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Abstract: Glycyrrhiza glabra and Sophora japonica (Fabaceae) are well-known medicinal plants with
valuable secondary metabolites and pharmacological properties. The flavonoid-rich fractions of
G. glabra roots and S. japonica leaves were prepared using Diaion column chromatography, and the
confirmation of flavonoid richness was confirmed using UPLC-ESI-MS profiling and total phenolics
and flavonoids assays. UPLC-ESI-MS profiling of the flavonoid-rich fraction of G. glabra roots
and S. japonica leaves resulted in the tentative identification of 32 and 23 compounds, respectively.
Additionally, the wound healing potential of topical preparations of each fraction, individually
and in combination (1:1) ointment and gel preparations, were investigated in vivo, supported by
histopathological examinations and biomarker evaluations, as well as molecular docking studies for
the major constituents. The topical application of G. glabra ointment and gel, S. japonica ointment and
gel and combination preparations significantly increase the wound healing rate and the reduction
of oxidative stress in the wound area via MDA reduction and the elevation of reduced GSH and
SOD levels as compared to the wound and Nolaver®-treated groups. The molecular docking study
revealed that that major compounds in G. glabra and S. japonica can efficiently bind to the active
sites of three proteins related to wound healing: glycogen synthase kinase 3-β (GSK3-β), matrix
metalloproteinases-8 (MMP-8) and nitric oxide synthase (iNOS). Consequently, G. glabra roots and
S. japonica leaves may be a rich source of bioactive metabolites with antioxidant, anti-inflammatory
and wound healing properties.

Keywords: Sophora; Glycyrrhiza glabra; wound healing; UPLC/MS; flavonoids; phenolics; antioxidant;
molecular docking
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1. Introduction

Wound healing is a dynamic complicated process continuously presenting a clinical
challenge. Pathologically, wound healing comprises four phases, namely, haemostasis,
inflammation, proliferation and remodelling, respectively [1,2]. Many pharmaceutical
preparations had been developed to maintain the healing process, including ointments,
gels and wound dressings, in addition to surgical graft transplantations [3]. Herbal extracts
and/or products derived thereof have been the basis for many formulations ensuring
effectiveness, availability and safety [3–5]. Historically, medicinal plants have been the
major component in the traditional medical systems, including the Chinese, Indian and
Egyptian traditional systems, where they had been utilized in the curing and alleviating
of different ailments [6,7]. Aloe vera [8], Calendula officinal [9], curcumin [10] and essential
oils represent prominent examples with great contributions in one or more stages of the
process of wound healing [1,11]. The efficacy of the different medicinal plants in wound
healing could be related to the different classes of the secondary metabolites biosynthe-
sised by medicinal plants, including triterpenoids, sterols (anti-inflammatory), flavonoids,
polyphenolics (antioxidants), alkaloids (antimicrobial, anti-inflammatory) and/or essential
oils (antimicrobial, anti-inflammatory) [12–20].

The roots and rhizomes of liquorice (Glycyrrhiza glabra Fam. Fabaceae) [21] are well
known for their traditional uses in expectorant, demulcent, antibacterial and antiulcer
drugs [22,23]; the different biological activities of liquorice can be traced to its high yield
biosynthesis of triterpenoids, saponins and flavonoids [21]. Additionally, G. glabra is
well known for its economic, nutritional value and medicinal impact as it has different
biological functions, as antioxidant, anti-inflammatory, antiviral, anti-carcinogenic and
anti-atherogenic [21,24]. Recently, liquorice extract in combination with lavender essential
oil was reported to have wound healing potential [25].

The leaves of Sophora japonica (Fabaceae), known as Japanese pagoda, have been tradi-
tionally used as a haemostatic, hypotensive, detoxifying and anti-inflammatory agent as
well [26,27]. The genus Sophora is known for its variety of secondary metabolites and bio-
logical activities [28,29]. The major secondary metabolites include flavonoids, isoflavonoids,
triterpenoids and alkaloids [26,27,30–33]. The leaves of S. japonica exert a wide range of
biological effects, including anti-inflammatory, antibacterial, anti-osteoporotic, antioxidant
and whitening properties [27]. In addition, S. flavescens was reported to have wound
healing potential [34].

Based on the prospective findings about the utilization of medicinal plants as promis-
ing treatments for wound healing, the role of G. glabra and S. japonica in wound healing
and the extension of our concern in the therapeutic potential of herbal products, we herein
report the investigation of the wound healing effects of both drugs either separately or
in combination in gel and ointment formulations, evaluating their potential as appealing
contenders for thoughtful drug development, encompassing in vivo comparative investi-
gation of the potential of both plants under study either separately or in combination for
healing wounds. The correlation of the biological findings to the chemical constituents
of both plants in terms of UPLC-MS profiling is followed by the correlation of the major
metabolites with their potential in wound healing cascades through a molecular docking
study and the determination of the total phenolics and flavonoids of both drugs.

2. Results
2.1. Total Phenolics and Total Flavonoids Contents

The total phenolics (TPC) and flavonoids (TFC) contents in the G. glabra and S. japonica
flavonoid-rich fractions were quantitatively determined [35,36]. Gallic acid and quercetin
equivalents were used to assess phenolics and flavonoids contents. The TPC and TFC
values were derived using the gallic acid calibration curve (y = 0.0048x − 0.1264 with
R2 = 0.9994) and rutin (y = 0.002x − 0.0138 with R2 = 0.998), where x is the absorbance
and y is gallic acid or rutin solution concentration (µg/mL), respectively (Figure 1). The
presence of 71.608 ± 3.23 and 70.288 ± 1.94 µg/mg of GAE (gallic acid equivalent) per
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mg of G. glabra and S. japonica flavonoid-rich fractions extract were determined for the
total phenolics (TPC). The existence of 46.99 ± 2.57 and 49.91 ± 2.36 µg QE/mg (quercetin
equivalents) per mg of the G. glabra and S. japonica flavonoid-rich fractions extract were
determined for the total flavonoids (TFC) (Table 1). The results established the presence of
higher concentrations of the total phenolics in G. glabra and higher flavonoids contents in
S. japonica. The results revealed that S. japonica is a rich source with phenolics as compared
to the other species, S. secundiflora and S. tomentosa, which showed phenolics contents of
18.01 and 4.72 mg/g of GAE, respectively [28].

Figure 1. Calibration curve of (A) gallic acid and (B) quercetin.

Table 1. Total phenolics and total flavonoids contents of G. glabra and S. japonica flavonoid-rich
fractions.

Plant Name TPC
µg GA E/mg

TFC
µg Quercetin E/mg

G. glabra 71.608 ± 3.23 46.99 ± 2.57

S. japonica 70.288 ± 1.94 49.91 ± 2.36

2.2. UPLC/MS Analysis of Glycyrrhiza glabra and Sophora japonica Flavonoid-Rich Fractions

Tentative metabolite identification was accomplished by extensive comparison of the
UPLC-MS data from both extracts and the reported data [21,28,31,37–39], as well as online
databases.

It is worth highlighting that polyphenolic components were the major constituents in
both G. glabra and S. japonica flavonoid-rich fractions, with flavonoids and isoflavonoids
being the most abundant classes. As demonstrated in (Table 2), a total of 32 compounds
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were tentatively identified in G. glabra, including 12 flavonoids, 8 chalcones, 5 triterpenoids,
5 isoflavonoids, 1 coumarin and 1 fatty acid. The mass ion peaks at m/z 577.15, 549.20,
417.25, 695.25 and 692.20, corresponding to the suggested molecular formulas C27H30O14,
C26H30O13, C21H22O9, C35H36O15 and C35H35NO14, respectively, fit the flavonoid glyco-
sides isoviolanthin, liquiritin apioside, liquiritin, licorice glycoside D2/D1 and licorice gly-
coside E. Aglycones with mass ion peaks at m/z 255.10, 257.10, 323.20, 407.20, 391.25, 339.10,
355.20, 323.20, 371.20, 323.20, 439.10 and 423.15, corresponding to the molecular formulas
C15H12O4, C15H12O4, C20H20O4, C25H28O5, C25H28O4, C20H20O5, C25H27O4, C20H20O4,
C21H20O6, C20H18O4, C27H34O5 and C26H32O5, respectively, suggested flavonoid and
isoflavonoids that were tentatively identified as liquiritigenin, 5,7-dihydroxyflavanone,
glabranin, 3-hydroxyglabrol, glabrol, licoflavanone and isolicoflavonol, glabridin, gly-
cyrrhisoflavanone, glabrene, licorisoflavan A, kanzonol H, respectively. Moreover, chal-
cones and chalcone glycosides were identified as licochalcone B, isoliquiritigenin, licochal-
cone D, licochalcone A, neolicuroside, echinatin, kanzonol Y and isoliquiritin, with mass
ion peaks at m/z 287.15, 255.10, 353.20, 339.20, 549.20, 269.10, 409.20 and 417.15, respec-
tively, correspond to the molecular formulas C16H14O5, C15H12O4, C21H22O5, C21H22O4,
C26H30O13, C16H14O4, C25H30O5 and C21H22O9, respectively. Additionally, the molecular
ion mass peaks at m/z 837.40, 983.45, 821.40, 821.35 and 469.20, for the predicted molecular
formulas C42H62O17, C48H72O21, C42H62O16, C42H62O16 and C30H46O4, gave hits of the
triterpenes, licorice saponin G2, licorice saponin A3, licorice saponin K2/H2, glycyrrhizic
acid and glycyrrhetinic acid, respectively, which were previously isolated from G. glabra [21].
Noteworthy is the presence of liquiritin apioside, neolicuroside, licorice saponin K2/H2,
isoliquiritigenin, glycyrrhizic acid, glabridin, kanzonol Y, glabrol and glycyrrhetinic acid as
the major constituents of the G. glabra flavonoid-rich fraction (Figure 2).

Table 2. Metabolite profiling of Glycyrrhiza glabra flavonoid-rich fraction via UPLC-ESI-MS in the
negative and positive ion mode.

No. tR
(min) Compound Name [M − H] −

(m/z)
[M + H] +

(m/z) Class Molecular
Formula Ref.

1 8.58 Isoviolanthin 577.15 579.15 Flavonoid glycoside C27H30O14 [21]
2 8.97 Liquiritin apioside 549.20 - Flavonoid glycoside C26H30O13 [21]
3 9.15 Liquiritin 417.25 - Flavonoid glycoside C21H22O9 [21]
4 10.15 Neolicuroside 549.20 - Chalcone glycoside C26H30O13 [21]
5 10.44 Licorice glycoside D2/D1 695.25 - Flavonoid glycoside C35H36O15 [21]
6 10.55 Isoliquiritin 417.15 419.15 Chalcone glycoside C21H22O9 [40]
7 10.92 Liquiritigenin 255.10 - Flavonoid aglycone C15H12O4 [40]
8 11.07 Licorice glycoside E 692.20 - Flavonoid glycoside C35H35NO14 [21]
9 11.26 Licochalcone B - 287.15 Chalcone C16H14O5
10 11.79 5,7-Dihydroxyflavanone 255.10 257.10 Flavonoid aglycone C15H12O4 [21]
11 12.14 Licorice saponin G2 837.40 - Triterpene C42H62O17 [21]
12 12.48 Licorice saponin A3 983.45 - Triterpene C48H72O21 [21]
13 12.90 Echinatin 269.10 271.10 Chalcone C16H14O4 [39]
14 13.66 Licorice saponin K2/H2 821.40 823.40 Triterpene C42H62O16 [21]
15 14.12 Isoliquiritigenin 255.10 - Chalcone C15H12O4 [21]
16 14.40 Glycyrrhizic acid 821.35 - Triterpene C42H62O16 [21]
17 14.87 Glycyrrhisoflavanone 369.20 371.20 Isoflavanone C21H20O6 [41]
18 15.51 Glabrene - 323.20 Isoflavene C20H18O4 [21]
19 16.08 Licochalcone D 353.20 355.20 Chalcone C21H22O5 [21]
20 16.26 Glabranin 323.20 - Flavonoid aglycone C20H20O4 [24]
21 16.92 Licorisoflavan A - 439.10 Isoflavan C27H34O5 [21]
22 17.07 Glycocoumarin 367.10 - Coumarin C21H20O6 [21]
23 17.79 Kanzonol H 423.15 - Isoflavan C26H32O5 [21]
24 18.12 3-Hydroxyglabrol 407.20 409.20 Flavonoid aglycone C25H28O5 [21]
25 18.54 Glabridin 323.20 325.20 Isoflavane C20H20O4 [21]
26 19.23 Kanzonol Y 409.20 411.25 Dihydrochalcone C25H30O5 [21]
27 19.47 Glabrol 391.25 393.25 Flavonoid aglycone C25H28O4 [21]
28 20.28 Licoflavanone 339.10 - Flavonoid aglycone C20H20O5 [24]
29 20.47 Isolicoflavonol - 355.20 Flavonoid aglycone C25H27O4 [41]
30 21.93 Hydroxy-oleic acid 297.30 - Fatty acid C18H34O3 [42]
31 22.08 Licochalcone A - 339.20 Chalcone C21H22O4 [41]
32 23.56 Glycyrrhetinic acid 469.20 471.35 Triterpene C30H46O4 [21]
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Figure 2. Major compounds identified in G. glabra flavonoid-rich fraction using UPLC-ESI-MS.

Regarding (Table 3), a total of 23 metabolites were tentatively identified in S. japonica, in-
cluding 16 flavonoids, 4 isoflavonoids, 1 coumestan, 1 flavonostilben and 1 phenylpropanoid.
The ion mass peaks at m/z 447.10, 267.50 and 901.25 [M − H]− for the predicted molecu-
lar formulas C21H20O11, C15H10O5 and C39H50O24, respectively, gave hits of the quercitrin,
apigenin and kaempferol 3-O-α-l-rhamnopyranosyl(1→6)-β-d-glucopyranosyl(1→2)-β-D-
glucopyranoside-7-O-α-l-rhamnopyranoside, which were isolated from S. japonica [31,33]. The
ion mass peaks at m/z 609.20, 593.10 and 577.20 [M−H]− for the suggested molecular formu-
las C27H30O16, C27H30O15 and C27H30O14, respectively, correspond to sophoraflavonoloside,
genistein 7,4′-di-O-β-D-glucopyransoide and sophorabioside, which were isolated from S.
japonica seeds [43]. Two ion peaks values at m/z 755.25 and 739.20 [M−H]− with the molecu-
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lar formulas C33H40O20 and C33H39O19, respectively, were tentatively identified as genistein 7-
O-β-D-glucopyranoside-4′-O-[(β-D-glucopyranosyl)- (1→2)- β-D-glucopyranoside] and genis-
tein 7-O-β-D-glucopyranoside-4′-O- [(α -L-rhamnopyranosyl) -(1→2)- β-D-glucopyranoside],
which were previously isolated from S. japonica [44]. The ion mass peaks at m/z 463.25
and 461.15 [M −H]− corresponding to the molecular formulas C21H19O12 and C22H22O11,
respectively, were detected and dereplicated as quercetin 3-O-β-D-glucopyranoside and
paratensein-7-O-glucoside, which were isolated from the small branches and stem bark
of S. japonica, respectively [37,38]. Moreover, flavonoid and isoflavonoid aglycones with
their ion mass peaks values at m/z 301.20, 269.45, 283.10 [M − H]− and 317.25 [M + H]+

corresponding to C15H10O7, C15H10O5, C15H10O6 and C16H12O7, respectively, gave hits of
quercetin, genistein, kaempferol and tamarixetin, respectively, which were previously isolated
from S. japonica [45,46]. In addition, two main peaks with m/z values 425.20 [M − H]−

and 439.50 [M + H]+, corresponding to the molecular formulas C25H28O6 and C26H30O6,
respectively, hit sophoraflavanone G and kurarinone, which were previously isolated from
S. flavescens [47]. Noteworthy is that sophoraflavanone G, sophoraflavonoloside, genistein
7,4′-di-O-β-D-glucopyransoide, kurarinone, genistein, kaempferol and tamarixetin are the
most abundant constituents in the S. japonica flavonoid-rich fraction (Figure 3).

Table 3. Metabolite profiling of Sophora japonica flavonoid rich fraction via UPLC-ESI-MS in the
negative and positive ion mode.

No. tR (min) Compound Name [M − H] −
(m/z)

[M + H] +

(m/z) Class Molecular
Formula Ref.

1 3.57 1,3,5-Tri-O-caffeoylquinic acid 677.25 - Phenylpropanoids C34H30O15 [48]

2 5.04 Quercitrin
(Quercetin-3-O-L-rhamnoside) 447.10 - Flavonoid glycoside C21H20O11 [31]

3 7.50

Kaempferol
3-O-α-l-rhamnopyranosyl(1→6) -

β-d-glucopyranosyl(1→2)-
β- D -glucopyranoside-7-

O- α -l-rhamnopyranoside

901.25 - Flavonoid tetra
glycoside C39H50O24 [33]

4 7.91 Sophoraflavanone G - 425.20 Flavonoid aglycone C25H28O6 [47]

5 8.23

Genistein
7-O-β-D-glucopyranoside-4′-O-
[(β-D-glucopyranosyl)- (1→2)-

β-D-glucopyranoside]

755.25 - Isoflavonoid
glycoside C33H40O20 [44]

6 8.49

Genistein
7-O-β-D-glucopyranoside-4′-O-
[(α -L-rhamnopyranosyl)-(1→2)-

β-D-glucopyranoside]

739.20 - Flavonoid glycoside C33H39O19 [44]

7 8.81 Sophoraflavonoloside 609.20 611.20 Flavonoid glycoside C27H30O16 [43]

8 9.13 Genistein
7,4′-di-O-β-D-glucopyransoide 593.10 - Isoflavonoid

glycoside C27H30O15 [43]

9 9.53 Paratensein-7-O-glucoside 461.15 - Flavonoid glycoside C22H22O11 [38]

10 9.69 Narcissin
(Isorhamnetin-3-O-rutinoside) 463.20 - Flavonoid glycoside C28H32O16 [28]

11 10.00 Myricetin-O-coumaroyl-
glucoside 625.35 - Flavonoid glycoside C30H26O15 [42]

12 10.19 Kaempferitrin 577.20 579.20 Flavonoid glycoside C27H30O14 [28]

13 10.73 Quercetin
3-O-β-D-glucopyranoside 463.25 - Flavonoid glycoside C21H19O12 [37]

14 10.96 Sophorabioside 577.20 - Isoflavonoid
glycoside C27H30O14 [43]

15 11.16 Nepetin 4′-glucoside 477.50 - Flavonoid glycoside C22H22O12 [48]
16 12.25 Quercetin 301.20 - Flavonoid C15H10O7 [46]
17 12.41 Alopecurone A 649.45 - Flavonostilbene C39H38O9 [49]
18 12.96 Kurarinone - 439.50 Flavonoid aglycone C26H30O6 [47]
19 13.21 Genistein 269.45 - Isoflavonoid C15H10O5 [45]
20 14.57 Apigenin 267.50 269.50 Flavonoid aglycone C15H10O5 [31]
21 16.67 Kaempferol 283.10 285.10 Flavonoid aglycone C15H10O6 [45]
22 19.70 Tamarixetin - 317.25 Flavonoid aglycone C16H12O7 [46]
23 21.16 Medicagol 295.25 - Coumestans C16H8O6 [50]
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Figure 3. Major compounds identified in S. japonica flavonoid-rich fraction using UPLC-ESI-MS.

2.3. In Vivo Wound Healing Experiment
2.3.1. Effect of Topical Application of Different Treatments on Wound Contraction

The percentage reduction in wound area was calculated to determine the extent of
the wound contraction [51]. As illustrated in (Figures 4 and 5), the wound contraction was
significantly improved by the topical application of Nolaver, ABO, ABG, AO, BO and AG
preparations, with a remarkable increase in Nolaver®, ABO, and ABG groups by 3-,4- and
2.8-fold, respectively, in comparison to the wound model group on day 7. Furthermore,
only the percentage of wound contraction in the ABO group was dramatically higher than
that in the Nolaver group, by 36%. By the same mean, on day 14 of the experiment, the
topical application of Nolaver, ABO and ABG significantly accelerated wound healing
by 3-, 3.8- and 3-fold in contrast to the wound model group. As expected, only the ABO
group showed an outstanding effect compared to the rest of treatment. Noteworthy is that
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the G. glabra and S. japonica flavonoid-rich fractions combination, either ointment or gel
(ABO and ABG), significantly improved wound contraction compared to their individual
constituents (AO, BO) and (AG, BG), respectively.

Figure 4. Representative images demonstrate the excised wounds during the healing process in
different rats group after applying various treatments topically on days 0, 7 and 14. ABO: Ointment
of G. glabra and S. japonica combination (1:1), ABG: Gel of G. glabra and S. japonica combination (1:1),
AO: Ointment of G. glabra, BO: Ointment of S. japonica, AG: Gel of G. glabra, BG: Gel of S. japonica.

Figure 5. Effects of various treatments on the rate of wound healing at various days in rats (wound
contraction, %). Values are expressed as mean ± SD (n = 6). The symbols *, #, @, & indicate statistical
significance at p < 0.05, symbol * as compared to the model, symbol # as compared to the standard,
symbol @ as compared to the (ABO) ointment of the G. glabra and S. japonica combination (1:1) and
symbol & as compared to the (ABG) gel of the G. glabra and S. japonica combination (1:1), using a
two-way ANOVA followed by the Bonferroni post hoc test; p < 0.05.

In this work, we selected two different formulations as delivery systems for the
extracts of the investigated medical plants: ointment and hydrogel. The selection of the
post-mentioned formulations was based on two factors. The first factor is the formulation
nature (hydrophilicity/hydrophobicity), and the second factor is the native wound healing
capacity of the plain formulation itself. Regarding the nature of the formulation, it greatly
affects the release behaviour of the drug. Hydrophilic drugs are better to be incorporated
into formulations with lipophilic characters in order to enhance drug partitioning between
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the formulation and the applied tissues. On the contrary, the formulation that achieves the
complete solubilization of the drug will result in low drug diffusion towards the applied
skin. Therefore, the simple ointment as a hydrophobic delivery system was investigated to
deliver the alcoholic and hydroalcoholic extracts of the medical plants (more hydrophilic).
For the fulfilment of the second factor, hydrogels are thought to be an effective carrier for
the topical delivery of various drugs intended for wound healing. The high-water content
supplies the hydration required for healing process. The in vivo experiment results revealed
that ointment formulations significantly accelerated wound healing over hydrogels for both
the single and combination preparations, as shown in (Figure 4). This observation endorses
the importance of the proper selection of the base that achieves optimum partitioning and
diffusion of the drug.

2.3.2. Histopathology

Fourteen days post-treatment, as shown in (Figure 6) and scored in (Table 4), the
examination of the negative control slides under a microscope (Group I) and both plain
treatments (Group II and III) samples revealed slow wound healing with a significant pres-
ence of ulcers, scabs, necrotic tissues and infiltrating inflammatory cells, mainly neutrophils
(arrow). There was an abundance of inflammatory cells in the highly cellular granulation
tissue and numerous activated fibroblasts in the dermis, as well as newly developed blood
vessels. However, the positive control (Nolaver®) (Group IV) samples showed a rapid
recovery from the wound, with the epidermis completely re-epithelialized (arrows) with
very moderate vascular alterations in basal keratinocytes and more mature collagen fibres
formed. In addition, the granulation tissue containing numerous fibroblasts shrank. In
Group V: Ointment of G. glabra and S. japonica combination (1:1) (ABO), the epidermal
layer completely re-epithelialized. There is a large region of dermal granulation tissue
that was highly cellular and less fibrous, with an abundance of tiny blood capillaries. The
sub-epithelial haemorrhages were localised in clusters. Similarly, Ointment of G. glabra (AO)
Group VII revealed a wound that was showing signs of healing, including new collagen
and a slight presence of inflammatory cells. Group IX: Gel of G. glabra (AG), Group X: Gel
of S. japonica (BG) and Group VIII: Ointment of S. japonica (BO) showed an incomplete
wound healing and thick epidermis with a marked presence of inflammatory cells, mainly
neutrophils. In Group VI: Gel of G. glabra and S. japonica combination (1:1) (ABG), there
showed incomplete wound healing, with a fewer number of inflammatory cells.

Table 4. Wound healing processes score of different treatment groups on day 14.

Group NO. Group Thickness of Epithelial Cells Inflammatory Cells Collagen

I Negative control (Wound) + + + + + + + + + + +
II Plain gel + + + + + + + + + + + +
III Plain ointment + + + + + + + + + + + +
IV Positive control (Nolaver®) + + + + + + + +

V Ointment of G. glabra and S.
japonica combination (1:1) (ABO) + + + + + +

VI Gel of G. glabra and S. japonica
combination (1:1) (ABG) + + + + + + + +

VII Ointment of G. glabra (AO) + + + + + + + +
VIII Ointment of S. japonica (BO) + + + + + +
IX Gel of G. glabra (AG) + + + + + + +
X Gel of S. japonica (BG) + + + + + + + + +

HE (Hematoxylin and eosin) stained sections were scored as mild (+), moderate (+ + +) and severe (+ + + + +) for
epidermal and/or dermal remodelling.
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Figure 6. Histopathological view of wound healing and epidermal/dermal remodelling in the groups
administered different treatments on day 14. (A) Thickening of epidermis at its cut edges by necrotic
tissues with massive inflammatory cell infiltration, mainly neutrophils arrow. (B) Thickening of
epidermis by inflammatory cells and necrotic tissues with mild neo-angiogenesis and new vessel
formation in dermal layer arrow. (C) Thickening of epidermis by inflammatory cells and necrotic
tissues with mild neo-angiogenesis and new vessel formation in dermal layer arrow. (D) Granulation
tissue consisted mainly of fibroblasts and migration of epithelial cells (<50%) arrow. (E) Thickening
and migration of epithelial cells (<50%), newly created granulation tissue and keratinization epithelial
layer arrow. (F) Massive inflammatory cell infiltration, mainly neutrophils and non-organized
collagen arrow. (G) Migration of epithelial cells (≥50%) and keratinization epithelial layer arrow.
(H) Migration of epithelial cells (≥50%) and keratinization epithelial layer arrow. (I) Newly created
granulation tissue rich on inflammatory cell cells, mainly neutrophils arrow. (J) Massive inflammatory
cell infiltration, mainly neutrophils and non-organized collagen arrow. ((H,E)X200).

2.3.3. Estimation of Thiobarbituric Acid Reactive Substances (TBARS) Level Expressed as
Malondialdehyde (MDA)

The wound group showed an eminent increment of the MDA level, an indicator of
lipid peroxidation. The topical application of Nolaver®, G. glabra ointment and gel (AO and
AG), S. japonica ointment and gel (BO, BG) and the combination preparations (ABO, ABG)
significantly attenuated the lipid peroxidation with a remarkable decrease in MDA levels in
the positive control group and the ABO groups by 2.4- and 3.7-fold, respectively, compared
to the model group. Moreover, the combination ointment preparation (ABO) only showed
a significant decrement in MDA by 1.5-fold in comparison to the positive control group.
However, the rest of the treatments revealed a statistically significant elevation in MDA
in comparison to the ABO group. When compared to the single ointment preparation
of G. glabra and S. japonica (AO and BO), the (ABO) preparation significantly reduced
MDA. However, the MDA level in the single gel formulation of G. glabra and S. japonica
(AG and BG) groups did not differ significantly when compared with the combination gel
preparation (ABG) group (Figure 7).
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Figure 7. Thiobarbituric acid reactive substances (TBARS) level expressed as malondialdehyde
(MDA); (A) reduced glutathione (GSH) (B) and superoxide dismutase activity (SOD) (C) in the
wound tissues. (%). Values are expressed as mean ± SD (n = 6). *, #, @, & indicate p < 0.05, compared
to Groups I, IV (Standard), V (ABO) and VI (ABG), respectively, using a one-way ANOVA followed
by Tukey’s post hoc test; p < 0.05.

2.3.4. Estimation of Reduced Glutathione GSH and SOD Activity in the Wound Tissues

The wound injury in the model group resulted in a remarkable decrease in glutathione
(GSH) level and superoxide dismutase (SOD) activity, two key antioxidant tissue com-
ponents. The topical application of Nolaver®, G. glabra ointment and gel (AO and AG),
S. japonica ointment (BO) and combination preparations significantly increased the GSH
level and SOD activity compared to the model group. The combination ointment prepa-
ration (ABO) significantly increased the GSH levels (by 3.7- and 1.3-fold, respectively, in
comparison to the model and positive control groups) and restored SOD activity (by 2-
and 1.3-fold, respectively, in comparison to the model and positive control groups). Inter-
estingly, the combination ointment preparation (ABO) significantly increased both GSH
levels and SOD activity as compared to single ointment preparation of G. glabra and S.
japonica (AO and BO). Except for GSH in the single gel preparation of G. glabra (AG) group,
no statistically significant differences regarding GSH level or SOD activity were observed
between the single gel preparations of G. glabra and S. japonica (AG and BG) groups versus
the combination gel preparation (ABG) group (Figure 7).
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2.3.5. Evaluation of CDI for the Combination

To study the effects of the interaction for the combination in gel and ointment for-
mulations, CDI was estimated for the wound contraction percent besides the influence
on the MDA, GSH and SOD levels. The results are represented in (Table 5), displaying
synergistic effects. The CDI determination is a helpful approach for determining the type of
therapeutic interactions. The current study examined the consequences of wound healing
of G. glabra and S. japonica flavonoid-rich fractions at a single concentration (10%) and in
combined formulations of ointment and gel. The CDI for the effect of the combination of
G. glabra and S. japonica flavonoid-rich fractions in both formulation ointment and gel on
all parameters investigated; wound contraction percent, MDA, GSH and SOD level was
calculated to be synergistic.

Table 5. Nature of interaction between G. glabra and S. japonica flavonoid-rich fractions as determined
by CDI.

Parameter CDI Effect of Ointment
Combination CDI Effect of Gel

Combination

Percent of wound
contraction on day 7 0.32 Synergistic 0.30 Synergistic

Percent of wound
contraction on day 14 0.32 Synergistic 0.27 Synergistic

MDA level 0.37 Synergistic 0.70 Synergistic

GSH level 0.86 Synergistic 0.71 Synergistic

SOD level 0.61 Synergistic 0.78 Synergistic

In the current study, ointment and gel topical preparations prepared with either
the flavonoid-rich fractions of G. glabra, S. japonica or a combination of two fractions
were assessed for their wound healing capacity. To shed light on how the formulation’s
components interact synergistically, each fraction was assessed separately for its wound
healing efficacy. Wound healing efficacy was investigated through the antioxidant markers,
viz., MDA, reduced GSH and SOD levels.

Different extracts of Glycyrrhiza glabra revealed broad dermatological applications,
including treating a variety of skin conditions and infections [52]. The primary antioxidative
and anti-inflammatory properties of G. glabra are the basis for the reported skin benefits
[24,39,53]. Different extracts of G. glabra are recently embedded in variable skin products
due to its richness with flavonoids and its two primary active ingredients, glycyrrhizin and
glycyrrhetinic acid, which are powerful inhibitors of cortisol metabolism [24,52,54]. Saeedi
et al. (2003) revealed the use of liquorice as an effective treatment for skin dermatitis [55].
Several reports revealed the important contribution of major constituents of G. glabra,
glycyrrhetinic acid, glycyrrhizin, glabridin, isoliquiritigenin, licochalcone A and liquiritin,
in the management of skin conditions, owing to their notable antimicrobial, antioxidant
and anti-inflammatory effects [56–62]. In addition, the flavonoids of S. japonica are reported
for their antioxidant, antimicrobial and anti-inflammatory properties [63], besides their role
in skin conditions as contact dermatitis [14,64]. It has been shown that sophoraflavanone G
has various activities, including being antimicrobial, antioxidant and anti-inflammatory,
along with a limited cytotoxicity, valuable for wound healing [65].

In accordance with previous investigations, the current study revealed that the groups
treated with a combination of G. glabra and S. japonica (1:1) in ointment formulation interest-
ingly showed that improved wound contraction and oxidative stress markers (as observed
by decreased lipid peroxidation and higher GSH and SOD levels), as well as enhanced
re-epithelialization as compared to the negative control group in the histopathological
examination. The antioxidant and wound healing potential observed in the current study
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are significantly influenced by the abundance of various flavonoids in both fractions of
G. glabra and S. japonica.

2.4. Molecular Docking

This section investigated the various mechanisms by which the main compounds
mentioned above exert biological effects. Consequently, using the following IDs: 3F88,
5H8X and 3N2R for glycogen synthase kinase 3-β (GSK3-β), matrix metalloproteinases-8
(MMP-8) and nitric oxide synthase (iNOS), respectively, their 3D structures were obtained
from the protein data bank. The RMSD values between the co-crystalized and the retrieved
docking poses were 0.78, 1.12 and 0.85 Å, for 3F88, 5H8X and 3N2R, respectively indicating
valid docking protocol (see Supplementary Information). Following that, the fifteen major
compounds were docked in the vicinity of the active sites of the three enzymes. It was
obvious that after docking with the three targets, all compounds achieved acceptable
binding scores (Table 6).

Table 6. The docking scores obtained by the major compounds identified in G. glabra and S. japonica
against the three target enzymes GSK-3β, MMP-8 and iNOS.

Major Identified Compounds in G. glabra

Compound
Docking Scores Kcal/mol

GSK-3β
3F88

MMP-8
5H8X

iNOS
3N2R

Co-crystalized ligand 3HT
(−15.7)

7FY
(−13.2)

XJH
(−16.4)

Isoliquiritigenin −12.0 −10.2 −11.4
Liquiritin apioside −14.1 −12.8 −14.5

Neolicuroside −13.6 −15.4 −13.5
Kanzonol Y −13.4 −11.3 −11.2
Glabridin −12.8 −10.8 −10.7
Glabrol −11.9 −10.3 −13.2

Glycyrrhizic acid −15.2 −11.9 −18.2
Glycyrrhetinic acid −11.3 −10.5 −11.1

Major identified compounds in Sophora japonica

Compound
Docking scores Kcal/mol

GSK−3β
3F88

MMP−8
5H8X

iNOS
3N2R

Kaempferol −13.1 −13.7 −11.6
Sophoraflavonoloside −14.3 −13.4 −16.1
Sophoraflavanone G −13.5 −10.4 −14.6

Genistein 7,4′-di-O-β-D-
glucopyransoide −16.9 −9.9 −13.4

Genistein −10.5 −11.4 −11.2
Tamarixetin −13.1 −9.9 −10.6
Kurarinone −11.6 −12.3 −12.3

2.4.1. Docking of Glycyrrhiza glabra Major Compounds

The major identified compounds in Glycyrrhiza glabra (liquiritin apioside, neolicuroside,
isoliquiritigenin, glycyrrhizic acid, glabridin, kanzonol Y, glabrol and glycyrrhetinic acid)
exerted synergetic effects as indicated by the acceptable docking scores of all the identified
compounds (Table 6). In the docking of GSK3-β, liquiritin apioside and glycyrrhizic acid
obtained the highest docking scores of −14.1 and −15.2 Kcal/Mol, respectively. As shown
in (Figure 8(A1, A2)), liquiritin apioside interacted with Val135, Tyr134, Pro136, Glu137,
Arg141, Lys60, Ile62 and Leu188, and glycyrrhizic acid interacted with Val70, Lys183,
Tyr140, Pro136, Arg141, Ile62 and Cys199. In the docking of matrix metalloproteinases-8
(MMP-8), liquiritin apioside and neolicuroside achieved the best docking scores of −12.4
and −15.4 Kcal/Mol, respectively. As depicted in (Figure 8(B1, B2)), liquiritin apioside
bound to MMP-8 through interactions with Ala161, His162, His197, Glu198, Zn304 and
Pro217, while neolicuroside interacted with Ser151, Pro152, Gly158, Leu160, Ala161 and
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Glu198. In the docking of nitric oxide reductase (iNOS), liquiritin apioside and glycyrrhizic
acid achieved the best docking scores of−14.5 and−18.2 Kcal/Mol, respectively. Inspecting
(Figure 8(C1, C2)), liquiritin apioside was able to interact with the residues of iNOS through
binding with Cys415, Gly417, Ser585, Gly586, Trp587 and Pro681, and glycyrrhizic acid
interacted with Met336, Cys415, Gln478, Pro565, Met589, Arg596, Val677 and Trp678. In
conclusion, the docking results validated and confirmed the biological findings, leading to
a synergistic impact for all the major G. glabra extract constituents.

Figure 8. (A) The 2D binding modes of liquiritin apioside (A1) and glycyrrhizic acid (A2) to the active
binding sites of GSK3-β. (B) The 2D binding modes of liquiritin apioside (B1) and neolicuroside
(B2) to the active binding sites of MMP-8. (C) The 2D binding modes of liquiritin apioside (C1) and
glycyrrhizic acid (C2) to the active binding sites of iNOS.

2.4.2. Docking of Sophora japonica Major Compounds

The isolated major compounds (sophoraflavanone G, sophoraflavonoloside, genistein
7,4′-di-O-β-D-glucopyranoside, kurarinone, genistein, kaempferol and tamarixetin) exerted
synergetic effects as indicated by the acceptable docking scores of all the identified com-
pounds (Table 6). In the docking of GSK3-β, sophoraflavonoloside and genistein 7,4′-di-
O-β-D-glucopyranoside achieved the best docking scores of −14.3 and −16.9 Kcal/Mol,
respectively. As shown in (Figure 9(A1, A2)), sophoraflavonoloside interacted with Ile62,
Gly63, Phe67, Thr138, Arg141, Gln185, Cys199 and Asp200, and genistein 7,4′-di- O-β-D-
glucopyranoside interacted with Lys60, Ile62, Ser66, Pro136, Arg141, Asp181, Lys183 and
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Asn186. In the docking of matrix metalloproteinases-8 (MMP-8), sophoraflavonoloside
and kaempferol achieved the best docking scores of −13.7 and −13.4 Kcal/Mol, respec-
tively. As depicted from (Figure 9(B1, B2)), kaempferol interacted with Leu160, Ala161,
Val194, His197 and Asn218. Sophoraflavonoloside bound to MMP-8 through interactions
with Asn85, Ala163, Glu198 and Ala206. In the docking of nitric oxide reductase (iNOS),
sophoraflavonoloside and sophoraflavanone G achieved the best docking scores of−16.1 and
−14.6 Kcal/Mol, respectively. Inspecting (Figure 9(C1, C2)), sophoraflavonoloside was able
to interact with the residues of iNOS through binding with Trp409, Cys415, Gly417, Trp587,
Met589 and Glu592, while sophoraflavanone G interacted with Cys415, Ser457, Met589 and
Val649. In conclusion, the docking results validated and confirmed the biological findings,
leading to a synergistic impact for all the major S. japonica extract constituents.

Figure 9. (A) The 2D binding modes of sophoraflavonoloside (A1) and genistein 7,4′-di-O-β-
D-glucopyransoide (A2) to the active binding sites of GSK3-β. (B) The 2D binding modes of
sophoraflavonoloside (B1) and kaempferol (B2) to the active binding sites of MMP-8. (C) The
2D binding modes of sophoraflavonoloside (C1) and sophoraflavanone G (C2) to the active binding
sites of iNOS.

2.5. Pharmacokinetic Profiling

It is well established that drug candidates should have both acceptable pharmacologi-
cal and pharmacokinetic profiles. Accordingly, the ADME profile of glycyrrhizic acid and
sophoraflavonoloside were calculated using SWISS ADME. In general, both compounds
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showed a low degree of absorption from the gastrointestinal tract (GIT). This is probably
attributed to the high polarity of both compounds that violate the required physicochemical
properties for optimum absorption. As demonstrated by the properties radar chart, both
the compounds had the desired values of all the properties (size, polarity, lipophilicity,
flexibility, solubility and saturation) with exception for the size and polarity (Figure 10).
Moreover, it is very important to get insights in the metabolic behaviour of both the com-
pounds. Both compounds were found to have no interactions with various isoforms of
cytochrome enzymes, including CYP1A2, CYP2C19, CYP2C9, CYP2D6 and CYP3A4; thus
they could be used safely with other drugs with no need for dose adjustment. A worthy
note is that both compounds had no violation of any of the drug-likeness rules (Lipinski,
Viber, Muegge, Ghose, Veber and Egan) making them excellent drug candidates for future
optimization. Finally, both compounds have no records in pan interference assays (PAINS),
giving rise to their potential high safety margin.

Figure 10. The pharmacokinetic profiling of compounds (A) glycyrrhizic acid and (B) sophoraflavonolo-
side.
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3. Materials and Methods
3.1. Plant Material Extraction, and Fractionation

The roots of G. glabra were purchased from a local market in Egypt in November 2020.
The leaves of S. japonica were obtained from the El-Orman Botanical Garden, Giza, Egypt, in
December 2020. Both plants had their authenticity verified by taxonomy specialist engineer,
Therease Labib, El-Orman Botanical Garden, Giza, Egypt. Plant material voucher specimens,
under code BUC-PHG-GG-1 for G. glabra and BUC-PHG-SJ-2 for S. japonica, were placed at
the Pharmacognosy Department, Faculty of Pharmacy, Badr University in Cairo.

The air-dried pulverized leaves of S. japonica (250 gm) and the roots of G. glabra
(500 gm) were separately macerated in 70% methanol (3 × 500 mL) and (3 × 1 L) for S.
japonica and G. glabra, respectively, followed by filtration. The filtrate was completely
evaporated in vacuo at a low temperature (45 ◦C), using a rotary evaporator (Hei-VAP
Value, Heidolph) to produce dry residue (59 g; 23.6% w/w) and (83.6 g; 16.72% w/w),
respectively. The extraction yield was determined by the equation: [total weight of dried
residue/total weight of fresh plant] × 100 [66]. Then, each extract (50 g) was fractionated
separately on Diaion HP-20 (SUPLECO, North Harrison Road, Bellefonte, PA, USA) using
a gradient concentration of methanol/water to obtain four main fractions for each plant:
100% water, 25% methanol, 75% methanol and 100% methanol. The 75% methanol fraction
is the flavonoid-rich fraction that produces a yellow colour with NH3 vapour and a green
colour with FeCl3 [67]. The flavonoid-rich fraction (20 g) for G. glabra and (13 g) for S.
japonica were kept in tightly sealed containers for further biological and phytochemical
investigations.

3.2. Total Phenolics and Total Flavonoids

The total phenolic content of the G. glabra and S. japonica flavonoid-rich fraction
was determined using the Folin–Ciocalteu method, as described by Attard [35]. Briefly,
we started with mixing 10 µL of sample/standard with 100 µL of the Folin–Ciocalteu
reagent (diluted 1:10) in a 96-well microplate. Afterwards, 80 µL of 1M Na2CO3 was
added and incubated at room temperature (25 ◦C) for 20 min in the dark. Following the
incubation period, the blue complex colour that resulted was detected at 630 nm. Data
represented as means ± SD and the gallic acid % was estimated using a pre-established
standard calibration curve. The total phenolic content was expressed in µg of the gallic
acid equivalents/mg extract.

The total flavonoids content determined using the aluminium chloride method, as
described by Kiranmai [36], with some modifications was conducted on microplates. In
brief, 15 µL of the sample/standard was placed in a 96-well microplate, then, 175 µL of
methanol was added, followed by 30 µL of 1.25% AlCl3. At the end, 30 µL of 0.125 M
C2H3NaO2 was added and incubated for 5 min. Following the incubation period, the yellow
colour was measured at 420 nm. Data represented as means ± SD and with reference to
a previously created standard calibration curve, the % was estimated as quercetin. The
FluoStar Omega microplate reader was used to record the results.

3.3. UPLC-ESI-MS Analysis

UPLC/MS analysis was performed at the Centre of Drug Discovery Research and
Development, Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University,
Egypt, using Waters® TQD UPLC-MS with an ESI source using Waters® Acquity UPLC RP-
C18 column, (100 × 2 mm, ID), and a particle size of 1.7 µm, with an integrated pre-column.
From 2% to 100% acetonitrile, a gradient of water and acetonitrile was applied, along with
0.1% formic acid. The flow rate was 1 or 0.5 mL/min and one run took 35 min. The MS
was operated at −10 V for ESI-, a 240 ◦C source temperature and high purity N2 was used
as a sheath and auxiliary gas at a flow rate of 80 and 40 (arbitrary units), respectively. The
injection volume was 5 µL. The voltage of 4.48 kV was used as a spray voltage; 10.00 V
was the tube lens, and 39.6 V was the capillary voltage. A full scan mode was adjusted
in the mass range of 100–2000 m/z. The compounds were tentatively identified using MS
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data (in the negative and positive ionization mode) in comparison to previously known
compounds from the genus and family. XcaliburTM 2.0.7 software was used for collecting
data and analysis (Thermo Scientific, Karlsruhe, Germany) [68].

3.4. Preparation of Topical Extract Gel

An amount equivalent to 1.5% w/w of carbopol 940 was stirred for 60 min in distilled
water containing 0.01% w/v benzalkonium chloride as a preservative. Propylene glycol
(10% w/w) was then added to form a gel dispersion. Alcoholic and hydroalcoholic herbal
extracts (equivalent to 10% w/w) were gradually added to the gel system while being
constantly stirred. Finally, the gel was developed spontaneously by adding triethanolamine
dropwise, and the pH of the preparation was adjusted to 7. Mixing continued until a
transparent gel was obtained [69,70].

3.5. Preparation of Topical Extract Ointment

Simple ointments were made from the extracts of the plant materials under study. The
ointment was prepared according to the British Pharmacopoeia [71] as follows (Table 7):

Table 7. Composition of the prepared ointment formulation.

Ingredients Weight (g)

Wool fat 50
Hard paraffin 50

Cetostearyl alcohol 50
White soft paraffin 850

1000

Reduced amounts of the ingredients, required to prepare 25 g of the ointment base,
were combined, gently heated while being stirred to obtain homogeneity and then stirred
continuously until the base cooled and congealed. For the preparation of medicated oint-
ments, 10% w/w of the herbal extracts was added to the melted base of simple ointments.

3.6. In Vivo Wound Healing Experiment
3.6.1. Animals

Sixty adult male Wistar albino rats, weighing approximately 200–250 g, were obtained
from the animal house at the Faculty of Pharmacy, Badr University in Cairo (Cairo, Egypt).
They were kept in plastic cages in a standard laboratory environment (23 ± 1 ◦C, 40–60%
humidity, 12 h light/dark cycles), fed standard rat pellet food and were allowed to drink
water ad libitum. Before the study, the rats were adapted to their new environment for one
week before the experiment. The Research Ethics Committee of the Faculty of Pharmacy
at Badr University in Cairo approved the experimental procedures (PG-117-A), which
followed the rules set by the US National Institutes of Health for the proper care and use of
laboratory animals (NIH Publication No. 85-23, revised 2011).

3.6.2. Wound Induction and Experimental Groups

To induce wounds in an animal model, each rat was anaesthetized with ketamine
hydrochloride at a dose of (100 mg/kg i.p.) Then, the rat’s anterior dorsal side was shaved
using a sterile surgical blade and a patch of skin was removed to create a full thickness
excision wound of two cm2. The skin was checked for any irritation or scars [4].

On the following day, the rats were randomly assigned into ten groups of six rats each,
as follows: Group I: Negative control (Wound)

Group II: Plain gel
Group III: Plain ointment
Group IV: Positive control (Nolaver®)
Group V: Ointment of G. glabra and S. japonica combination (1:1) (ABO).
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Group VI: Gel of G. glabra and S. japonica combination (1:1) (ABG).
Group VII: Ointment of G. glabra (AO).
Group VIII: Ointment of S. japonica (BO).
Group IX: Gel of G. glabra (AG).
Group X: Gel of S. japonica (BG).

Throughout the experiment, the wounds were firstly cleaned with 0.9% saline solution
and a thin layer of each formulation was applied and evenly distributed over the wound
surface once daily for 14 consecutive days. Then animals were caged individually to
prevent them from biting the wounds. The healing of the wounds was evaluated daily.
On day 14, the last day of the study, the rats were euthanized by decapitation under
anaesthesia, using thiopental (50 mg/kg), and the wound granulation tissues produced
were removed for further investigation. Buffered formalin was used for H&E staining and
histopathological examination, while a phosphate buffer solution was used for biochemical
assessment [72].

3.6.3. Wound Contraction Measurements

The wound contraction percentage was estimated using the procedures outlined
in [73]. Rats were aligned on a workbench with the wound facing up to measure the
entire wound area. A firm, flexible rectangle of a clear polythene (3 × 3 cm2) sheet was
used to cover the wound after it had been marked with a fine-tipped permanent marker;
the rats were then put back in their cages. Planimetrically, by converting the size of the
wound on the transparent sheet into the weight of card paper with the same area, the area
(mm2) within the boundaries of each trace was determined. Because the weight of the
card paper per unit area was already known, estimating the weight of each card paper
for a certain wound was simple. The wound area was measured on day 0, day 7, and
14 days post-wounding. Wilson’s formula was used to calculate the percentage of wound
contraction [74].

% Wound contraction =
Day 0 wound area−wound area on a particular day × 100

Day 0 wound area

3.6.4. Histopathology

Control and treated animals were sacrificed at the end of experimental period and
tissues were removed from each animal’s wound site. Following sample fixation with 10%
formalin, dehydration with ascending alcohol grades was performed. After being cleaned
in xylene, the dehydrated samples were embedded in paraffin blocks and sectioned at
4–6 m thick. To examine the acquired tissue sections histopathologically using an electric
light microscope, they were deparaffinized with xylol and stained with hematoxylin and
eosin (H&E) [75].

3.7. Biochemical Analysis
3.7.1. Measurement of Lipid Peroxidation

The level of malondialdehyde (MDA), as a marker of lipid peroxidation, was deter-
mined in the granulation tissue according to the kit’s instructions (Biodiagnostic, Egypt).
The process depends on the interaction between thiobarbituric acid and MDA in an acidic
solution at 95 ◦C for 30 min to produce a thiobarbituric acid reactive product; the pink
product’s absorbance was then calculated at 534 nm [76].

3.7.2. Estimation of Reduced Glutathione

The level of reduced glutathione was determined based on the kit’s instructions
(Biodiagnostic, Egypt). The procedure is based on reducing GSH with 5,5′-dithiobis
(2-nitrobenzoic acid) to produce a yellow reduced chromogen whose absorbance is di-
rectly proportional to the concentration of GSH and is calculated at 405 nm [77].
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3.7.3. Estimation of Reduced SOD

The level of superoxide dismutase (SOD) in the tissue was estimated according to
the kit’s instructions (Biodiagnostic, Egypt). The methodology relies on the SOD’s ca-
pacity to prevent the reduction of the nitro-blue tetrazolium dye caused by phenazine
methosulphate [78].

3.8. Statistical Analysis

All data were expressed as mean ± SEM and analysed by one-way ANOVA followed
by Tukey’s post hoc test. All statistical analyses were performed using GraphPad Prism
software (version 6.01). Probability values ≤ 0.05 were considered statistically significant.

3.9. Molecular Docking

The glycogen synthase kinase 3-β (GSK3-β), matrix metalloproteinases-8 (MMP-8)
and nitric oxide synthase (iNOS) X-ray 3D structures were retrieved from the protein
data bank (www.pdb.org), accessed on 12 October 2022 using the following IDs: 3F88,
5H8X and 3N2R, respectively [79–81]. Docking investigations were conducted utilising
MOE 2019 [82], which was also utilised to develop the 2D interaction diagrams of docked
ligands and potential targets. The fifteen identified major compounds (eight from liquorice
and seven from Sophora japonica) were created with the default settings and saved in one
MDB file. Each target’s active site was identified by the binding of the appropriate co-
crystalized ligand. The co-crystalized ligand in each file was redocked in its corresponding
binding site to validate the docking through calculating the RMSD values with the resulting
docking poses (Supplementary Figures S1 and S2). The three enzymes’ active sites were
docked with the MDB file, including all the main compounds, to complete the docking
process. Triangular matcher and London dg were utilised as a placement method and
scoring algorithm, respectively. The pharmacokinetic profiles of both glycyrrhizic acid and
sophoraflavonoloside were computed using SWISS ADME (http://www.swissadme.ch/)
(accessed on 10 March 2023).

3.10. Evaluation of Drug Interaction by CDI

The effect of drug combinations on the percentage of wound contraction, MDA, GSH
and SOD levels was evaluated using the coefficient of drug interaction (CDI). For the
reduced efficiency, the equation was CDI = AB/(A × B); and for the improved efficiency,
the equation was CDI = (A × B)/AB, where AB is the ratio between the combination group
and its control group; and A or B is the ratio between the single flavonoid fraction and its
control group. The combination index scale was defined as follows in the current study:
CDI < 0.9: synergistic, CDI = 0.9–1.1: additive and CDI > 1.1 antagonistic [4].

4. Conclusions

According to the findings of this study, the inclusion of G. glabra and S. japonica
flavonoid-rich fractions in topical ointment preparation could efficiently accelerate wound
closure rate. Additionally, they exerted strong antioxidant properties. Furthermore, the
molecular docking studies of the identified major compounds provided a plausible mech-
anism prediction by which G. glabra and S. japonica flavonoid-rich fractions exert their
wound healing effects. Liquiritin apioside and glycyrrhizic acid from G. glabra pos-
sessed higher affinities to the three target enzymes, GSK-3β, MMP-8 and iNOS. Similarly,
sophoraflavonoloside and sophoraflavanone G, genistein 7,4′-di-O-β-D-glucopyranoside
and kaempferol showed good energy binding scores with the target enzymes. Finally, this
study suggested that using a combination of G. glabra and S. japonica could improve the
healing of wounds. Future in-depth mechanistic research is still needed to verify these
anticipated mechanisms of action.

www.pdb.org
http://www.swissadme.ch/
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28072994/s1, Figure S1. Docking validation of the
three targets (A) GSK3- β (PDB ID: 3F88), (B) MMP-8 (PDB ID: 5H8X) and (C) iNOS (PDB ID: 3N2R),
Figure S2. Interaction of the three co-crystallized ligands (A) GSK3- β (PDB ID: 3F88), (B) MMP-8
(PDB ID: 5H8X) and (C) iNOS (PDB ID: 3N2R).
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