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Abstract: Development of organic fluorophore is an important theme. Especially, the fluorophores
with longer fluorescence peaks are useful to biological probes. One of the methods to change the
fluorescence peak is the introduction of substituents. However, opposing characteristics of the
substituents lead to different changes in the fluorescence peaks. Furthermore, the introduction of
the substituent also affects their electric properties. Thus, if the materials were developed with
the substituent effect on the optical and electric properties separately, it will be useful to design
the functional materials related to both optical and electric properties. Herein, we investigated the
substituent effect of dipyrrolo[1,2-a:2′,1′-c]quinoxalines on fluorescence properties. We synthesized
the compounds bearing electron-donating or electron-withdrawing substituents at the benzene
ring on dipyrrolo[1,2-a:2′,1′-c]quinoxaline, which would have more direct influence on the optical
properties. By introducing each substituent at the 6 position of dipyrrolo[1,2-a:2′,1′-c]quinoxaline,
the bathochromic shift was observed in the fluorescence spectra. In the case of fluorine substituent,
the change of the fluorescence peak reached was about 19 nm. Using a TDDFT calculation, we
explained the reason for such a substituent effect that large on the increment of LUMO energy or
decrement of HOMO energy occurred by introducing electron-withdrawing or electron-donating
substituents at the 6 position, respectively. The substituent effect on the change of orbital energies is
typical although the different characteristics of substituents resulted in the similar tendency about
the change of fluorescence peak. Furthermore, with the introduction of phenyl substituents at the 3
and 10 positions, we achieved 40–50 nm longer fluorescence peaks compared with that of the original
dipyrrolo[1,2-a:2′,1′-c]quinoxaline.

Keywords: dipyrroloquinoxaline; fluorescence; bathochromic shift; substituent effect; energy gap

1. Introduction

The development of organic fluorophores is an important theme for the advancement
of functional materials research. Fused aromatic rings are widely utilized to produce
fluorescent materials because of their planar and large π-conjugated structures [1–9]. Re-
cently, the fluorophores with longer fluorescence peaks are utilized in the biological probes
because the fluorophores with shorter fluorescence peaks are affected by organs. To achieve
a longer fluorescent peak, the introduction of substituents is one of the more efficient meth-
ods. However, the various electronic properties of substituents lead to various changes
in the fluorescent peak, i.e., a bathochromic shift or a small change was obtained by in-
troducing the electron-withdrawing substituent in the case of hypsochromic shift by the
electron-donating substituent, and vice versa [10–14]. For example, Hirano et al. reported
the substituent effect of 2-phenylimidazo [1,2-a]pyrazine-3(7H)-ones which showed the
bathochromic shift on fluorescence spectra with an increase in the electron-withdrawing
property [15]. Furthermore, the donor-acceptor structure is also the fundamental design to
change the optical properties by introducing the substituents. It gives longer fluorescence
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peaks based on a strong intramolecular charge-transfer (ICT) state [16,17]. Such compounds
also show the larger Stokes shift. Therefore, those materials have a possibility to be utilized
for bioimaging probes [18–20]. However, the opposing characteristic of the substituents
leads to a different transition. We have reported the fluorescence properties of fused aro-
matic rings consisting of pyrrole and imidazole [21–24]. In the investigation of diimidazo
[1,2-a:2′,1′-c]quinoxalines, the p-methoxyphenyl substituents at the 3 and 10 positions, we
found that they resulted in a large bathochromic shift of a fluorescence peak of 13 nm based
on the phenyl substituted compound, whereas a small change in fluorescence peak of 4 nm
was obtained from the compound with p-trifluoromethylphenyl substituents [22].

The introduction of the electron-donating and electron-withdrawing substituents is
also utilized for tuning the electric properties of the substrates. Usually, electron-donating
substituents increase the orbital energies, and electron-withdrawing substituents decrease
the orbital energies. Thus, by tuning the fluorescence peak with the introduction of sub-
stituents, the electric properties were also affected. When we must control both the optical
and electric properties, it is a challenging problem to give consideration relating them to
each other. For example, the emitting material in the organic light-emitting diode (OLED) is
important to tune its luminescent peak as well as HOMO and LUMO energies because hole-
and electron-injections are also affected by the HOMO and LUMO energies. Anzenbacher,
Jr. et al. examined the OLED properties of substituted tris(8-hydroxyquinoline)aluminum
(Alq3) complexes [25]. The fluorescence peaks were given a bathochromic shift compared
with the original Alq3, but the change of HOMO and LUMO energies were varied; the
properties of OLED were also affected by the device configurations. Thus, if the materials
were developed with the substituent effect on the optical and electric properties separately,
it will be useful for molecular design of functional materials that utilize both optical and
electric properties.

We focused on the substituent effect on the benzene ring in diazolo [1,2-a:2′,1′-c]quinoxalines,
which would be more directly influenced on the optical properties. Herein, we reported
the bathochromic shift from the introduction of each electron-donating and electron-
withdrawing substituent over 10 nm in dipyrrolo [1,2-a:2′,1′-c]quinoxalines (1) (Scheme 1).
Furthermore, based on the (TD)DFT calculation, we found that the change of the orbital
energies was typical with increments by the electron-donating substituent and with decre-
ments by the electron-withdrawing substituent.
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Scheme 1. Representation of the difference of fluorescence peaks of diazolo [1,2-a:2′,1′-c]quinoxalines
with substituent(s) on 3,10- or 6,7-positions.

2. Results and Discussions

We chose a dipyrrolo [1,2-a:2′,1′-c]quinoxaline skeleton to examine the substituent
effects because a longer fluorescent wavelength was achieved with dipyrrolo [1,2-a:2′,1′-
c]quinoxaline (1a) (λem = 416 nm in THF) than with diimidazo [1,2-a:2′,1′-c]quinoxaline
(λem = 367 nm in THF). The compounds were synthesized by the same procedure mentioned
previously [22]. The coupling reaction of pyrrole and substituted dibromobenzene with a
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copper catalyst produced dipyrrolylbenzenes (2b–d) by Buchwald amination [26]. After
column chromatography, 2b–d was treated with I2 to give corresponding 1b–d moderate
yield (two steps) (Scheme 2). We also tried to synthesis the other compounds with methyl
group at the 6 position or a fluorine substituent at the 5 position. However, we did not
succeed in purification through recrystallization and preparative GPC purification. We
could not explain the reason why such compounds were difficult to purify. But some
contaminations of the positional isomers were supposed from the 1H NMR spectra, whose
contamination would be derived from the starting dibromobenzene derivatives. In addition,
to achieve the longer fluorescence peak, we synthesized 3d with two phenyl rings at
the 3 and 10 positions by the reaction of 1d with phenyl boric acid in 29% yield [27].
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Absorption and fluorescence spectra of 1 were measured in THF and CH3CN. The
results were summarized in Table 1. The absorption peak showed the bathochromic
shift in the case of the compound (1b) bearing electron-donating group such as methoxy
substituents at the 6 position against 1a (entry 1 vs. entry 2). But a small change of
absorption peak was observed in the compounds with fluorine substituent at the 6 position
(1c) (entry 3). The solvent had little effect on the absorption spectra (Figure 1). Focused on
the fluorescence peak, regardless of electron-donating or electron-withdrawing substituents,
both compounds showed a bathochromic shift over 10 nm against 1a in THF (entry 1 vs.
entries 2 and 3). By changing the solvent from THF to polar CH3CN, more bathochromic
shift was obtained from 1c whereas no solvent effect was found in 1b (Figure 2). This
solvent effect was also observed originally in 1a. Such a solvent effect would be caused
by the charge-transfer transition. Because the pyrrole ring has an electron-rich character,
bipyrrole moiety would act as an electron-donating part. By introducing the electron-
donating substituent on the benzene ring, charge distribution would be reduced. The
Stokes shift also gives the information to their transition. The Stokes shift increases with
solvent polarity when the dipole moment is higher in the excited state than in the ground
state [28]. In fact, large Stokes shifts (∆λ and ∆ν) in CH3CN were obtained over 100 nm
(over 8000 cm−1) in the case of 1a and 1c. The value of Stokes shifts of 1a and 1c in CH3CN
were larger than those in THF. Those results also suggested that the fluorescence transition
of 1a and 1c would be derived from ICT state. However, 1b provided small change of the
Stokes shift by the solvent polarity. Thus, the little effect of charge-transfer transition would
be affected on the fluorescence of 1b. The fluorescence quantum yields (ΦF) were also
affected by the introduction of the substituent. Especially, 1b was strongly decreased ΦF
compared with 1a (entry 2 vs. entry 1) although ΦF of 1c was kept at 0.22 in THF (entry 3).
This would be caused by the increment of the vibronic part by introducing substituents such
as methoxy groups. We also investigated the compound with two fluorine substituents in
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the 6 and 7 positions (1d). As for the results, a further bathochromic shift of fluorescence
peak to reach 458 nm in CH3CN was achieved in keeping with the fluorescence quantum
yield (entry 4).

Table 1. Optical Properties of 1 and 3f in THF and CH3CN.

Entry Compound λabs (nm) [ε (M−1 cm−1)] 1 λem (nm) 2 [ΦF] 3 ∆λ (nm) 4 [∆ν (cm−1) 5]

In THF In CH3CN In THF In CH3CN In THF In CH3CN

1 1a 321 [10,600] 320 [10,700] 416 [0.43] 434 [0.17] 95 [7114] 114 [8209]
2 1b 367 [4800] 369 [4900] 435 [0.01] 434 [0.02] 68 [4259] 65 [4059]
3 1c 322 [11,200] 322 [15,600] 434 [0.22] 453 [0.12] 112 [8014] 131 [8981]
4 1d 325 [9500] 324 [8100] 449 [0.25] 458 [0.21] 124 [8498] 134 [9030]
5 3d 377 [10,600] 375 [8700] 466 [0.35] 473 [0.32] 89 [5066] 98 [5525]

1 Concentration: 3.0 × 10−5 M. 2 Concentration: 3.0 × 10−7 M. Excited at λabs. 3 Determined using p-terphenyl
(ΦF = 0.87, 265 nm) as a standard. 4 ∆λ = λem − λabs. 5 ∆ν = 1/λabs − 1/λem.
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As mentioned in the introduction, it is rational that the compounds (1c and 1d) with
electron-withdrawing substituent show the longer fluorescence peak because of their ICT
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character to account for the bipyrrole moiety as a donor part. However, the reason for
the bathochromic shift of the compound bearing the electron-donating substituent (1b) is
unclear. To clarify the reason for the bathochromic shift on each electronic substituent in
fluorescence peak, we examined HOMO and LUMO energies by time-dependent density
functional theory (TDDFT) calculation. To discuss the excited state, the optimized structure
with minimum energy was estimated by TDDFT calculation. HOMO and LUMO energies,
and the differences of each energy, were summarized in Table 2. The molecular orbitals
were represented in Figure 3. Every HOMO was localized on bipyrrole moiety, and every
LUMO was spread over the molecules. Based on the investigation concerning orbital energy,
a good relationship was found between λem in THF and the energy gap between HOMO
and LUMO. It is acceptable because the energy gap of HOMO and LUMO is generally
attributed to the energy of the transition. In fact, all computed longest transition peaks were
attributed from HOMO to LUMO (Table S1). Thus, it is rational to discuss the fluorescence
peaks based on HOMO and LUMO. Focused on the energy change in HOMO and LUMO,
increased energy against 1a was obtained in 1b, which possesses the electron-donating
substituent (entry 2). The influence of HOMO energy was also larger than that of LUMO.
On the contrary, reduced energy in HOMO and LUMO was obtained in 1c and 1d (entries 3
and 4). LUMO was observed to have efficient energy reduction. It is well known to change
the orbital energies toward an increase and a decrease by introducing electron-donating and
electron-withdrawing substituents, respectively. The small energy gap between HOMO
and LUMO, which leads to larger λem in those compounds, would be attributed to the
difference of degree of change in HOMO and LUMO energies. The electron-donating
substituent increased both HOMO and LUMO energies, but more efficiently increased
HOMO energy. In the case of the electron-withdrawing substituent, both energies were
reduced, but LUMO energy was more efficiently decreased. As a result, the small energy
gap between HOMO and LUMO energies compared with that of 1a was obtained in all
of 1b, 1c, and 1d. From those findings, both electron-donating and electron-withdrawing
substituents on dipyrrolo [1,2-a:2′,1′-c]quinoxalines are affected by the bathochromic shift
of the fluorescence peak on the optical properties, but the different effect would occur in
the case of the electric properties; i.e., the electron-donating substituent increases HOMO
and LUMO energies and the electron-withdrawing substituent decreases HOMO and
LUMO energies. Such changes of HOMO and LUMO energies were also obtained from the
DFT calculation assigned as the ground state (Figure S1). Thus, the change of the electric
properties by the introduction of a substituent would be typical both in the ground and
excited states.

Table 2. HOMO and LUMO energies and the differences of each energy of 1 1.

Entry Compound
HOMO
Energy

(eV)

Difference of
HOMO Energy
against 1a (eV)

LUMO
Energy (eV)

Difference of
LUMO Energy
against 1a (eV)

Energy Gap
between HOMO
and LUMO (eV)

λem (nm)
in THF

1 1a −6.5830 - 6.8151 - 6.8151 416
2 1b −6.5122 0.0708 0.2653 0.0332 6.7775 435
4 1c −6.7092 −0.1262 −0.0063 −0.2384 6.7029 434
6 1d −6.8233 −0.2403 −0.1973 −0.4294 6.6260 449

1 Calculated by TDDFT/ωB97XD/6-31+G(d,p) with the optimized structure.
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Finally, we attached phenyl rings at the 3 and 10 positions in 1d to obtain a longer
fluorescent peak. This resulted in the observed fluorescence peaks of 3d at 466 nm and
473 nm in THF and CH3CN, respectively (Table 1, entry 5) (Figure 4). Those values were
40–50 nm larger than the original 1a. The influence of the introduction of phenyl rings
at 3 and 10 positions on the fluorescence peak was estimated as bathochromic shift about
20 nm compared with 1d in each solvent. In the case of the original 1a, the compound bear-
ing two phenyl rings at 3 and 10 positions (3,10-diphenyldipyrrolo [1,2-a:2′,1′-c]quinoxaline)
showed a longer fluorescence peak of approximately 30 nm (λem = 445 nm in THF) [21].
Thus, the effect of additional phenyl rings at the 3 and 10 positions was reduce by the intro-
duction of the fluorine substituents on benzene ring in dipyrrolo [1,2-a:2′,1′-c]quinoxaline.
Interestingly, the fluorescence quantum yield was increased compared with 1d. Such effects
were also observed in diimidazo [1,2-a:2′,1′-c]quinoxalines [22]. Thus, it would stand to
reason that the steric restriction of vibronic motion would occur by introducing phenyl ring.
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3. Materials and Methods
3.1. General Information

Melting points were determined with Yanaco MP-J3 and values were uncorrected.
NMR spectra were recorded at 400 MHz (proton) (100 MHz (carbon-13)) on Bruker
AVANCE III-400M. Chemical shifts (δ) of 1H NMR were expressed in parts per million
downfield or upfield from tetramethylsilane in CDCl3 as an internal standard. Multiplici-
ties are indicated as s (singlet), d (doublet), t (triplet), m (multiplet), and coupling constants
(J) are reported in hertz units. Chemical shifts (δ) of 13C{1H} NMR are expressed in parts
per million downfield or upfield from CDCl3 (δ = 77.0) as an internal standard. Infrared
(IR) spectra were recorded on a JASCO FT/IR-460 plus spectrometer. Mass spectra were
carried out on THERMO Fisher Exactive in the Center for Analytical Instrumentation
of Chiba University. Anhydrous toluene was distilled from CaH2 and was stored with
MS 4 Å. All other commercially available materials were used without further purification.
The reactions were performed under nitrogen or argon atmosphere unless otherwise noted.

3.1.1. Preparation of 1,2-Dibromo-4-methoxybenzene [29]

N-bromosuccinimide (0.889 g, 4.99 mmol) and 1 M HCl (50 µL) was added to a solution
of 3-bromoanisole (0.63 mL, 5.0 mmol) in acetone (10 mL). The mixture was stirred for 20 min
at room temperature. After the disappearance of yellow color, the reaction mixture was
evaporated in vacuo. The residue was extracted with CHCl3 (20 mL × 3). The organic layer
was dried with MgSO4. After filtration and evaporation, 1,2-dibromo-4-methoxybenzene
(1.171 g, 4.40 mmol) was obtained in 88% yield as colorless oil. 1H NMR (CDCl3, 400 MHz): δ
3.77 (s, 3H), 6.72 (dd, J = 2.9 and 8.9 Hz, 1H), 7.16 (d, J = 2.9 Hz, 1H), 7.46 (d, J = 8.9 Hz, 1H).

3.1.2. Synthesis of Substituted Dipyrrolo [1,2-a:2′,1′-c]quinoxaline (1b–d)

6-Methoxydipyrrolo [1,2-a:2′,1′-c]quinoxaline (1b): A mixture of 1,2-dibromo-4-
methoxybenzene (1.46 g, 5.49 mmol), pyrrole (1.0 mL, 14.4 mmol), CuI (95.0 mg, 0.499 mmol),
K3PO4 (4.22 g, 19.9 mmol), and trans-1,2-cyclohexanediamine (0.60 mL, 5.0 mmol) in toluene
(10 mL) was stirred for 12 h under refluxing conditions. After being cooled to room temper-
ature, the reaction mixture was filtered with a plug of Celite washing with EtOAc. After
evaporation in vacuo, the residual mixture was subjected to column chromatography on
silica-gel (n-hexane:EtOAc = 6:1) to give the product (1.507 g). The product was dissolved in
chlorobenzene (4 mL). To the solution was added a solution of iodine (0.834 g, 3.29 mmol) in
chlorobenzene (6 mL) in a period of 5 min. After being stirred for 24 h at room temperature,
to the reaction mixture was added saturated aqueous Na2S2O3 solution (10 mL) and ace-
tone (10 mL) to dissolve the precipitate. The combined mixture was extracted with CHCl3
(20 mL × 3). The organic layer was dried with MgSO4. After filtration and evaporation,
the residue was subjected to column chromatography on SiO2 (n-hexane:EtOAc = 8:1) to
give 6-methoxydipyrrolo [1,2-a:2′,1′-c]quinoxaline (0.638 g, 2.70 mmol, 49% (two steps)) as
pale-yellow solid: m.p. = 91–92 ◦C (n-hexane/CHCl3). 1H NMR (CDCl3, 400 MHz): δ 3.91
(s, 3H), 6.52–6.58 (m, 4H), 6.85 (dd, J = 2.7 and 9.0 Hz, 1H), 7.21 (d, J = 2.6 Hz, 1H), 7.42 (dd,
J = 1.5 and 2.6 Hz, 2H), 7.64 (d, J = 8.9 Hz, 1H). 13C{1H} NMR (CDCl3, 100 MHz): δ 55.7,
100.6, 100.7, 101.4, 110.2, 111.6, 111.7, 111.9, 112.4, 116.4. 119.8, 123.5, 124.4, 126.4, 156.6. IR
(KBr): ν 3854, 3802, 3745, 3676, 1700, 1654, 1522, 768, 684 cm−1. HRMS (ESI) m/z: [M−H]¯
calcd for C15H11N2O 235.0877; found 235.0884. UV-Vis absorption: λabs [ε (M−1 cm−1)]
367 [4800], 279(sh) [5307], 244.5 [18,020] nm (3.0 × 10−5 M in THF); 369 [4900], 278.5(sh)
[5393], 244.5 [17,895] nm (3.0 × 10−5 M in CH3CN).

6-Fluorodipyrrolo [1,2-a:2′,1′-c]quinoxaline (1c): Yield 30% (two steps) (66.5 mg)
as white solid: m.p. = 107–109 ◦C (n-hexane/CHCl3). 1H NMR (CDCl3, 400 MHz):
δ 6.52–6.54 (m, 2H), 6.57 (t, J = 3.0 Hz, 1H), 6.58 (t, J = 3.6 Hz, 1H), 6.99 (ddd, J = 2.7,
7.8 Hz and JH-C-C-F = 9.0 Hz, 1H), 7.36 (dd, J = 1.4 and 3.0 Hz, 1H), 7.40 (dd, J = 2.7 Hz and
JH-C-C-F = 9.5 Hz, 1H), 7.42 (m, 1H), 7.66 (dd, JH-C-C-C-F = 5.1 Hz and J = 9.1 Hz, 1H). 13C{1H}
NMR (CDCl3, 100 MHz): δ 101.3 (d, JC-C-F = 27.1 Hz), 102.6 (d, JC-C-F = 27.7 Hz), 111.1, 111.4,
111.9, 112.1, 112.3, 112.8, 116.5 (d, JC-C-C-F = 9.2 Hz), 122.1 (d, JC-C-C-C-F = 2.2 Hz), 124.2,



Molecules 2023, 28, 2896 8 of 10

123.6, 126.4 (d, JC-C-C-F = 10.3 Hz), 159.3 (d, JC-F = 243.5 Hz). IR (KBr): ν 3113, 2359, 1353,
1285, 1626, 1588, 1520, 1191, 768, 682 cm−1. HRMS (ESI) m/z: [M+H]+ calcd for C14H10FN2
225.0823; found 225.0826. UV-Vis absorption: λabs [ε (M−1 cm−1)] 322 [11,200], 275.5(sh)
[8638], 252 [40,240], 243 [44,583] nm (3.0 × 10−5 M in THF); 322 [15,600], 269(sh) [13,341],
251 [011,49], 242 [53,256] nm (3.0 × 10−5 M in CH3CN).

6,7-Difluorodipyrrolo [1,2-a:2′,1′-c]quinoxaline (1d): Yield 61% (two steps) (0.566 g)
as pale-green solid: m.p. = 116–117 ◦C (n-hexane/CHCl3). 1H NMR (CDCl3, 400 MHz):
δ 6.54 (dd, J = 1.4 and 3.7 Hz, 2H), 6.59 (dd, J = 3.0 and 3.6 Hz, 2H), 7.32 (dd, J = 1.5 and
3.0 Hz, 2H), 7.51 (t, JH-C-C-F = 8.5 Hz, 2H). 13C{1H} NMR (CDCl3, 100 MHz): δ 101.6, 104.5
(dd, JC-C-C-F = 9.0 Hz and JC-C-F = 14.5 Hz), 112.1, 112.9, 121.78 (t, JC-C-C-F = 5.4 Hz), 123.8,
146.9 (dd, JC-C-F = 15.6 Hz and JC-F = 248.0 Hz). IR (KBr): ν 3744, 3675, 3412, 1685, 1598,
1340, 1265, 1227, 1083, 838 cm−1. HRMS (ESI) m/z: [M+H]+ calcd for C14H9F2N2 243.0728;
found 243.0729. UV-Vis absorption: λabs [ε (M−1 cm−1)] 325 [9500], 283.5 [4546], 272 [6252],
252 [27,013], 242 [32,073] nm (3.0 × 10−5 M in THF); 324 [8100], 282 [3810], 269.5(sh) [5297],
250.5 [22,736], 241.5 [26,341] nm (3.0 × 10−5 M in CH3CN).

3.1.3. Synthesis of 6,7-Difluoro-3,10-diphenyldipyrrolo [1,2-a:2′,1′-c]quinoxaline (3d)

PhI(OAc)2 (0.602 g, 1.87 mmol) and PhB(OH)2 (0.230 g, 1.89 mmol) was added to acetic
acid (9 mL). After being stirred for 20 min at room temperature, 1d (0.139 g, 0.574 mmol)
was added to the mixture. After being stirred for 15 min, Pd(OAc)2 (20 mg, 0.089 mmol)
was added and then the whole was stirred for 24 h at room temperature. The reaction
mixture was filtered through a plug of Celite. After evaporation in vacuo, the residue
was added to water (10 mL), and was extracted with CHCl3 (10 mL × 3). The organic
layer was dried with MgSO4. After filtration and evaporation, the residue was subjected
to column chromatography on SiO2 (n-hexane:EtOAc = 10:1) to give 6,7-difluoro-3,10-
diphenyldipyrrolo [1,2-a:2′,1′-c]quinoxaline (65.3 mg, 0.166 mmol, 29%) as yellow solid:
m.p. = 167–168 ◦C (n-hexane/CHCl3). 1H NMR (CDCl3, 400 MHz): δ 6.56 (d, J = 3.7 Hz,
2H), 6.63 (d, J = 3.8 Hz, 2H), 7.10 (t, JH-C-C-F = 10.1 Hz, 2H), 7.39 (tt, J = 1.3 and 7.2 Hz,
2H), 7.46 (diffused t, J = 7.5 Hz, 4H), 7.51 (diffused d, J = 6.9 Hz, 4H). 13C{1H} NMR
(CDCl3, 100 MHz): δ 102.0, 108.5 (dd, JC-C-C-F = 9.5 Hz and JC-C-F = 15.4 Hz), 116.2, 124.0
(t, JC-C-C-F = 5.9 Hz), 127.4, 127.8, 128.2, 128.3, 129.0, 131.0, 133.4, 145.5 (dd, JC-C-F = 15.4
Hz and JC-F = 247.2 Hz). IR (KBr): ν 3854, 3821, 3676, 3629, 3421, 1700, 1685, 1654, 1598,
1517 cm−1. HRMS (ESI) m/z: [M+H]+ calcd for C26H17F2N2 395.1354; found 395.1343. UV-
Vis absorption: λabs [ε (M−1 cm−1)] 377 [10,600], 312 [13,210], 249 [28,198] nm (3.0 × 10−5

M in THF); 375 [8700], 309 [11,565], 247.5 [26,700] nm (3.0 × 10−5 M in CH3CN).

3.2. Measurement of Absorption and Fluorescence Spectra

The materials measuring the optical properties were purified by recrystallization from
CHCl3 and n-hexane. UV-Vis spectra were measured with quartz cell (1 cm × 1 cm) on
a JASCO V-570 spectrophotometer. Fluorescence spectra were measured with quartz cell
(1 cm × 1 cm) on a JASCO FP-6600 spectrofluorometer.

3.3. DFT Calculation Method

Shape of orbitals, and HOMO and LUMO energies were calculated by TDDFT/
ωB97XD/6-31+G(d,p) level of theory with the Gaussian 16W program version 1.1 [30]. The
optimized structure was also obtained from TDDFT calculation byωB97XD/6-31+G(d,p)
level of theory.

4. Conclusions

In conclusion, the introduction of a substituent on benzene ring in dipyrrolo [1,2-a:2′,1′-
c]quinoxaline was efficient to give longer fluorescence peak. Both substituents with electron-
donating and electron-withdrawing character were available to make bathochromic shift.
Especially, similar change was observed in THF from each compound with electron-
donating methoxy group or electron-withdrawing fluorine substituent. Such substituent
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effect would be unique in a dipyrrolo [1,2-a:2′,1′-c]quinoxalines skeleton. In the case of the
electron-withdrawing substituent, the solvent effect was also observed, which implied that
the fluorescence caused by ICT state.

The reason for the shift of fluorescence peak was explainable by change of the orbital
energies. Electron-donating substituents increased both HOMO and LUMO energies,
especially HOMO energy. In a complementary style, electron-withdrawing substituents
decreased both HOMO and LUMO energies, especially LUMO energy. As a result, a smaller
energy gap compared with the original substrate was achieved in each electron-donating
and electron-withdrawing substituent. It means that the different effect against optical and
electric properties was obtained by using dipyrrolo [1,2-a:2′,1′-c]quinoxaline structure.

An additional introduction of substituent such as fluorine at 7 position or phenyl ring
at 3 and 10 position on dipyrrolo [1,2-a:2′,1′-c]quinoxalines is efficient to give the longer
fluorescence peaks. As a result, we obtained the fluorescence peak at 473 nm from 3d,
whose value is 39 nm larger than that of non-substituted compounds (1a). These findings
will serve as guidelines in the design of novel fluorophores with longer fluorescence.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules28072896/s1, Computed three longest transition
peaks of 1a–d in the excited singlet state (Table S1), Shape and energies of HOMO and LUMO of 1a–d
calculated by DFT method (Figure S1), Energies, and Cartesian coordinates of 1a–d by TDDFT calculation,
and copies of 1H and 13C NMR spectra and HRMS charts for new compounds (1b–d and 3d).
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