phosphorylase b (dephosphory-
lated, GPb) isoform. Kinetic data for the inhibition of GPb by the compounds were obtained
in the presence of 10 µg/mL enzyme, varying concentrations of α-D-glucose-1-phosphate
(4–40 mM), constant concentration (1%) of glycogen and AMP (1 mM). Enzymatic activities
were presented in the form of a double-reciprocal plot (Lineweaver-Burk). The plots were
analysed by a non-linear data analysis program. The inhibitor constants (Ki) were deter-



Molecules 2023, 28, 3005 17 of 19

mined by secondary plots, replotting the slopes from the Lineweaver-Burk plot against the
inhibitor concentrations. The means of standard errors for all calculated kinetic parameters
averaged to less than 10% [48,49].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28073005/s1. Copies of the 1H and 13C NMR spectra.
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48. Ősz, E.; Somsák, L.; Szilágyi, L.; Kovács, L.; Docsa, T.; Tóth, B.; Gergely, P. Efficient inhibition of muscle and liver glycogen
phosphorylases by a new glucopyranosylidene-spiro-thiohydantoin. Bioorg. Med. Chem. Lett. 1999, 9, 1385–1390. [CrossRef]

49. Oikonomakos, N.G.; Kosmopoulou, M.; Zographos, S.E.; Leonidas, D.D.; Chrysina, E.D.; Somsák, L.; Nagy, V.; Praly, J.P.; Docsa,
T.; Tóth, A.; et al. Binding of N-acetyl-N‘-β-D-glucopyranosyl urea and N-benzoyl-N‘-β-D-glucopyranosyl urea to glycogen
phosphorylase b—Kinetic and crystallographic studies. Eur. J. Biochem. 2002, 269, 1684–1696. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1107/S2059798316020283
http://doi.org/10.1021/jo00169a053
http://doi.org/10.1016/j.ejmech.2016.06.049
http://doi.org/10.1021/ct200133y
http://www.ncbi.nlm.nih.gov/pubmed/26606496
http://doi.org/10.1021/acs.jctc.5b00864
http://www.ncbi.nlm.nih.gov/pubmed/26584231
http://doi.org/10.1007/s00214-007-0310-x
http://doi.org/10.1063/1.1677527
http://doi.org/10.1063/1.444267
http://doi.org/10.1021/ct7001418
http://www.ncbi.nlm.nih.gov/pubmed/26636198
http://doi.org/10.1016/S0960-894X(99)00192-4
http://doi.org/10.1046/j.1432-1327.2002.02813.x
http://www.ncbi.nlm.nih.gov/pubmed/11895439

	Introduction 
	Results and Discussion 
	Synthesis 
	Glycogen Phosphorylase Binding Assays 
	In-Silico Studies 

	Conclusions 
	Experimental Section 
	Synthetic Methods 
	Computational Details 
	Protein Preparation 
	Ligand Preparation 
	Docking 
	MM-GBSA Calculations 
	Determination of Inhibitory Constants (Ki) for Glycogen Phosphorylase 


	References

