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Abstract: A method for the technically easy-to-implement synthesis of deuterium-labeled pyrazolo
[1,5-a]pyrimidines and 1,2,4-triazolo[1,5-a]pyrimidines have been developed. The regioselectivity of
such transformations has been shown. 1H NMR and mass spectrometric methods have proved the
quantitative nature of such transformations and the kinetics of deuterium exchange has been studied.
Spectrally, at different temperatures (+30 ◦C, −10 ◦C and −15 ◦C), the kinetics of the process was
studied both in CD3OD and in deuterated alkali.
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1. Introduction

Azolo[1,5-a]pyrimidines derivatives, primarily pyrazolo[1,5-a]pyrimidine and 1,2,4-
triazolo[1,5-a]pyrimidine, are known for their high biological activity. Several drugs contain-
ing the pyrazolo[1,5-a]pyrimidine backbone are used in medical practice. These include the
sleeping pills Zaleplon [1,2], Indiplon and Lorediplon [3,4]; the sedative Ocinaplon [5]; the
antifungal drug Pyrazophos [6]; the antiglycemic drug Anagliptin [7,8]; and the antitumor
drug Dinaciclib [9,10] (Figure 1). Moreover, an entire series of pyrazolo[1,5-a]pyrimidine
derivatives are registered, which have shown an antitumor effect [11–20], and effects
on the central nervous system and serotonin receptors [21–27]. The same backbone of
pyrazolo[1,5-a]pyrimidine is included in a number of derivatives that have shown activity
as non-nucleoside inhibitors of HIV-1 reverse transcriptase (NNRTIs) [28] and respiratory
syncytial virus (RSV) [29], inhibitors of RNA-polymerase of hepatitis C virus [30], as well
as having antibacterial, antifungal [31] and anti-inflammatory properties [32–34].

The high biological activity of pyrazolo[1,5-a]pyrimidines stimulated interest in the
development of methods for introducing various isotopes into its derivatives. In particular,
compounds labeled with the [99mTcN]2+ isotope were synthesized and studied for their
biodistribution in mice with tumors [35]. A 5-methylpyrazolo[1,5-a]pyrimidine derivative
containing the 18F fluorine isotope was used as an imaging marker for positron emission
tomography (PET) to detect a tumor [36]. It is known that deuterium-labeled compounds
are also used as markers for studying the mechanisms of chemical reactions, as well as in
biological research and medicinal chemistry [37,38].

Deuterated derivatives of known drugs differ from the drugs themselves by prolong-
ing the half-life, which leads to an increase in the interval between taking the drug and,
consequently, an increase in the effectiveness and safety for the patient [39].

Various methods for introducing a deuterium isotope into molecules of organic com-
pounds are described. Formally, these methods can be divided into 3 groups, namely,

Molecules 2023, 28, 2869. https://doi.org/10.3390/molecules28062869 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28062869
https://doi.org/10.3390/molecules28062869
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-8311-6276
https://orcid.org/0000-0002-5798-3074
https://orcid.org/0000-0001-8404-6644
https://doi.org/10.3390/molecules28062869
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28062869?type=check_update&version=1


Molecules 2023, 28, 2869 2 of 18

proceeding under the conditions of acid or base catalysis and metal catalysis [40]. In the
case of metal catalysis, Pd, Ni, Ir, Pt, Ru or their salts were used as metals. These reactions
require special conditions. They were carried out under heating [41], under pressure [40,42],
in a microwave oven [43], by passing pure deuterium [40], or in deuterated solvents, more
often D2O. Deuterium atoms were introduced by H/D exchange into α-aminopyridine
derivatives by heating them to 80 ◦C in a solution of K2CO3 in D2O [44]. Furthermore, by
reaction with substituted acetylenes, the resulting deuterium derivatives were cyclized to
pyrazolo[1,5-a]pyridine derivatives containing deuterium atoms. The reaction of the same
pyridines with acetonitrile in basic D2O solution resulted in 1,2,4-triazolo[1,5-a]pyridine
derivatives containing deuterium atoms.
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Figure 1. Examples of drugs containing the pyrazolo[1,5-a]pyrimidine backbone. 
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Figure 1. Examples of drugs containing the pyrazolo[1,5-a]pyrimidine backbone.

Another method for introducing deuterium into an azine molecule has been described
for the preparation of pyrimidine derivatives containing a deuterium atom. This involves a
multicomponent cyclization of amidine, benzaldehyde and deuterated triethylamine-D15 in
the presence of iodine at 150 ◦C [45]. An example of the metal catalysis used for introducing
deuterium into a pyrimidine molecule is a reaction under microwave-promoted conditions
catalyzed by Ruthenium(II)–Carboxylate [46].

It is also important to note that the drug Austedo (deutetrabenazine) (Figure 2), which
contains deuterium atoms, is already being used in medical practice [47].
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2. Results and Discussion

From the above, it is clear that the methods used for obtaining deuterated derivatives
are not always simple. Therefore, the development of new, easily implemented methods
for introducing deuterium atoms into molecules of organic substances is of interest. This
is especially important in the synthesis of deuterium-containing bioactive substances.
Considering the biological activity and importance of Azolo[1,5-a]pyrimidine derivatives
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in medicine, interest in developing new methods for introducing deuterium atoms into
their molecules is of practical interest and is undoubtedly relevant.

This communication is devoted to a simple, easily and rapidly implemented method
for introducing deuterium atoms into the molecules of substituted pyrazolo[1,5-a]- and 1,2,4-
triazolo[1,5-a]pyrimidines. It is also essential that the proposed method is regioselective.

When drops of a preliminarily prepared solution of CD3ONa in CD3OD are added
to the solution of 6-acetyl-2,7-dimethylpyrazolo[1,5-a]- (1) and 6-acetyl-7-methyl-2-pheny-
lpyrazolo[1,5-a]pyrimidine (2) in CD3OD (Scheme 1), the disappearance of the signals of
two methyl groups is almost immediately observed in the 1H NMR spectrum. Comparison
of the spectra of substances 1 and 2, as well as the NOESY study of the spectrum of
compound 1, indicates the H/D exchange of hydrogen atoms of the methyl (7-CH3) and
acetyl (6-COCH3) groups (Figure 3). Thus, in the spectrum of the deuterated product of
compound 1, the signal of the methyl groups is retained, for which the NOESY spectrum
shows a response between the proton signal of one of the methyl groups (2-CH3) and
the aromatic proton (3-H). Note that such an interaction is impossible for other methyl
groups, which unambiguously proves that the 7-CH3 and 6-COCH3 protons located in
the pyrimidine ring, and not the 2-CH3 protons located in the pyrazole ring, undergo
isotopic exchange.
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In order to confirm the deuterium exchange that had taken place (after the addition
of CD3ONa), we isolated substance 3 from the NMR ampoule and compared its mass
spectrum with the spectrum of compound 1 before deuterium exchange (Figure 4). As
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a result, the mass of product 3, as expected, was 6 units higher than the mass of the
initial substance 1 (respectively, 195 and 189). This confirms the H/D exchange in the two
methyl groups.
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A similar exchange of protons of two methyl groups was also observed in the 1H
NMR spectrum of 6-acetyl-7-methyl-1,2,4-triazolo[1,5-a]pyrimidine (CD3ONa solution in
CD3OD) (Scheme 2). Almost immediately after the addition of alcoholate-D3 to the NMR
ampoule, the signals of both methyl groups (7-CH3 and COCH3) disappeared.
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Scheme 2. H/D exchange in 6-acetyl-7-methyl-1,2,4-triazolo[1,5-a]pyrimidine (5).

Under standard conditions for recording NMR spectra, i.e., at a temperature of +30 ◦C,
it was impossible to study the kinetics of isotope exchange because of the very high trans-
formation rate. Therefore, we tried to study the reaction at low temperatures. According to
the results of preliminary studies, the optimal temperature for this was −10 ◦C (Table 1,
Figure 5). The rate of proton exchange in the two methyl groups was different under these
conditions. The intensity of the signal of one of the methyl groups (chemical shift 3.2 ppm)
(−10 ◦C) decreases by 6% by 5 min after the addition of deuterated sodium methoxide un-
der these conditions, by 15 min the exchange is 22%, by 20 min the exchange reaches almost
30% and is practically completed after 2 h of measurements. According to the results of the
measurements, the rate of exchange of protons of the second methyl group (chemical shift
2.28 ppm) under these conditions turned out to be significantly lower. Thus, we recorded
the first results of isotope exchange only 20 min after the start of the measurements, and by
120 min only 20% of the protons in this group had undergone exchange.

Table 1. The decrease in the concentration of hydrogen atoms in 6-acetyl-7-methyl-1,2,4-triazolo[1,5-
a]pyrimidine (5) molecule for 7-CH3 and COCH3 groups in CD3ONa solution in CD3OD at −10 ◦C
in a time period of 0–110 min.

Entry CH3 CH3% COCH3 COCH3% Time (min)

t0 3.0 100 3.0 100 0
t1 2.82 94.1 3.0 100.5 5
t2 2.56 85.6 3.08 102.8 10
t3 2.34 78.0 3.03 101.2 15
t4 2.12 70.7 2.97 99.0 20
t5 1.91 63.8 2.92 97.5 25
t6 1.78 59.3 2.93 97.7 30
t7 1.60 53.6 2.90 96.8 40
t8 1.28 42.7 2.86 95.3 50
t9 0.99 33.3 2.76 92.2 60
t10 0.77 25.7 2.67 89.0 70
t11 0.61 20.4 2.63 87.8 80
t12 0.48 16.1 2.64 88.1 90
t13 0.38 12.8 2.54 84.7 100
t14 0.31 10.4 2.46 81.9 110

In the 1H NMR spectrum of triazolopyrimidine 5, recorded by the NOESY method
(Figure 6), only one of the methyl groups located in the region of 2.28 ppm has a cross peak
with an aromatic proton (9.3 ppm). This methyl group corresponds to the acetyl group
occupying position 6. Based on this, we concluded that in the examples described, the
protons of the 7-CH3 methyl group (3.17 ppm) are exchanged faster. We obtained similar
confirmation when studying the spectrum of pyrazolopyrimidine 2 and, consequently,
compound 1.
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Figure 5. Diagram of the decrease in the concentration of hydrogen atoms in 6-acetyl-7-methyl-1,2,4-
triazolo[1,5-a]pyrimidine (5) molecule for 7-CH3 and COCH3 groups in CD3ONa solution in CD3OD
at −10 ◦C in a time period of 0–110 min.
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Figure 6. NOESY spectrum of 6-acetyl-7-methyl-1,2,4-triazolo[1,5-a]pyrimidine (5).

A fast H/D exchange of protons of two methyl groups upon addition of CD3ONa to
a solution of compound 1 in CD3OD was observed. Due to the rapidity of the reaction,
the kinetics of the process at a temperature of −10 ◦C could not be fixed. However, it was
registered at a lower temperature (−15 ◦C). Therefore, the exchange of both methyl groups
approached 50% after 2 min and was practically completed within a few minutes (Table 2,
Figure 7).

When studying the deuteroexchange of the 3-pyrazolyl derivative of pyrazolopyrim-
idine 7 containing 4 methyl groups, after adding CD3ONa to a solution, protons of two
methyl groups in the pyrimidine ring are first exchanged (Scheme 3). In the side pyrazole
ring, only the signal of one of the methyl groups disappears. In this case, a cross peak was
noted in the NOESY spectrum (Figure 8), indicating the interaction of the methyl group of
the acetyl fragment with the aromatic proton of the pyrazole ring, which made it possible
to show that the hydrogen atoms of the acetyl group of the pyrazole ring undergo exchange.
Interestingly, in this example, the exchange also partially affects the aromatic protons of
pyrazolo[1,5-a]pyrimidine.
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Table 2. The decrease in the concentration of hydrogen atoms in 6-acetyl-2,7-dimethylpyrazolo[1,5-
a]pyrimidine (1) molecule for 7-CH3 and COCH3 groups in CD3ONa solution in CD3OD at −15 ◦C
in a time period of 0–12 min.

Entry CH3 CH3% COCH3 COCH3% Time (min)

t0 3.0 100 3.0 100 0
t1 1.75 58.3 2.11 70.3 2
t2 1.03 34.3 1.62 54.0 4
t3 0.80 26.7 1.32 44.0 6
t4 0.45 15.0 1.09 36.3 8
t5 0.3 10.0 0.85 28.3 10
t6 0.25 8.3 0.62 20.7 12
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Figure 7. Diagram of the decrease in the concentration of hydrogen atoms in 6-acetyl-2,7-
dimethylpyrazolo[1,5-a]pyrimidine (1) molecule for 7-CH3 and COCH3 groups in CD3ONa solution
in CD3OD at −15 ◦C in a time period of 0–12 min.
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In the study of deuterium exchange in 2-substituted 7-methyl-5-ethoxycarbonylpyraz-
olo[1,5-a]pyrimidines (10, 11), after adding CD3ONa to the solution, a rapid exchange
of hydrogen atoms in the pyrimidine ring for deuterium atoms was immediately noted.
However, in these cases, the reaction was accompanied by another transformation, which
was also recorded spectrally.

Thus, when comparing the 1H NMR spectra of 2,7-dimethyl-5-ethoxycarbonylpyrazo-
lo[1,5-a]pyrimidine (10) recorded in CD3OD at temperatures of +30 ◦C and −10 ◦C, an
unusual and at first glance inexplicable difference is noted. At minus temperature (−10 ◦C),
the spectrum of the compound corresponds to the expected one and includes the signals
of two methyl (2-CH3 2.55; 7-CH3 2.84 ppm) and one ester (OCH2CH3 4.46, OCH2CH3
1.44 ppm) groups, as well as singlets of two protons 3-H and 6-H (respectively, 6.70 and
7.48 ppm). In the spectrum of the same compound, recorded at +30 ◦C, the signals of all
groups with the corresponding integrals are preserved, but two identical pairs of proton
signals of two ethyl groups are observed (two quartets—OCH2CH3 4.46 and DOCH2CH3
3.62 ppm, each of which corresponds to one proton, and two triplets—respectively, 1.44
and 1.19 ppm, 1.5 H each) (Figure 9).
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Figure 9. 1H NMR spectra of 2,7-dimethyl-5-ethoxycarbonylpyrazolo[1,5-a]pyrimidine (10) recorded
in CD3OD at temperatures of +30 ◦C.

The study of the spectra recorded in CD3OD at−10 ◦C, that is, before adding CD3ONa
to the ampoule, showed that over time there is a gradual decrease in the signals of the
protons of the ethyl group and the proportional appearance of a new pair of signals of
another ethyl group. In this case, the signals of all other groups remain unchanged in the
spectra (Figure 7). Ultimately, the signals of the ethyl group of the original molecule, namely,
those noted in the region of 4.5 ppm (CH2) and 1.48 ppm (CH3) completely disappear and
are replaced by ethyl group signals that have chemical shifts in a stronger field, respectively,
in the region of 1.2 (CH3) and 3.6 ppm (CH2).

We believe that the observed dynamic change in the NMR spectra is explained by
the ongoing transesterification (Scheme 4). In this case, the solvent molecules (CD3OD)
interact with the ethoxycarbonyl group displacing the ethoxy group, resulting in the
formation of a new 7-methyl-2-methyl-5-d3-metoxycarbonylpyrazolo[1,5-a]pyrimidine.
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Ethanol (C2H5OD) is formed in the solution, the signals of the groups of which are fixed in
the 1H NMR spectrum in the form of a new ethyl group.
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Scheme 4. H/D exchange in 2-substituted 7-methyl-5-ethoxycarbonylpyrazolo[1,5-a]pyrimidine
(10, 11).

At +30 ◦C, after adding one drop of deuterated sodium methoxide (CD3ONa) to the
NMR ampoule, both processes rapidly occur—transesterification and H/D exchange, a
result of which the signal of one of the methyl groups (7-CH3) disappears in the spectrum,
after which 3D-methyl 2-methyl-7-(d3-methyl)-5-ethoxycarbonylpyrazolo[1,5-a]pyrimidine
is immediately formed.

At low temperatures (−10 ◦C), we were able to study the kinetics of the entire deu-
terium exchange. As the experiment showed, in the beginning, transesterification already
begins in CD3OD, which is completed even without the addition of CD3ONa. However,
when d3-sodium methoxide is added, transesterification is activated, since there are no
signals from the ester group of the starting ester in the spectrum. Under the same conditions
(−10 ◦C), the kinetics of the H/D isotope exchange was studied by NMR spectral (Table 3,
Figure 10).

Table 3. The decrease in the concentration of hydrogen atoms in 2,7-dimethyl-5-
ethoxycarbonylpyrazolo[1,5-a]pyrimidine (10) molecule for 7-CH3 group in CD3ONa solution in
CD3OD at −10 ◦C in a time period of 0–75 min.

Entry CH3 CH3% Time (min)

t0 3.04 100 0
t1 2.89 96.3 5
t2 2.63 87.7 10
t3 2.50 83.3 15
t4 2.27 75.7 25
t5 2.24 74.7 30
t6 2.02 67.3 35
t7 1.93 64.3 40
t8 1.98 66.0 45
t9 2.11 70.3 50
t10 1.86 62.0 55
t11 1.84 61.3 60
t12 1.75 58.3 65
t13 1.74 58.0 70
t14 1.68 56.0 75

A similar isotopic exchange, together with transesterification, was also noted for 2-
phenyl-7-methyl-5-ethoxycarbonylpyrazolo[1,5-a]pyrimidine 11. Thus, in the spectrum of
compound 11, which contains a phenyl group in the pyrazole ring, two processes easily
occur not only in a solution of deuterated alkali (CD3ONa in CD3OD), but also in a solution
of CD3OD: the deuterium exchange of protons of the methyl group and transesterification
with the formation of d1-ethanol (CH3CH2OD). In the 1H NMR spectrum at a temperature
of +30 ◦C after the dissolution of the substance, the signals of the protons of the ethyl group
of the ester in the regions of 1.46 (t, CH3) and 4.47 (q, CH2O) almost completely disappear,
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and the signals of the ethyl group of the formed d1-ethanol CH3CH2OD (1.18—t, CH3
and 3.61—q, CH2O) become the main signals. In this case, the proton signals of all other
groups of compound 11 (phenyl and methyl groups, as well as hydrogen atoms directly
connected to the pyrimidine and pyrazole rings) are observed in the spectrum without
changes. After adding 1–2 drops of CD3ONa solution in CD3OD to the NMR ampoule
containing a solution of compound 11 in CD3OD, the 7-CH3 signal almost completely and
immediately disappears (the exchange is approximately 80%), and the proton signals in
the weak field (C6H5, 3-H and 6-H) remain unchanged. The exchange of protons of the
methyl group for deuterium (H/D) according to the 1H NMR spectrum data is practically
completed by 20 min after the addition of sodium d3-methoxide.
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Figure 10. Diagram of the decrease in the concentration of hydrogen atoms in 2,7-dimethyl-5-
ethoxycarbonylpyrazolo[1,5-a]pyrimidine (10) molecule for 7-CH3 group in CD3ONa solution in
CD3OD at −10 ◦C in a time period of 0–75 min.

N-Alkylation of the pyrazolo[1,5-a]pyrimidine skeleton leads to a significant change
in the process of deuterium exchange of methyl groups noted by us. This process was
studied spectrally using the example of two salts of 6-acetyl-2,7-dimethylpyrazolo[1,5-
a]pyrimidine—iodomethylate and iodoethylate. Namely, 6-acetyl-2,4,7-trimethylpyrazo-
lo[1,5-a]pyrimidinium (16) and 6-acetyl-2,7-dimethyl-4-ethylpyrazolo[1,5-a]pyrimidinium
(17) iodides. It is important to note that the position of the N-alkyl groups was confirmed
by 1H NMR spectral using the NOESY technique. Thus, in the spectrum of 16 iodide,
NOE (Nuclear Overhauser Effect) was noted between the protons of the N-methyl group
(4.43 ppm) and the protons of the pyrazole (3-H) and pyrimidine (5-H) rings (7.25 and
9.95 ppm, respectively). The cross-peaks interactions of the 5-H proton of the pyrimidine
ring with the signals of two adjacent positions of the groups, methyl N-CH3 and acetyl
(COCH3), are also clearly visible. Therefore, based on the above, it was unequivocally
determined that alkylation occurs at the N-4 nitrogen atom of the pyrimidine ring.

Similar interactions of protons were also noted in the NOESY study of iodoethylate 17.
It is noteworthy, that, in this case, only the protons of the N-methylene group participate in
the interaction with the neighboring 3-H and 5-H protons.

In the 1H NMR spectrum of iodide 16 recorded in CD3OD without the addition of
CD3ONa methylate, an H/D exchange of one of the methyl groups was noted. Instead of
the expected signals of four methyl groups, the signals of only three of them were fixed in
the spectrum (18) (Scheme 5). Since the signal of the N-methyl group, as a rule, appears in a
weaker field (in this case, it is 4.41 ppm), and the signal of the methyl group of the pyrazole
ring is usually in the strongest field, the signal in the 2.78 ppm region could correspond to
either a methyl group in position 7 or an acetyl group. Based on the NOESY study carried
out in DMSO-d6 solution, it was concluded that the methyl group signal was present in
the spectrum of the salt 16 in DMSO-d6 in the region of 3.3 ppm and disappeared due to
deuterium exchange in the spectrum registered in CD3OD corresponding to 7-CH3.
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Scheme 5. H/D exchange in 6-acetyl-2,4,7-trimethylpyrazolo[1,5-a]pyrimidinium (16) and 6-acetyl-
2,7-dimethyl-4-ethylpyrazolo[1,5-a]pyrimidinium (17) iodides. 

Thus, methylation of the pyrimidine ring, leading to an increase in its electrophilicity, 
facilitates the nucleophilic isotopic exchange of hydrogen atoms of the 7-methyl group, 
resulting in a rapid H/D exchange even in CD3OD. It is interesting that, in contrast to the 
above examples of deuterium exchange of non-alkylated at the nitrogen atom Azolo[1,5-

Scheme 5. H/D exchange in 6-acetyl-2,4,7-trimethylpyrazolo[1,5-a]pyrimidinium (16) and 6-acetyl-
2,7-dimethyl-4-ethylpyrazolo[1,5-a]pyrimidinium (17) iodides.

Thus, methylation of the pyrimidine ring, leading to an increase in its electrophilicity,
facilitates the nucleophilic isotopic exchange of hydrogen atoms of the 7-methyl group,
resulting in a rapid H/D exchange even in CD3OD. It is interesting that, in contrast to the
above examples of deuterium exchange of non-alkylated at the nitrogen atom Azolo[1,5-
a]pyrimidines (1, 2, 5, 7, 10, 11), with the addition of sodium d3-methoxide, the subsequent
exchange of hydrogen atoms of the methyl fragment of the acetyl, or any other group, is
not observed for only several minutes, but also during the first two days. Only by the
third day does a slight decrease in the signal of the hydrogen atoms of the acetyl group
(by about 25%) become noticeable in the spectrum; however, new signals begin to appear,
which indicates the occurrence of other processes. The possibility of destruction at this
stage should be excluded, since, in the spectrum for several more days of observations, in
parallel with the decrease in the integral of the signal of the protons of the acetyl group,
the signals of the remaining protons of the initial molecule (N-Me, 2-Me, 3-H and 5-H) are
practically unchanged.

In case of N-ethylpyrazolo[1,5-a]pyrimidinium iodide 17, as well as N-methyl deriva-
tive 16, in the spectrum registered in CD3OD, i.e., without the addition of CD3ONa, H/D
exchange occurs immediately (Scheme 5) with the formation of deutero-substituted com-
pound 19. In the same way, i.e., the NOESY study, it was shown that 7-CH3 hydrogen
atoms undergo rapid exchange. Further monitoring for two days did not register the H/D
exchange of any other protons in the molecule.

The spectra of 6-acetyl-3,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidinium iodide 20 recor-
ded in DMSO-d6 and CD3OD were identical. This indicates that the isotopic exchange
does not proceed in this case in the CD3OD solution. Consequently, the displacement of
the N-alkyl group into the triazole ring, that is, its removal from the 7-Me group, led to a
decrease in the effect on potential (expected) isotopic exchange. The addition of alcoholate
(CD3ONa) to the solution leads to the appearance of many new signals, possibly due to the
opening of the pyrimidine ring and subsequent destruction of the molecule (Scheme 6).
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Scheme 6. Expected H/D exchange in 6-acetyl-3,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidinium io-
dide (20).

We studied a similar interactions of two more 1,2,4-triazolo[1,5-a]pyrimidinium iodides
with solutions of deuterated sodium methoxide in deuteromethanol. In particular, the
NMR spectra of 3,5,7-trimethyl-1,2,4-triazolo[1,5-a]pyrimidinium iodide (21) in CD3OD
and CD3ONa/CD3OD were studied (Scheme 7). As in the case of iodide 20 in CD3OD,
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no selective isotopic exchange of C-alkyl groups was observed without the addition of
alcoholate. However, when a small amount of CD3ONa was added to the NMR ampule, an
easy, quantitative, and, most importantly, selective basic deuteroexchange of protons of both
C-methyl groups of the pyrimidinium salt 22 was noted. The signals of C-methyl groups
completely disappeared at room temperature. With an increase in the duration of exposure
to the deuterated reagent, the signal also disappeared from one of the aromatic protons
(apparently, 2-H, located in the triazole ring—in the neighborhood of the quaternized
nitrogen atom).
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Scheme 7. H/D exchange in 3,5,7-trimethyl-1,2,4-triazolo[1,5-a]pyrimidinium iodide (21).

It is important to note that, as in the above example, in the spectrum of compound 23
(3,7-dimethyl-6-ethoxycarbonyl-1,2,4-triazolo[1,5-a]pyrimidine) in d4-methanol, no isotopic
exchanges were observed. However, when d4-sodium methoxide is added, the proton
signal of the 7-methyl group disappeared completely within a few minutes, while the
signals of the remaining hydrogen atoms were preserved. Note that, as in the case of
compound 21, deuterium exchange of one of the aromatic protons, presumably located in
the triazole ring, occurred over time (during 10 days of monitoring) with the formation of
salt 24 (Scheme 8).
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dide (23).

It should be noted that in the latter case (salt 23), we also observed in the 1H NMR
spectrum a partially proceeding (significantly slower than in the case of the ester group in
position 5 of compounds 10, 11) transesterification reaction.

Thus, on a number of examples—methyl derivatives of 1,2,4-triazolo[1,5-a]pyrimidini-
um iodides—it was confirmed that alkylation of the nitrogen atom of the triazole ring does
not lead to isotopic exchange of protons of the C-methyl group located in the pyrimidine
ring. Such H/D exchange requires the addition of an alcoholate (CD3ONa) to the medium.
In the examples of pyrazolo[1,5-a]pyrimidinium iodides, where the nitrogen atom in the
pyrimidine part of the molecule is alkylated, the H/D exchange of C-methyl groups in the
pyrimidine ring is very easily realized already in a CD3OD solution without the addition
of CD3ONa.

The schemes of the deuterium exchange reaction is associated with the attack of
the methylate ion at the most electrophilic position in the molecule, which leads to the
elimination of a proton. The resulting carbanion is stabilized by the addition of a proton (or,
when the reaction is carried out in a solution of deuterated methanol, a deuterium atom).
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The H/D isotopic exchange of the protons of methyl groups in all the above examples
proceeds according to the mechanism of nucleophilic substitution. However, the nucle-
ophilic substitution in bases (i.e., not salts) and alkyl iodides (i.e., azolopyrimidinium salts)
occurs via different pathways and has different driving forces. In the case of the bases of
1, 2, 5, 7, 10 and 11 compounds, in a solution of CD3ONa in CD3OD, under the action of
a methoxide ion, the proton of the methyl group of the pyrimidine ring is removed and
replaced by a deuterium atom from the solvent molecule at the same position (Scheme 9).
As a result, a stepwise exchange of all hydrogen atoms of the methyl group 7-CH3, and
then in the acetyl group, by deuterium atoms is realized.
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Scheme 10. The proposed mechanism of H/D nucleophilic exchange in the salts. 

When alcoholate is added to the reactor, azolopyrimidine is converted into its neutral 
form, due to the formation of NaI. The shift in the electron cloud towards the N4 atom 
makes the 7-position of the pyrimidine ring a nucleophilic attack target. This can lead to 
the opening of the pyrimidine ring and its destruction (Scheme 10). Note that an ambigu-
ous transformation of the molecule after the addition of an alcoholate was noted earlier. 

The process of deuterium exchange of protons of the methyl groups of the pyrimidine 
ring can be explained by the relatively high CH acidity of these protons. This also corre-
lates the shifts in the signals of these protons in a relatively weak field. 

3. Materials and Methods 
3.1. General Experimental Details 

1H-, 13C-NMR and NOESY spectra were recorded via Varian Mercury-300 VX spec-
trometer (Varian, Baden, Switzerland) (1H-NMR 300 MHz, 13C-NMR 75 MHz) in a CD3OD 
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Scheme 9. The proposed mechanism of H/D nucleophilic exchange in the bases (1, 2, 5, 7, 10 and 11)
on the example of compound 1.

In the case of 4-alkyl-substituted pyrazolo[1,5-a]pyrimidinium salts, a different driving
force determines the beginning of the isotope exchange. Due to the positive charge on the
nitrogen atom, the mobility of hydrogen atoms of the 7-methyl group of the pyrimidine ring
increases and, as a result, already in CD3OD—without the addition of alcoholate—H/D
exchange becomes possible (Scheme 10). It should be noted that the positive charge on
the nitrogen atom of the pyrimidine ring, while promoting an increase in the mobility
of hydrogen atoms in the 7-methyl group, does not affect the possibility of detachment
of hydrogen atoms in the acetyl group. It remains unaffected by the electronic effects of
p-conjugation in the pyrimidine ring. This explains the absence of H/D exchange in the
acetyl group in Azolo[1,5-a]pyrimidinium 4-alkyl derivatives in CD3OD solution.
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Scheme 10. The proposed mechanism of H/D nucleophilic exchange in the salts.

When alcoholate is added to the reactor, azolopyrimidine is converted into its neutral
form, due to the formation of NaI. The shift in the electron cloud towards the N4 atom
makes the 7-position of the pyrimidine ring a nucleophilic attack target. This can lead to the
opening of the pyrimidine ring and its destruction (Scheme 10). Note that an ambiguous
transformation of the molecule after the addition of an alcoholate was noted earlier.

The process of deuterium exchange of protons of the methyl groups of the pyrimidine
ring can be explained by the relatively high CH acidity of these protons. This also correlates
the shifts in the signals of these protons in a relatively weak field.
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3. Materials and Methods
3.1. General Experimental Details

1H-, 13C-NMR and NOESY spectra were recorded via Varian Mercury-300 VX spec-
trometer (Varian, Baden, Switzerland) (1H-NMR 300 MHz, 13C-NMR 75 MHz) in a CD3OD
at temperatures of 253, 258 and 298 K. Elemental analysis was performed via Eurovector
EA 3000 instrument. Melting points were measured on instruments for determining the
melting point of organic substances SMP 11 (STUART) and SMP 30 (STUART, Wickford,
UK). The purity and identity of the substances were confirmed on a high-performance
preparative liquid chromatograph SENMIPREPARATIV HPLC (HPLC Knauer AZURA
PREP + Analitical UV Detector),Germany), as well as TLC on Silufol (UV-254). The syn-
thesis of non-deuterated compounds 1, 2, 5, 10, 11, 16 and 17 was carried out according to
the previously described procedures [48,49]. 5-Amino-1H-pyrazole-4-carbohydrazide used
for the synthesis of 3-pyrazolyl derivative of pyrazolopyrimidine 7 was purchased from
Aurora Fine Chemicals LLC, San Diego, CA, USA. CD3OD was purchased from Sigma-
Aldrich, St. Louis, MO, USA. All reagents purchased commercially were used without
purification.

3.2. Synthetic Procedures
3.2.1. Synthesis of 6-acetyl-7-methyl-3-[1-(4-acetyl-5-methyl-1H-pyrazole-1-
carbonyl)]pyrazolo[1,5-a]pyrimidine 7

A mixture of 5-amino-1H-pyrazole-4-carbohydrazide (130 mg, 1.2 mmol) and ethoxym-
ethylideneacetylacetone (400 mg, 2.4 mmol) in 5 mL of absolute ethanol was refluxed for
4 h with a calcium chloride tube. After solvent evaporation, the resulting precipitate was
filtered, washed with diethyl ether, recrystallized from hexane and dried to give 6-acetyl-
7-methyl-3-[1-(4-acetyl-5-methyl-1H-pyrazole-1-carbonyl)]pyrazolo[1,5-a]pyrimidine 7 as
an orange solid in 70% yield. 1H NMR (300 MHz, DMSO/CCl4 1:3, δ, ppm): 2.48 (s, 3 H),
2.76 (s, 3 H), 2.93 (s, 3 H), 3.14 (s, 3 H), 8.12 (s, 1 H), 8.96 (s, 1 H), 9.28 (s, 1 H). 13C NMR
(75 MHz, DMSO/CCl4 1:3, δ, ppm): 12.4, 14.52, 28.82, 29.56, 103.68, 120.08, 121.8, 142.27,
146, 149.01, 149.8, 150.07, 152.88, 159.68, 191.86, 195.43. Calculated, %: C 59.07, H 4.65, N
21.53. C16H15N5O3. Found, %: C 59.03, H 4.70, N 21.50; mp: 217–218 °C.

3.2.2. General Procedure for the Preparation of Deutero-Substituted
Azolo[1,5-a]pyrimidines 3, 4, 6, 9, 14, 15

A solution of several mg of compounds 1, 2, 5, 7, 10, 11 in CD3OD was prepared in
an NMR ampoule and 1H NMR spectra were recorded. Next, 2 drops of a pre-prepared
solution of CD3ONa in CD3OD were added to the ampoule and the dynamics of the proton
deuterium exchange in the ampoule was monitored by registering changes in the 1H NMR
spectra (Table 4).

Table 4. Initial and Deutero-Substituted Azolo[1,5-a]pyrimidines, T = 30°C.

Comp. No Name Solvent 1H NMR (300 MHz, δ, ppm):

1 6-acetyl-2,7-dimethylpyrazolo[1,5-
a]pyrimidine CD3OD 2.50 (s, 3 H); 2.65 (s, 3 H); 3.14 (s, 3 H); 6.55 (s,

1 H); 8.82 (s, 1 H)

3 6-d3-acetyl-7-d3-methyl-2-
methylpyrazolo[1,5-a]pyrimidine

CD3OD +
CD3ONa 2.50 (s, 3 H); 6.55 (s, 1 H); 8.82 (s, 1 H)

2 6-acetyl-2-phenyl-7-methylpyrazolo[1,5-
a]pyrimidine CD3OD 2.7 (s, 3 H); 3.2 (s, 3 H); 7.15 (s, 1 H); 7.40–8.2

(m, 5 H); 8.89 (s, 1 H)

4 6-d3-acetyl-7-d3-methyl-2-
phenylpyrazolo[1,5-a]pyrimidine

CD3OD +
CD3ONa 7.15 (s, 1 H); 7.40–8.2 (m, 5 H); 8.89 (s, 1 H)

5 6-acetyl-7-methyl-1,2,4-triazolo[1,5-
a]pyrimidine CD3OD 2.78 (s, 3 H); 3.18 (s, 3 H); 8.62 (s, 1 H); 9.25 (s,

1 H)

6 6-d3-acetyl-7-d3-methyl-1,2,4-triazolo[1,5-
a]pyrimidine

CD3OD +
CD3ONa

7.6 (s, 1 H); 8.15 (s, 1 H); 8.62 (s, 1 H); 9.25 (s,
1 H)
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Table 4. Cont.

Comp. No Name Solvent 1H NMR (300 MHz, δ, ppm):

7
6-acetyl-7-methyl-3-[1-(4-acetyl-5-methyl-
1H-pyrazole-1-carbonyl)]-pyrazolo[1,5-

a]pyrimidine
CD3OD 2.54 (s, 3 H), 2.77 (s, 3 H), 2.97 (s, 3 H), 3.19 (s,

3 H), 8.23 (s, 1 H), 9.14 (s, 1 H), 9.23 (s, 1 H)

9

6-d3-acetyl-7-d3-methyl-3-[1-(4-d3-acetyl-5-
methyl-1H-py-

razole-1-carbonyl)]-pyrazolo[1,5-
a]pyrimidine

CD3OD +
CD3ONa

2.45 (s, 3 H), 8.23 (s, 1 H), 9.14 (s, 1 H), 9.23 (s,
1 H)

10 2,7-dimethyl-5-ethoxycarbonylpyrazolo[1,5-
a]pyrimidine CD3OD 1.42 (t, 3 H); 2.55 (s, 3 H); 2.82 (s, 3 H); 4.45 (q,

2 H); 6.7 (s, 1 H); 7.45 (s, 1 H)

14
7-d3-methyl-2-methyl-5-d3-

metoxycarbonylpyrazolo[1,5-a]-
pyrimidine

CD3OD +
CD3ONa

1.2 (t, 3 H); 2.55 (s, 3 H); 3.6 (q, 2 H); 6.7 (s, 1 H);
7.45 (s, 1 H)

11 2-phenyl-7-methyl-5-
ethoxycarbonylpyrazolo[1,5-a]pyrimidine CD3OD 1.2 (t, 3 H); 2.9 (s, 3 H); 3.6 (q, 2 H); 7.2–7.6 (m,

5 H); 8.15 (d, 2 H)

15
7-d3-methyl-2-phenyl-5-d3-

metoxycarbonylpyrazolo[1,5-a]-
pyrimidine

CD3OD +
CD3ONa

1.2 (t, 3 H); 3.6 (q, 2 H); 7.2–7.6 (m, 5 H); 8.15 (d,
2 H)

16
6-acetyl-2,4,7-trimethylpyrazolo[1,5-

a]pyrimidinium
iodide

DMSO-d6
2.65 (s, 3 H); 2.84 (s, 3 H); 3.28 (s, 3 H); 4.4 (s,

3 H); 7.25 (s, 1 H); 9.95 (s, 1 H)

18
6-acetyl-2,4-dimethyl-7-d3-

methylpyrazolo[1,5-a]pyrimidinium
iodide

CD3OD 2.7 (s, 3 H); 2.8 (s, 3 H); 4.4 (s, 3 H); 7.1 (s, 1 H);
9.6 (s, 1 H)

17
6-acetyl-2,7-dimethyl-4-ethylpyrazolo[1,5-

a]pyrimidinium
iodide

DMSO-d6

1.70 (t, J = 7.3, 3 H); 2.65 (s, 3 H); 2.87 (s, 3 H);
3.27(s, 3 H); 4.92 (d, J = 7, 2 H); 7.37 (s, 1 H);

9.99 (s, 1 H)

19
6-acetyl-2-methyl-7-d3-methyl-4-

ethylpyrazolo[1,5-a]pyrimidinium
iodide

CD3OD 1.65 (t, J = 7.3, 3 H); 2.63 (s, 3 H); 2.82 (s, 3 H);
4.8 (d, J = 7.6, 2 H); 7.2 (s, 1 H); 9.6 (s, 1 H)

21
3,5,7-trimethyl-1,2,4-triazolo[1,5-

a]pyrimidinium
iodide

CD3OD 2.87 (s, 3 H); 2.95 (d, J = 0.9 Hz, 3 H); 4.07 (s,
3 H); 7.92 (q, J = 0.9 Hz, 1 H), 9.73 (s, 1 H)

22
3-methyl-5,7-d6-dimethyl-2-d1-1,2,4-

triazolo[1,5-a]pyrimidinium
iodide

CD3OD +
CD3ONa 3.25 (s, 3 H); 6.92 (q, 1 H)

23
3,7-dimethyl-6-ethoxycarbonyl-1,2,4-

triazolo[1,5-a]pyrimidinium
iodide

CD3OD
1.50 (t, J = 7.1 Hz, 3 H); 3.28 (s, 3 H); 4.17 (s,

3 H); 4.53 (q, J = 7.1 Hz, 2 H); 9.58 (s, 1 H), 9.97
(s, 1 H)

24
3-methyl-7-d3-methyl-6-ethoxycarbonyl-2-

d1-1,2,4-triazolo[1,5-a]pyrimidinium
iodide

CD3OD +
CD3ONa

1.50 (t, J = 7.1 Hz, 3 H); 4.17 (s, 3 H); 4.53 (q,
J = 7.1 Hz, 2 H); 9.58 (s, 0.2 H), 9.97 (s, 1 H)

4. Conclusions

We have developed an efficient protocol for the synthesis of deuterium-labeled
pyrazolo[1,5-a]pyrimidines and 1,2,4-triazolo[1,5-a]pyrimidines. It is important that the
method is regioselective and leads to the introduction of deuterium atoms into the methyl
group of the pyrimidine fragment of the molecule. The reaction is technically easy to imple-
ment and it can be used for labeling for biological research and studying the mechanisms
of chemical reactions. It can be assumed that the method will be extended to introduce a
tritium label into pharmaceuticals for use in medicine.
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https://www.mdpi.com/article/10.3390/molecules28062869/s1, NMR spectra Schemes S1–S3 and
Figures S1–S27, Table S1: Kinetic study of the deuterium exchange from compound 5 to 6-d3-acetyl-7-
d3-methyl-1,2,4-triazolo[1,5-a]pyrimidine 6 in CD3OD + CD3ONa at T = −10 ◦C; Table S2: Kinetic
study of the deuterium exchange from compound 1 to 6-d3-acetyl-7-d3-methyl-2-methylpyrazolo[1,5-
a]pyrimidine 3 in CD3OD + CD3ONa at T =−15 ◦C; Table S3: Kinetic study of the deuterium exchange
from compound 10 to 7-d3-methyl-2-methyl-5-d3-metoxycarbonylpyrazolo[1,5-a]pyrimidine 14 in
CD3OD + CD3ONa at T = −10 ◦C.
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