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Abstract: Recently, we revealed the electronic nature of the tubular Au26 based on spherical aromatic-
ity. The peculiar structure of the Au26 could be an ideal catalyst model for studying the adsorptions of
the Au nanotubes. However, through Google Scholar, we found that no one has reported connections
between the structure and reactivity properties of Au26. Here, three kinds of molecules are selected
to study the fundamental adsorption behaviors that occur on the surface of Au26. When one CO
molecule is adsorbed on the Au26, the σ-hole adsorption structure is quickly identified as belonging
to a ground state energy, and it still maintains integrity at a temperature of 500 K, where σ donations
and π-back donations take place; however, two CO molecules make the structure of Au26 appear
with distortions or collapse. When one H2 is adsorbed on the Au26, the H–H bond length is slightly
elongated due to charge transfers to the anti-bonding σ* orbital of H2. The Au26-H2 can maintain
integrity within 100 fs at 300 K and the H2 molecule starts moving away from the Au26 after 200 fs.
Moreover, the Au26 can act as a Lewis base to stabilize the electron-deficient BH3 molecule, and
frontier molecular orbitals overlap between the Au26 and BH3.

Keywords: Au26 cluster; adsorption structures; stability; electronic interactions

1. Introduction

Gold clusters have attracted intensive research interest in recent decades due to their
mystical properties and appealing structural beauty, giving rise to promising applications
in catalysis, chemo-sensing, optical materials, and energy conversion [1–6]. Particular
attention has been focused on understanding and expanding functional properties, re-
quiring the characterization of well-defined clusters with atomic precision [7–11]. The
structures of Au clusters and their growth patterns have been well characterized, in which
small-sized clusters exhibit a wide range of planar structures compared with Cu and Ag
clusters, while medium-sized clusters have more exotic structures, such as the pyramidal
Au20 and icosahedral Au32 cages [12–14]. These unusual geometric structures are traced to
the strong relativistic effect and aurophilic attraction of gold. Especially interesting, the
Au20 pyramidal cluster is an ideal model of a catalyst and building blocks for assembled
materials because of its highly symmetric tetrahedral structure and large HOMO−LUMO
gap of 1.77 eV [12]. Furthermore, the relation between the stability that is quantified either
in terms of the binding energy per atom or in terms of dissociation energies and the elec-
tronic configurations of Au clusters is also well established: the Jellium model and spherical
aromaticity rule are applicable to compact structures and cage structures, respectively, and
the SVB theory is applicable to prolate clusters [15,16].

Since Haruta et al. discovered that small-sized Au clusters can be capable of catalyzing
CO oxidation below room temperature, Au clusters are used as efficient catalysts in various
important chemical transformations, even though bulk Au is one of the most chemically
inert metals in the periodic table of elements [17–19]. For example, Zielasek and co-
workers reported applications of nano-gold catalysts in gas masks for the oxidization of
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toxic chemicals, in bathrooms for the removal of odor compounds, or in vehicles for the
conversion of CO to CO2 [20]. Wu et al. investigated the electronic structure, optical
properties, and PESs of the H2-Au6 model system, in order to explore key pathways in
LSPR-promoted chemical reactions [21]. Yan found that the rate of water splitting on the
Au nanoparticles is dependent not only on respective optical absorption strength but also
on the quantum oscillation mode of plasmonic excitation [22]. Zhu and co-workers used
the Au10 cluster as an adsorption model and found that the cluster can be highly active for
CO oxidation both in the gas phase and on the rectangular TiO2 support [23]. Lee and Kim
reported that a small anionic Au6 is effective in the activation of CO2 and show that such
characteristics result from orbital interactions between the HOMO of Au6

− and the LUMO
of CO2 [24]. Sengupta and Chung unveiled reaction mechanisms of the hydrogenation of
ethylene on two popular magic Au8 and Au20 [25]. Recently, we constructed a series of
isoelectronic pyramidal clusters based on the framework of the Au20 cluster and analyzed
their adsorption properties and electron structures for CO molecules, which develops a new
way to extend superatom catalysts from superatomic clusters and also gives an inference
for extensions of single-atom catalysts [26].

Among Au clusters with unusual structures, the Au26 belongs to one of the special
species. Initially, Dong et al. showed that a tubular structure with high D6d symmetry is a
possible ground state in the energy which is considered as a combination of four Au6 rings
and two extra Au atoms at the center of either side [27]. Later, Wang and coworkers per-
formed an extensive structure search and confirmed that the Au26 cluster has a great many
metastable isomers within a narrow energy window and is a typical fluxional system [28].
Based on this, Joshi et al. found that the tubular D6d structure has the most thermal sta-
bility among the three compact and core-shell structures and one tubular structure [29].
Recently, we reanalyzed this system and revealed that the electronic nature of the large
HOMO-LUMO energy gap (1.34 eV) of tubular Au26 was due to that the tubular structure
can be viewed as a superatomic molecule consisting of two open-shell Au13 moieties that
achieve shell closure via a super triple bond (σ, 2π) based on spherical aromaticity [30].

The peculiar geometric structure of the Au26 could be the embryo of a Au nanotube
and is an ideal catalyst model for studying the adsorption properties of the Au nanotube.
However, we retrieved most of the relevant literature through Google Scholar and did not
find that anyone has reported a connection between the geometry structure and reactivity
properties of the tubular cluster. Here, we selected electron donors CO molecules and H
atoms, H2 molecules, and the electron-deficient BH3 molecules to study the fundamental
adsorption behaviors that occur on the surface of tubular Au26 clusters and obtained differ-
ent types of adsorption structures. The thermal stability, adsorption energies, stretching
frequencies, and electronic properties of their adsorption structures are analyzed in detail.

2. Results and Discussion
2.1. Adsorption Properties of the Tubular Au26 Cluster with CO Molecules

The optimized structure of the tubular Au26 cluster is determined at PBE0/Def2-TZVP
level, and the structure parameters (D6d symmetry) agree with previous works [27,30].
Its empty structure has four prominent layers. The middle two layers can be seen as the
hexatomic ring units without a center Au atom, and the remaining part comprises the top
and bottom layers of the nanotube. Except for the unusual geometry, 20 valence electrons
of the Au26 occupied 5 bonding orbitals (σs, 2πpx,y, 2δdxy,x2-y2) and 5 anti-bonding orbitals
(σ*s, 2π*px,y, 2δ*dxy,x2-y2). The remaining six electrons filled one σ and 2π super bonding
orbitals that achieve the electronic shell closure. The detailed analysis of MOs can also be
referred to in the previous literature [30].

The adsorptions are the basic behaviors of the interfaces, which impact the atomic
structures, electronic properties, and catalysis properties of the interfaces. Chemisorption
processes are not only related to electrostatic interaction energy but also to the symmetry
of frontier orbitals and the matching of energy levels. However, there are too many
possibilities for adsorption sites on the medium-sized Au26 cluster. Computing molecular
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electrostatic potential V(r) is a well-built strategy to analyze intermolecular interactions and
surface charge distributions of the clusters [31]. The V(r) results of the Au26 cluster showed
that six Au atoms in a side face of the tubular structure possess positive charges with six
apparent σ-hole areas, respectively, while the negative charges are in the intermediate
region of the tubular structure, indicating that Au atoms at both ends of the tubular
structure are active sites for both charge-controlled and frontier-controlled interactions
with electron donors, e.g., CO and N2 molecules.

As mentioned in the paragraphs of the Introduction, the earlier reports that small-sized
Au clusters exhibit a fantastic activity for CO oxidation reactions—revealing mechanisms of
catalytic/adsorption behaviors of CO molecules on surfaces of Au clusters—were received
with high-level concerns [7,11,32]. It is well-known that the presence of low-coordinated
metal atoms on the surfaces of Au-based clusters play a dominant role in enhancing catalytic
activity [33–37]. Moreover, in most cases, CO molecules prefer to be top-coordinated on
the surfaces of the Au clusters, which are generally explained in terms of σ donations of
electron density from CO molecules to the metals and π-back donations from metals to
CO [34,36–39]. Among these adsorption structures, the top-coordinated patterns can make
stretching frequencies of CO molecules appear with varying degrees of redshifts.

We considered more adsorption sites to evaluate the effectiveness of using σ holes to
determine the optimal adsorption sites involving abundant patterns of top sites. Many
hollow and bridge sites are also considered for the initial adsorption structures of the
Au26-CO cluster. In this process, a CO molecule is randomly placed in different positions
on the surface of the Au26, so that more possible adsorption patterns can be obtained.
However, many initial structures after optimizations either have imaginary frequencies
or fail to converge to local minimums. It is well known that PBE0 calculations cannot
provide a correct description of the nonlocal long-range vdW interactions, which is crucial
for improving the description of the weak binding systems. Thus, we employed the D3bj
correction proposed by Grimme to improve the description of the Au26–CO interactions [40].
Figure 1a shows the isomer structures of the Au26 cluster with one CO molecule, only the
six stable ones. Among these isomers, the σ-hole adsorption structure (corresponding to
iso1) is quickly identified as belonging to a true local minimum, and it has a ground state
energy. At this time, the structural framework of the Au26 nanotube in the iso1 hardly
undergoes any deformation. Furthermore, iso1 is energetically more preferable because
the difference in energy between iso1 and other adsorption isomers is very pronounced.
In comparison, the Au26 nanotube structures in other isomers collapse to varying degrees,
which also further confirms that σ-hole regions are the best adsorption sites.

To further study the thermal stability of the iso1 structure in Figure 1a, we carry out the
ab initio molecular dynamics (AIMD) simulations in the VASP software package [41]. In the
modeling process, a 20 × 20 × 20 Å box for the initial structure is built to avoid interaction
between the individual clusters. Temperatures 300 K and 500 K are selected as the initial
temperatures of the simulations. The simulation time of each temperature lasts 10 ps, and
the time step sets 2.0 fs. During the simulations, snapshots are extracted every 20 fs to
observe the details of structural changes, and the snapshots are plotted after 10 ps AIMD
simulations. The energy fluctuation of AIMD simulations with the time steps is plotted
in Figure 2a. It is found that the structure of Au26-CO with the σ-hole adsorption still
maintains integrity at a temperature of 500 K, in which there are only slight disturbances of
individual atoms, suggesting its good thermal stability in a high-temperature environment.

Earlier findings have also confirmed that CO molecules have propensities to adsorb
at low-coordinated gold atoms (top sites) of Au-based clusters, which can be treated by
the Blyholder model that the σ donations and π-back donations take place, resulting in
the CO stretching frequencies have evident redshifts. Based on this, the result expressed
in the above paragraph is in line with our expectations. Figure 2b shows the molecular
orbitals and infrared spectrum (IR) of the most stable iso1 of the adsorption structures of
the Au26-CO. Although several other local minima have been given, here we focus on the
most stable minima structure wherein the CO as a Lewis base is close to the σ-hole region.
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Accompanying the chemisorption of CO, the Au–C distance is 1.97 Å and it conforms to
the range of reported Au–C bonds (1.98–2.00 Å), where the major interaction belongs to
the σ-donation (HOMO orbital) interaction from the 5σ orbital of a CO molecule to empty
orbitals of the cluster. The C=O bond distance of 1.13 Å slightly elongates due to the electron
transfer to the anti-bond π orbital, as shown in the HOMO-1 orbital of Au26-CO. Moreover,
the C–O frequency (2204.70 cm−1) of this structure is <free CO (2239.87 cm−1) [42,43].
Compared to other Au-based clusters, the red-shift of the C–O bond is not obvious, and due
to that the Au26 cluster is a cage–cage superatomic molecule based on spherical aromaticity
and kept chemically inert in the geometrical and electronic structure.
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Figure 1. Isomer structures and relative stability of (a) Au26-CO and (b) Au26-(CO)2. Au, yellow; C,
grey; O, red (supplementary materials).
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orbitals of iso1 structure of the Au26-CO.

For further research, more CO molecules were selected to simultaneously adsorb on
the surface of the Au26 cluster. We also considered various adsorption situations during
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the construction of the initial configurations. Optimized isomer structures of the Au26
cluster with two CO molecules are shown in Figure 1b. Unfortunately, it was found that
the adsorptions of two CO molecules generate major changes in the parent geometry of the
Au26 cluster. Among them, tubular walls of adsorption substrates of most isomers have
different degrees of collapse or distortion. For iso5, the tubular structure is maintained,
and its stability is related to electrostatic interactions. In brief, for the CO electron donors,
the active sites of the Au26 cluster only exist in σ-hole regions and its geometric structure
is prone to deformations when CO fragments adsorb at other positions. Therefore, this
cluster is not suitable as a potential catalyst for the C–O bond activation.

2.2. Adsorption Properties of the Tubular Au26 Clusters with Hydrogens

Hydrogen atoms are present in most of the materials on earth. The understanding
of the chemical bonding of H atoms with other elements became a fundamental problem
in chemistry, biology, and physics [44–47]. Of particular interest currently are hydride
coinage metal clusters that are combinations of metals/hydrogens/electrons, wherein the
hydrides are embedded in or ligated to the metal frameworks [48–50]. Moreover, it is worth
mentioning that the interaction between hydrogen atoms and clusters is an important
issue that needs to be further explored in heterogeneous catalysis. For instance, Tsukuda
et al. found that 1.2-nm gold clusters can adsorb hydrogen on the surfaces and become
plasmonic, and this phenomenon was attributed to the electron doping of Au sp bands by
adsorbed hydrogen atoms, which has been demonstrated by direct spectroscopic evidence
for the H-mediated modulation [51,52]. Subsequently, they further showed that hydrogen
atoms also donate 1s electrons when they are bonded to other gold clusters, in which the
hydrogens typically act as doped metal atoms. Jiang et al. showed whether hydrogen
atoms withdraw or donate electrons in gold clusters depends on the ligands, the local
environments, and the electron counts [53].

Studies of the interactions between hydrogen and Au clusters are essential to unveil
the origins of unusual chemical activities of Au, which are currently the most extensively
studied subjects in heterogeneous catalysis and surface chemistry. Hence, the interactions
between cluster Au26 and atomic H are also investigated in the present work. The possible
structures of Au26–H2 complexes are explored. Figure 3a shows the isomer structures of
the Au26 cluster with one H atom at the PBE0/Def2-TZVP level, according to the sequence
of their stability. Unfortunately, no matter where the H atom is located on the surface of
the Au26 cluster, it was found that the atomic H adsorptions generate major changes in
the initial parent geometry, in which we can clearly see that tubular walls of adsorption
substrates of all given isomers have different degrees of distortions or collapse. It can
be said, even though the H atom is very small, the integrity of the electronic structure
of the Au26 cluster is also easily destroyed because the hydrogen atom withdraws or
donates electrons.

To further exclude the influence of electronic effects, we selected one H2 molecule
to be adsorbed on the surface of the Au26 cluster. In fact, as a simple model system for
heterogeneous catalysis, the interactions and reactive dynamics of H2 on surfaces of Au-
based clusters have been studied extensively under well-defined surface science conditions.
However, given the 4.5 eV bond energy of the H2 molecule, the activation of the H–H
bond is often a difficult step. Moreover, molecular adsorption is a complex mechanism. In
this study, one H2 molecule was randomly placed at different sites on the surface of the
tubular framework. Figure 3b shows the isomer structures of the Au26 cluster with one
H2 molecule, involving the top, hollow, and bridge adsorption structures. The preferred
adsorption configuration (corresponding to iso1) is the H2 molecule on top of a Au atom.
Such a pattern has often been observed in other alloy clusters with H2. It is favorable for
H2 in the form of molecules to adsorb on the Au26, resulting in the unbroken H–H bond.
The integrity of the tubular structures can be maintained without collapse, though H2
molecules adsorb to different positions of these isomers.
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Figure 3. Isomer structures and relative stability of (a) Au26-H and (b) Au26-H2. Au, yellow; H, pink.

The equilibrium bond length of a free H2 molecule is computed to be 0.74 Å at the
PBE0/Def2-TZVP level, which is in good agreement with the experimental value. Figure 4a
shows the molecular orbitals and IR spectrum of the most stable iso1 of the Au26-H2. The
stretching frequency of the H–H bond shows a red-shifting phenomenon, and the bond
length (0.795 Å) is slightly elongated, longer than that of a free H2. The fundamental role of
vibrational spectra in the detection of structural changes in atomic clusters is well known
and, hence, it is needed to recognize the minimum and maximum values of frequencies
under conditions where these changes are expected, e.g., due to interactions with one
or several H2 molecules. The HOMO-1 and HOMO-3 orbital charge density shown in
Figure 4a confirms an overlap between the frontier orbitals of the cluster and the H2
molecule, indicating that charge transfers from the Au26 to the antibonding σ* orbital of H2
occurred. Moreover, the electronic properties of Au26 also change upon H2 adsorption. For
instance, the HOMO-LUMO gap (1.63 eV) of the iso1 structure is much broader, 0.29 eV,
larger than that of a free Au26, showing that H2 is not physically adsorbed on the cluster.
Because of this large HOMO-LUMO gap, the interaction of H2 with Au26 is weak (molecular
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adsorption is generally weak), with an adsorption energy of only 0.26 eV, and low reactivity
is indeed expected.
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Figure 4. (a) Infrared spectrum and molecular orbitals, (b) the energy fluctuation with the time step
at 300 K of iso1 structure of the Au26-H2.

To explore the adsorption and desorption processes at room temperature, we also
carried out an AIMD simulation of the Au26-H2 for 1000 fs. It is observed in Figure 4b that
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the iso1 adsorption structure of Au26-H2 can maintain integrity within 100 fs at 300 K with
only slight disturbances of individual atoms, and the H2 molecule started moving away
from the Au26 cluster after 200 fs. Moreover, the H2 molecule absorbed in the molecular
form with negligible deformation in the cluster during simulations. In brief, no significant
changes are found in the geometry parameters of the cluster even after desorption. Thus,
the Au26 cluster has the potential to use for reversible H2 storage.

2.3. Adsorption Properties of the Tubular Au26 Clusters with a BH3 Molecule

The borane molecule, BH3, is one of the simplest and smallest examples (other than
molecular hydrogen) of an electronically neutral bonded species with an incomplete octet.
However, experimental detection of BH3 was long hindered by its high reactivity. The
earliest spectroscopic observation of BH3 was achieved by Kaldor and Porter, which is able
to be produced by BH3CO pyrolysis [54]. The BH3CO molecule has a complete octet, or the
CO molecule gives two electrons to BH3 to stabilize it. In fact, the BH3 molecule normally
acts as a Lewis acid, in which the empty orbitals of central atoms of the Lewis acids accept
pairs of electrons from Lewis bases. For example, ammonia borane (NH3BH3) is the result
of a Lewis acid–base interaction, which is considered to be one of the most promising
hydrogen storage materials because of its high hydrogen-content capacity [55]. Recently,
Bowen et al. reported a (Na-BH3)− cluster, featuring a non-trivial Na→BH3 dative bond,
representing an example of a Lewis adduct with an alkalide as the base [56].

Figure 5a shows the isomer structures of the Au26 cluster with one BH3 molecule.
The many initial adsorption structures after structural optimizations only converge to
the three stable ones, including two hollow adsorptions (iso1 and iso3) and one bridge
adsorption structure. It is found that the tubular structure of the Au26 cluster was only
slightly changed when the BH3 molecule is adsorbed to different positions but the tubular
walls of adsorption substrates of all given isomers did not collapse. Furthermore, the AIMD
simulation in Figure 5b shows that the Au26-BH3 structure still has good thermal stability
at 500 K. In order to examine chemical interactions between fragments, we calculated the
binding energy between the BH3 molecule and the Au26 cluster. The binding energy of
2.58 eV is in the category of covalent bonds. Moreover, the HOMO and HOMO-1 orbitals
from Figure 5c show that there are overlaps between the frontier orbitals of the cluster
and the BH3 molecule. Hence, the Au26 cluster can act as a Lewis base to stabilize the
electron-deficient BH3 molecule.
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3. Computational Methods and Details

The structure optimizations of adsorption clusters and subsequent computations are
performed using the PBE0 functional with the dispersion correction (D3bj) and Def2-TZVP
basis set [57–59]. The basis set is selected to consider the relativistic effective core potential
for heavy Au atoms. Energies of structure isomers of adsorption clusters reported herein
are considered contributions of the zero point energy (ZPE) correction. It is confirmed that
the isomer structures of each component belong to true local minimum points by analyzing
the vibration frequency at the same theoretical level. The quality of self-consistent field
(SCF) convergence tolerance is set with a convergence criterion of 1 × 10−6 hartree on
total energy and electron density, 2 × 10−3 hartree Å−1 on the gradient, and 5 × 10−3 Å
on the displacement in our calculations. All first-principles calculations are based on the
Gaussian 09 package [60]. The visualization of the molecular orbitals (MOs) is achieved in
the MOLEKEL 5.4 program [61].

The ab initio molecular dynamics (AIMD) simulations are implemented in the Vienna
ab initio simulation (VASP) package [62]. The ion–electron interaction was described using
the projector-augmented plane wave approach. The generalized gradient approximation ex-
pressed by PBE functional and a 450 eV cutoff for the plane-wave basis set were adopted in
the computations. The convergence threshold was set as 10−4 eV in energy and 0.01 eV Å−1

in force. The AIMD temperatures are controlled by using the Nose’–Hoover method [63].

4. Conclusions

In summary, we investigated the adsorption properties of the tubular Au26 from the
AIMD simulations and electronic interactions using DFT methods. Three kinds of molecules
with different electronic structures were selected to analyze the fundamental adsorption
behaviors that occur on the surface of tubular Au26 clusters. When the electron donor CO
molecules are adsorbed on the Au26, the σ-hole adsorption structure with one CO molecule
is quickly identified as belonging to a ground state energy, and it maintains integrity at a
temperature of 500 K, where the C=O bond distance of 1.13 Å is slightly elongated due
to the electron transfer to the anti-bond π orbital. However, two CO molecules make the
structure of Au26 appear with distortions or collapse. When one H2 molecule is adsorbed
on the Au26, the preferred configuration is the H2 molecule on top of a Au atom, in which
the H–H stretching frequency has red-shifting and the bond length is slightly elongated
because of charge transfers to the antibonding σ* orbital of H2. The adsorption structure of
Au26-H2 can maintain integrity within 100 fs at 300 K, and the H2 molecule started moving
away from the Au26 cluster after 200 fs. However, the H atom makes the structure of Au26
appear with distortions or collapse. The isomer structures of the Au26 cluster with one BH3
molecule included hollow adsorption and bridge adsorption structures, and their frontier
molecular orbitals have overlaps between the Au26 and BH3.

For CO electron donors, the active sites of the Au26 cluster only exist in σ-hole regions,
and its geometric structure is prone to deformations when the fragments adsorb at other
positions. The H2 molecule adsorbs to different positions of the Au26, and the integrity of
the tubular structure can be maintained without collapse. Moreover, the Au26 cluster can
act as a Lewis base to stabilize the electron-deficient BH3 molecule.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28072916/s1, The calculated energies and cartesian
coordinates of the Au26-CO, Au26-(CO)2, Au26-H, Au26-H2, Au26-NH3.
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