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Abstract: To remove typical herbicide diuron effectively, a novel sludge-derived modified biochar
(SDMBC600) was prepared using sludge-derived biochar (SDBC600) as raw material and Fe-Zn
as an activator and modifier in this study. The physico-chemical properties of SDMBC600 and
the adsorption behavior of diuron on the SDMBC600 were studied systematically. The adsorption
mechanisms as well as practical applications of SDMBC600 were also investigated and examined.
The results showed that the SDMBC600 was chemically loaded with Fe-Zn and SDMBC600 had a
larger specific surface area (204 m2/g) and pore volume (0.0985 cm3/g). The adsorption of diuron
on SDMBC600 followed pseudo-second-order kinetics and the Langmuir isotherm model, with a
maximum diuron adsorption capacity of 17.7 mg/g. The biochar could maintain a good adsorption
performance (8.88–12.9 mg/g) under wide water quality conditions, in the pH of 2–10 and with the
presence of humic acid and six typical metallic ions of 0–20 mg/L. The adsorption mechanisms of
SDMBC600 for diuron were found to include surface complexation, π–π binding, hydrogen bonding,
as well as pore filling. Additionally, the SDMBC600 was tested to be very stable with very low Fe
and Zn leaching concentration ≤0.203 mg/L in the wide pH range. In addition, the SDMBC600
could maintain a high adsorption capacity (99.6%) after four times of regeneration and therefore,
SDMBC600 could have a promising application for diuron removal in water treatment.

Keywords: sludge-derived biochar; Fe-Zn modification; diuron; adsorption kinetics; adsorption
isotherms; adsorption mechanism; practical research

1. Introduction

Diuron, a typically substituted urea herbicide, causes plants to wither by inhibiting
photosynthesis. It is widely employed for the treatment of gramineous and some broad-
leaved grasses [1]. Due to its complex and stable structure and long half-life, diuron
is often detected in the effluent from municipal sewage treatment plants, surface water,
and groundwater at different concentrations [2]. For example, diuron has been detected
in UK (6742 ng/L) [3], Brazil (50–7800 ng/L) [4], and Japan (2.18 µg/L) [5]. Diuron
has been characterized as a potential mutagenic/carcinogenic chemical by the United
States Environmental Protection Agency (US EPA) [6]. Previous research has revealed the
carcinogenic effect of diuron on rats as well as the cytotoxicity and potential genotoxicity on
humans [7]. In addition, due to its increasing threat to human health, diuron was added to
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the priority list of pollutants for the water policy area in the European Commission, and the
European Union has set the maximum allowable concentration of diuron in drinking water
at 0.1 µg/L [8]. In this context, it is essential to adequately treat diuron-contaminated water.

Currently, the methods employed to treat diuron in water comprise the advanced oxi-
dation process (AOPs), biological methods, membrane filter methods, and adsorption [9–12].
Although AOPs have shown good removal efficiency, the high energy and catalyst con-
sumptions make this treatment method difficult to apply in practical water treatment
engineering projects [13]. Although the biological methods can effectively remove di-
uron in water, water solution conditions (such as temperature and pH) affect adversely
the effectiveness [9]. The membrane filter method has a high removal rate for diuron,
but the high costs and issues with concentrated water of membrane filtration make it
largely impractical [14]. As an efficient and environmentally friendly method [15], the
adsorption method requires an expensive adsorbent, which limits its use [16]. Research
for environmentally friendly, economic, sustainable, and highly efficient adsorbent is of
importance [17].

Municipal excess activated sludge is a major solid waste of municipal sewage treat-
ment. With the advancement of the world economy and urbanization, the excess activated
sludge of urban sewage treatment plants increases year by year. At present, the excess
activated sludge is generally treated by landfill or incineration. Such a treatment is prone
to cause resource waste and secondary pollution [18], and is not in line with the global
conception of carbon reduction and resource utilization of waste. Instead, the excess acti-
vated sludge is a kind of waste biomass material containing organic matter and nutrients
as well as certain metal salts. Thus, the excess activated sludge can be potentially used
for producing biochar. Using the residual activated sludge to prepare sludge biochar
(SDBC) as an adsorbent has the advantages of waste reuse and high cost-efficiency. This
can resultantly reduce the secondary pollution of the excess activated sludge and improve
environmental safety. Studies of SDBC for removing organic pollutants from water have
been reported recently. For example, the adsorption of atrazine by SDBC was studied [19].
However, the original SDBC had limited adsorption performance for atrazine because of
its low number of functional groups, lack of pore capacity, and small specific surface area.

Studies on sludge-modified biochar have also been reported but with only limited
success. For example, Liu et al. [20] used magnetic biochar prepared by co-pyrolysis of
zero-valent iron nanoparticles and sewage sludge to remove Cr(VI) from water, with an
adsorption capacity of 11.56 mg/g. Therefore, it would be useful if a better modifica-
tion method could be established. Modification by metal ions is a common method of
biochar modification. For example, Iron(III) is one of the most widely used media for
modifying biochar because it increases the specific surface area and facilitates magnetic
separation [21,22]. A study showed that the adsorption capacity of Fe-modified lignin
biochar for removing methylene blue in wastewater could be 2.7 times greater than that
of the unmodified original lignin biochar [23]. In addition, zinc salts were also found to
be effective and low-cost modifiers for improving the pore structure and increasing the
specific surface area of biochar for enhanced micropollutants adsorption [24]. In a previous
study, the adsorption property of the bamboo biochar modified with ZnCl2 was tested to
be 4.4 times greater than that of the original bamboo biochar [25]. The metal modification
enables biochar to obtain more adsorption sites and a larger surface area, which solves the
effective recovery of biochar after adsorption. However, the metal modification will cause
the exudation of metal ions of biochar and pollute water. Moreover, Fe-Zn modified biochar
could combine the advantages of two kinds of modified material, which is an effective
adsorbent to remove organic synthetic raw material (P-nitrophenol [26]), heavy metals
(Pb(II) [27], Cd(II) [28]), and antibiotics (tetracycline [29]) from wastewater. Additionally,
bimetallic modification can improve the safety of biochar and reduce the leakage of metal
ions. However, the preparation of sludge-derived modified biochar (SDMBC) using Fe-Zn
has not been reported, and the adsorption efficiency and mechanism of diuron from water
by SDMBC are unclear.
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Therefore, the present study aimed at preparing a novel and efficient Fe-Zn modified
sludge biochar for the adsorption of diuron in an aqueous solution. The main objectives
of the study were to (1) prepare SDMBC by using SDBC as raw material and Fe-Zn as
an activator and modifier; (2) analyze the adsorption kinetics and isotherms of diuron by
SDMBC600 (prepared at 600 ◦C); (3) investigate the influence of solution conditions on the
adsorption capacity of diuron by SDMBC600 and the underlying adsorption mechanisms;
and (4) conduct practical research on SDMBC600 (pesticide mixture, real water, stability,
and regeneration).

2. Results and Discussion
2.1. Biochar Characterization

SEM was used for analyzing the surface morphology of SDBC600 and SDMBC600 (see
Figure 1a,c). The SDBC600 had an irregular surface and a highly porous structure, providing
loading space for Fe-Zn oxides (Fe3O4, ZnCO3, and ZnO). Compared with SDBC600, there
were some short rods and polygonal columnar particles on the surface of SDMBC600, likely
resulting from the loading of Fe-Zn oxide on the surface of the biochar. The EDS analysis
proved that SDMBC600 was successfully loaded with Fe-Zn (see Figure 1b,d).

BET was used to determine the N2 adsorption-desorption curves of SDMBC600 (see
Table S1 and Figure S1). The N2 adsorptions-desorption isotherm of SDMBC600 conformed
to type IV adsorption isotherm following the classification of the International Union of
Pure and Applied Chemistry (IUPAC) [30]. This indicates that SDMBC600 was mesoporous.
Based on pore size distribution, the SDMBC600 had an average pore size in the range of
2−50 nm, further confirming its mesoporous characteristics [24]. The total pore volume of
SDMBC600 (0.0985 cm3/g) was 2.58 times that of SDBC600 (0.0382 cm3/g). This may be due
to the effect of ZnCl2 on the pore formation during carbonization, which increased the pore
volume of the modified biochar [24]. SDMBC600 (204 m2/g) had a higher Langmuir surface
area than SDBC600 (59.8 m2/g), this might be due to the loading of Fe-Zn oxides [28].
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Figure 1. Biochar characterization: (a,c) the SEM images of SDBC600 and SDMBC600; (b,d) the EDS
spectra of SDBC600 and SDMBC600; (e) the FTIR spectra of SDBC600 and SDMBC600; (f) the XRD
diffraction pattern of SDBC600 and SDMBC600.
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The polarity and carbonization degree of biochar could be reflected by its elemental
composition [31]. The H/C ratio raised from 0.116 for SDBC600 to 0.166 for SDMBC600,
while the content of C decreased from 22.98% for SDBC600 to 20.62% for SDMBC600
(Table S2). The carbonization degree of biochar could be evaluated by its H/C [32]. The
H/C data indicated that SDMBC600 was less carbonized than SDBC600 in the study.
Generally, (N+O)/C could be applied to assess the numbers of polarity groups in biochar. If
the (N+O)/C ratio of biochar was low, this indicates that its polarity was low and aromatic
hydrocarbons were strong [31]. In addition, O/C could be employed to estimate the
hydrophilicity of biochar [31]. If the O/C ratio was decreased, this suggests that oxygenic
functional groups (carbonyl and carboxyl) were reduced, which was in favor of improving
biochar stability [33]. As shown in Table S2, the O/C ratio of SDMBC600 was reduced to
0.85 from 0.91 of SDBC600, while the (N+O)/C ratio of SDMBC600 was reduced to 0.97
from 1.04 of SDBC600. The results showed that SDMBC600 was more stable with higher
aromaticity and lower polarity than SDBC600.

FTIR had been applied for determining the functional groups of SDBC600 and SDMBC600
(see Figure 1e). The results indicated that the main functional groups of SDBC600 were
−OH, O=C−O, C−O−C, C−H, and Si−O−Si. The peaks of Fe−O (588 cm−1) and Zn−O
(618 cm−1) of SDMBC600 appeared after the modification with FeCl3/ZnCl2. The O=C−O
antisymmetric stretching vibration (1462 cm−1) and C−H (900 cm−1) disappeared, while
the intensity of C−O−C (1082 cm−1) decreased significantly. These results indicated that
Fe-Zn oxides loading on biochar resulted in the change of its functional groups. After the
second calcination, the functional group C=C (1662 cm−1) of SDMBC600 was enhanced,
suggesting that the stability of modified biochar (SDMBC600) was significantly improved.

In the XRD analyses of SDBC600, the diffraction peak at 26.60◦ belonged to the typical
graphite carbon structure (see Figure 1f). The peaks at 26.64◦ and 36.55◦ were matched
to the characteristic peaks of the (011) and (110) planes of quartz (SiO2, PDF 99–0088).
Peaks at 23.06◦, 29.40◦, 35.97◦, 39.41◦, 43.162◦, 47.50◦, and 48.51◦ were matched to the
characteristic peaks of the (012), (104), (110), (113), (202), (018), and (116) planes of calcite
(CaCO3, PDF 99–0022). For SDMBC600, the peak at 35.43◦ matched the characteristic peaks
of the (311) plane of Fe3O4 (PDF 99–0073), and the peaks at 32.56◦ and 36.25◦ matched the
characteristic peaks of the (104) plane of ZnCO3 (PDF 99–0095) and the (101) plane of ZnO
(PDF 99–0111), respectively. The above results also indicated that Fe-Zn was chemically
loaded onto SDMBC600.

2.2. Adsorptive Processes
2.2.1. Adsorption Kinetics

Figure 2 displays the kinetic adsorption curve of SDBC600 and SDMBC600. The
adsorption capacity of diuron by SDBC600 and SDMBC600 achieved an adsorption balance
within 6 h, with adsorption capacities of 2.55 and 6.67 mg/g, respectively. The diuron
adsorption capacity of SDMBC600 was 2.62 times that of SDBC600, which is likely due to its
richer pore structure, greater specific surface area, and more adsorption sites (Table S1). The
results showed that SDMBC600 had an enhanced removal efficiency and ability of diuron.

Three adsorption kinetic models have been applied for matching the diuron adsorption
by SDBC600 and SDMBC600. In contrast to the other two models (Table 1), the pseudo-
second-order kinetic model was best fitted to the adsorption behavior of the biochar,
especially for SDMBC600. Most likely, the adsorption of diuron by SDMBC600 was mainly
by chemisorption [34]. It was reported that the chemisorption was represented by the
Elovich model, which assumed that the surface of the adsorbent was heterogeneous [35].
In the present study, the R2 > 0.99 in the fitted data parameters of the Elovich model, so
supporting the assumption that the rate-controlling process for the adsorption of diuron
onto SDMBC600 was chemisorption [36].
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Figure 2. The adsorption kinetics of diuron by SDBC600 and SDMBC600 (5 mg/L diuron, 0.075 g
SDMBC600, t = 0–360 min).

Table 1. Adsorption kinetic parameters for diuron by SDBC600 and SDMBC600.

Fitting Model Parameter SDBC600 SDMBC600

Experimental adsorption capacity qm (mg/g) a 2.55 6.67

Pseudo-first-order
qm (mg/g) b 2.32 6.49
k1 (min−1) 0.093 0.33

R2 0.973 0.989

Pseudo-second-order
qm (mg/g) b 2.4721 6.65

k2 (g/(mg·min)) 0.0542 0.12
R2 0.975 0.999

Elovich
α (g/(mg·min)) 2.67 1.61 × 108

β (g/mg) 3.10 3.84
R2 0.934 0.996

a Observed value; b Calculated value.

2.2.2. Adsorption Isotherms

Figure 3 shows the adsorption isotherms of diuron on SDMBC600, and Table 2 shows
the parameters obtained by adsorption isotherm fitting. Compared with the Freundlich
model, the Langmuir model better expressed the adsorption behavior. The high correlation
coefficient (R2 > 0.93) of the Langmuir model suggests that the adsorption of diuron by
SDMBC600 was more consistent with the surface adsorption process [37]. The maximal
adsorption capacity of diuron by SDMBC600 could reach 17.7 mg/g by fitting the isotherms
model. The SDMBC600 had a better adsorption capacity for diuron than previously
reported Sunflower Husks Biochar (0.94 mg/g) and Goethite (0.59 mg/g) [38]. It was
also higher than the adsorption capacity of magnetic biochar (11.6 mg/g) prepared by
Liu et al. [20] through co-pyrolysis of zero-valent iron nanoparticles and sewage sludge. In
addition, based on the fitting data of the Sips model (R2 > 0.94), the adsorption of diuron
by SDMBC involved not only surface adsorption but also a variety of adsorption sites.
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Table 2. Fitting parameters of adsorption isotherm for experimental data.

Fitting Model Parameter
Temperature (◦C)

25 35 45

Langmuir Qm (mg/g) 12.8 16.4 16.5
KL (L/mg) 7.96 8.68 11.3

R2 0.955 0.935 0.971

Freundlich KF
(mg/g(L/mg)1/n) 8.87 11.8 12.3

n 4.73 4.27 4.47
R2 0.901 0.878 0.904

Sips qm (mg/g) 13.7 17.6 17.7
Ks (L/mg) 5.81 6.26 8.20

m 0.74 0.77 0.75
R2 0.964 0.942 0.979

2.3. Factors Affecting Diuron Adsorption
2.3.1. Effects of Diuron Concentration and Solution Temperature

The adsorption capacity of diuron on the SDMBC600 gradually increased with the
increasing initial concentration of diuron (see Figure 4a). This might be attributed to the
fact that SDMBC600 has a large pore, a large surface area, and abundant adsorption sites
at the initial adsorption stage. Under the action of the concentration difference driving
force, diuron molecules continuously migrated and diffused from the aqueous solution
to the SDMBC600 surface, and adsorbed on SDMBC600 [24]. However, the adsorption
performance showed no obvious change when the initial concentration of diuron was
greater than 16 mg/L, most likely because the limited adsorption sites had already been
occupied by diuron molecules when the diuron concentration after this concentration. The
concentration difference between the remaining diuron molecules in solution and those
adsorbed on the SDMBC600 surface continued to decrease, resulting in a slow decrease
in the adsorption rate [39]. Yan et al. [24] studied the removal of tetracycline by ZnCl2
modified biochar and found that the adsorption capacity of tetracycline was gradually
increased as the concentration of tetracycline increased, but no further adsorption could be
achieved as the tetracycline concentration was above 80 mg/L.
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Figure 4. Effects of initial diuron concentration and solution temperature on the adsorption of
diuron by SDMBC600: (a) initial diuron concentration; (b) solution temperature. (0.075 g SDMBC600,
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level, testing by one-way ANOVA.

The adsorption efficiency of diuron by SDMBC600 gradually increased as the solution
temperature increased (Figure 4b). This may be explained by the increased diffusion rate of
diuron in water at higher solution temperature conditions. This increased the diffusion of
diuron molecules to the surface of SDMBC600, thereby promoting the adsorption of diuron
on SDMBC600 [40]. In addition, the pore diffusion rate of diuron in SDMBC600 was likely
accelerated with higher temperatures, which also promoted the adsorption process [41].
Since SDMBC600 has a good adsorption capacity at 25 ◦C, this temperature was chosen for
the subsequent batch adsorption experiments (such as pH and coexisting substances).

2.3.2. Effects of Solution pH and Coexisting Substances

At a pH of 2, the adsorption capacity of SDMBC600 for diuron was low (Figure 5a),
which seems to be caused by the disruption of the structure of SDMBC600 under strong
acidic solution conditions. The pH values showed an insignificant effect on the adsorp-
tion of diuron by SDMBC600 when the pH of the aqueous solution was greater than 3.
This indicates that it could be used in a wide pH range. Note that the adsorption prop-
erty of SDMBC600 was different from previous studies on the effect of pH. For example,
Zhuo et al. [42] studied the performance and mechanism of the simultaneous adsorption of
phosphate and tetracycline by calcium modified corn straw biochar. The removal efficiency
of phosphate and TC was significantly affected by pH value. However, the present study
showed that the initial pH of the solution had no significant effect on the adsorption of
diuron by SDMBC600. This indicates that SDMBC600 has an adsorption capacity applied in
a wide range of pH. This is likely because SDMBC600 has a strong pH buffering capacity. It
was found that, regardless the initial solution was acidic or alkaline, the pH of the solution
after adsorption treatment could remain to be neutral when SDMBC600 was used as an
adsorbent. In addition, due to the low pKa (−1 to −2) of diuron, the electrostatic action
had little influence on the adsorption of diuron. Therefore, SDMBC600 as an adsorbent
used for water treatment has good adaptability to solution pH.

Metal ions and natural organic matter such as humic acids (HA) are often present
in real water samples, which may interfere with the adsorption of diuron. Considering
the typical coexisting substances in natural water bodies and referring to the previous
literature [30,43], six metal ions (Cu2+, Ca2+, Cr6+, K+, Mg2+, Pb2+) and HA were selected
as coexisting substances in this study to investigate the adsorption and removal of diuron
(initial concentration of 10 mg/L) by SDMBC600 (see Figure 5b). It was found that the ad-
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sorption of diuron by SDMBC600 was inhibited only in the presence of high concentrations
of Cu2+, Cr6+, and Pb2+ (>5 mg/L). This may be due to the competitive adsorption between
metal ions and diuron [44]. Another reason may be that ions enter the diffusion bilayer on
the surface of SDMBC600, which reduces the repulsive force between biochars. This result
is in the formation of a denser aggregate structure for the biochar, which is not favorable
for diuron adsorption [45]. Interestingly, in the presence of Ca2+, K+, Mg2+, and low con-
centrations of Cu2+, Cr6+, and Pb2+ (<5 mg/L), the adsorption of SDMBC600 to diuron was
promoted. This may be due to the salting-out effect, which reduces the solubility of the
diuron and promotes the diffusion of the diuron on the surface of SDMBC600, thus increas-
ing the adsorption capacity of the diuron on SDMBC600 [46]. In the study, the inhibition
rates of metal ions on diuron adsorption ranged from 2.53% to 23.16%. Compared with the
previous studies by Nguyen et al. [33] (50%) and Cao et al. [44] (>80%), SDMBC600 had
better environmental adaptability and ionic interference resistance. This result indicated
that SDMBC600 could adapt certain interferences from metal ions during the adsorption
of diuron.
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The adsorption capacity of diuron by SDMBC600 was 11.6, 12.4, 11.2, and 8.88 mg/g
when the concentration of HA in aqueous solution was 0, 5, 10, and 20 mg/L, respectively
(Figure 5b). The adsorption capacity of diuron on SDMBC600 increased (6.24%) when
5 mg/L of HA was added into diuron solution. This is likely because HA itself also has
certain adsorption effects [47]. Hence, diuron may be attached with HA and jointly adsorbs
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on SDMBC600. However, the adsorption capacity of SDMBC600 for diuron decreased at
the HA concentration above 5 mg/L. This occurred most likely because HA competed with
diuron for adsorption sites at the high concentration on SDMBC600 [48].

2.4. Adsorption Mechanism

The adsorption mechanisms of biochar could be explored through its physical and
chemical properties [49]. Firstly, compared with SDBC600, SDMBC600 has a greater specific
surface area and a higher number of mesopores. The experimental results suggest that
the co-modification of Fe-Zn could significantly enhance the pore expansion and specific
surface area, thereby enhancing the adsorption of diuron. Secondly, with the decrease of
(N+O)/C and H/C in SDMBC600, the aromatic compounds in SDMBC600 were increased,
which enhanced the π–π binding between SDMBC600 and diuron [30].

The surface morphology and surface chemical composition of SDMBC600 after adsorp-
tion were evaluated by SEM-EDS (see Figure S2). The pores on the surface of SDMBC600
were reduced in size and the surface was loaded with fine particles. This implies that
diuron molecules may be adsorbed on the surface of SDMBC600 through pore-filling. The
EDS results of SDMBC600 showed an increase in the C and N contents, which further
confirmed the attachment of diuron molecules onto the surface of SDMBC600.

Except for pore-filling, the functional groups on SDMBC600 might contribute to the
adsorption of diuron. Comparing the FTIR spectra of SDMBC600 before and after the
adsorption of diuron, the interaction between biochar and diuron could be inferred. The
FTIR spectrum of SDMBC600 after adsorption can be seen in Figure S2. The peak of C=C
in the FTIR spectra of SDMBC600 shifted from 1662 to 1673 cm−1 after the adsorption of
diuron, which indicated that π–π binding was involved in diuron adsorption [50]. The peak
of –OH shifted from 3502 to 3522 cm−1 in SDMBC600 and its intensity increased evidently,
indicating that the hydrogen bond was involved in the adsorption of diuron [51]. Moreover,
the Fe–O and Zn–O peaks in the FTIR spectra of SDMBC600 moved and their intensity
decreased after the adsorption of diuron, providing evidence for surface complexation [31].

Overall, the adsorption mechanism of diuron by SDMBC600 included surface com-
plexation, π–π binding, hydrogen bonding, and pore filling (Figure 6).
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2.5. Practical Research
2.5.1. Adsorption of Pesticide Mixture in Solution

In order to explore the adsorption efficiency of biochar for a variety of target pollutants,
the adsorption effect of SDMBC600 on four mixed pesticides was studied (Figure 7a). The
removal rates of 0.5 mg/L mixed pesticides solution (tebuconazole, chloridazon, malathion,
and diuron) by SDMBC600 were fairly high, and the removal rates of the four pesticides
were 96.92%, 97.38%, 97.87%, and 99.11%, respectively. The removal rates for the four pesti-
cides by SDMBC600 decreased while the concentration of pesticides increased (0.5–5 mg/L),
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which may be caused by competitive adsorption among the four pesticides. It is worth
noting that SDMBC600 showed a higher removal rate for diuron than the other pesticides.
This was because diuron was a large molecule with multiple non-polar functional groups
and an aromatic ring structure, and the high electron density of the benzene ring in diuron
enhanced its dispersion force. The stronger the effect of the molecular dispersion force of
pesticide, the easier it can absorb on adsorbent [52]. In conclusion, SDMBC600 had a better
adsorption performance for the different organic pollutants.
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differences between different treatments at the 0.05 level, testing by one-way ANOVA.

2.5.2. Adsorption in Real Water

The adsorption efficiency for diuron in real water solutions by SDMBC600 was also
studied (Figure 7b, physicochemical properties of the real water samples are shown in
Table S3). In ultrapure water, the adsorption capacity of SDMBC600 for diuron was
11.1 mg/g, whereas, in the real water samples of 1 to 4, the adsorption capacities of
diuron were 10.7, 11.2, 10.2, and 11.6 mg/g, respectively. The results showed that water
samples 2 and 4 promoted the adsorption of diuron by SDMBC600, while water samples 1
and 3 inhibited the adsorption of diuron by SDMBC600. This was likely due to the higher
total organic carbon (TOC) in the real water samples 1 and 3, with the presence of more
organic aromatic compounds in the two water samples, they would compete with diuron
in solution to reduce the adsorption capacity of diuron on SDMBC600 [44]. Secondly,
according to the results of the coexistence ion experiment above, the presence of calcium
ions in solution could promote the adsorption of diuron by SDMBC600. This indicates that
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the real water samples matrix had some insignificant influence on the adsorption of diuron
by SDMBC600. In general, SDMBC600 can still achieve good adsorption efficiency for
diuron under real water quality conditions. According to the above research, SDMBC600
also has certain adsorption capacity in the actual wastewater.

2.5.3. Stability and Regeneration

In order to explore the safety of SDMBC600 in practical applications, the leaching
concentrations of iron and zinc were measured at pH 3, 5, 7, and 10 (see Figure S3). The
results showed that the leaching concentrations of iron and zinc decreased with the increase
of solution pH value. When the pH value among 5 to 10, the leaching concentration of
Fe (0.0525–0.203 mg/L) and Zn (0.00975–0.0310 mg/L) was lower than the limits for the
concentration of 0.3 mg/L and 1.0 mg/L in the Standards for Drinking Water Quality
in China (GB5749-2022), respectively. Only when the pH value was 3, was the leaching
concentration of Fe greater than 0.3 mg/L. It showed that SDMBC600 was chemically stable
and environmentally safe in a wide pH range.

Sorbent regeneration could give biochar a low-cost advantage. The regeneration com-
bination of ultrasonic and organic solvents (methanol, ethanol, acetone, etc.) is an effective
adsorbent regeneration method. In this research, SDMBC600 was regenerated by ultrasonic
and ethanol co-treatment. SDMBC600 could be effectively regenerated by ultrasonic-
ethanol co-treatment and maintain good regeneration adsorption performance during
the repeated adsorption cycle. The adsorption capacity at four adsorption–regeneration
cycles is still 99.6% of the first adsorption capacity (Figure S4). The regeneration effect of
SDMBC600 is better than that of previous studies (44.5% and 76.25%) [30,44]. It can be seen
that the adsorption capacity of the first three regeneration cycles of SDMBC600 was better
than that of the new preparation SDMBC600. This might be caused by the fact that ultra-
sound could open the pore size and ethanol could change the surface functional groups of
SDMBC600. Similar results had been obtained in relevant studies [53]. The results showed
that SDMBC600 could still achieve an ideal regeneration property in multiple regeneration
cycles through ultrasonic and ethanol co-treatment.

3. Materials and Methods
3.1. Reagents and Materials

Municipal excess-activated sewage sludge was obtained from a sewage treatment
plant in Yantai City (Shandong Province, China). Diuron (>99.6%) and Chloridazon (>97%)
were supplied by J&K Scientific Ltd. (St. Louis, MO, USA). Tebuconazole (>95%) and
Malathion (>99.7%) were purchased from Sigma-Aldrich Corporation (Bellefonte, PA,
USA). Methanol (HPLC grade) and acetonitrile (HPLC grade) were purchased from Sigma-
Aldrich Corporation (Bellefonte, PA, USA). The other chemical reagents (analytical grade)
were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) and used
without further purification. Considering the diversity and representativeness of the real
water quality, water samples 1 to 4 were taken from Yantai City (Shandong Province)
and were samples of the Guangdang River, the Fenghuangshan Reservoir, the Miaohou
Reservoir, and tap water, respectively (water quality indexes of the four samples are shown
in Table S3).

3.2. Preparation of Adsorbent

The municipal excess-activated sewage sludge was dried for 6 h in an electrically
heated thermostatic drying oven (101-1BS) at 80 ◦C to remove moisture. The dried sludge
was placed in a vacuum pipe furnace (SK-B05123K-200) filled with N2 and raised to 600 ◦C
at a rate of 10 ◦C/min. The biochar (named after SDBC600) was obtained after two hours
of pyrolysis treatment under nitrogen protection.

Modified biochar was prepared by two–step pyrolysis. The FeC13, ZnC12, and SDBC600
were added to 500 mL of ultrapure water in a mass ratio of 0.45:0.25:1 (2.25 g:1.25 g:5 g) (see
Figure S5 for proportion selection). The mixed solution was treated with ultrasound for
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30 min and then stirred at 60 ◦C for 12 h. The solid–liquid phase in the mixed solution was
separated and dried (80 ◦C, 3h). The sample obtained in the previous step was calcination
in a vacuum pipe furnace at 600 ◦C for 40 min to obtain the modified biochar (named
SDMBC600), which was washed with hydrochloric acid to remove the ash in SDMBC600
(the optimum pyrolysis temperature of the second step was obtained by pre-experiment.
see Figure S6). Then, ultrapure water was used to wash the SDMBC600 until the washed
water was neutral.

3.3. Characterization of the Adsorbent

The surface morphology of biochar was analyzed with a Scanning Electron Microscope-
Energy Dispersive Spectrometer (SEM-EDS, Carl Zeiss AG, Sigma 500, Darmstadt, Ger-
many). The levels of H, C, N, O, and S were evaluated through an Elemental Analyzer
(EA, Elementar, Vario EL Cube, Langenselbold, Germany). Fourier Transform Infrared
Spectroscopy (FTIR, Thermo fisher, Nicolet iS5, Waltham, MA, USA) was used to determine
the functional groups of biochar. Brunauer-Emmett-Teller (BET, Micromeritics, ASAP2460,
Norcross, GA, USA) was employed to examine the N2 adsorption at 77 K, using a fully
automatic fast specific surface and porosity analyzer. The X-ray diffraction (XRD, Rigaku,
Smart Lab 9, Tokyo, Japan) of biochar was collected over a range of 10–90◦.

3.4. Adsorption Experiments

The effects of the initial concentration of diuron, solution pH, solution temperature,
water quality composition (coexisting ions and organic matter), as we as real water samples
on the adsorption capacity of modified biochar (SDMBC600) were analyzed by batch exper-
iments. The safety and reusability of modified biochar (SDMBC600) were also investigated.
The pH of the diuron solution was adjusted with 0.1 M HCl and NaOH in batch adsorption
experiments. The samples were collected at defined intervals and filtered through a 0.22 µm
polyether sulfone membrane before quantitative analysis of diuron in aqueous solution by
ultra-high performance liquid chromatography-electrospray ionization-triple quadrupole
mass spectrometer (UPLC-ESI-MS/MS, ACQUITY UPLC/TQD, Waters, USA, see Text S1
for details of operation parameter). All the experiments were conducted in triplicate and
average values and standard deviations were reported. In this study, the experimental
parameters and the model equation are summarized in Table 3 and Table S4, respectively.
Statistical analyses were performed using the SPSS software (version 20.0).

Table 3. Specific experimental parameters of SDMBC600 adsorption of diuron.

Experiment Parameter

Kinetics C0 = 5 mg/L, V = 0.1 L, m = 0.075 g, t = 0–360 min, and
T = 25 ◦C

Isotherm C0 = 1–20 mg/L, V = 0.1 L, m = 0.075 g, t = 360 min,
and T = 25/35/45 ◦C

Diuron initial concentration C0 = 1–20 mg/L, V = 0.1 L, m = 0.075 g, t = 360 min,
and T = 25 ◦C

Temperature C0 = 10 mg/L, V = 0.1 L, m = 0.075 g, t = 360 min, and
T = 20–45 ◦C

Solution pH C0 = 10 mg/L, V = 0.1 L, m = 0.075 g, t = 360 min, and
pH = 2–10

Coexisting ions and HA
C0 = 10 mg/L, V = 0.1 L, m = 0.075 g, t = 360 min, and
the concentration of coexisting ions (Cu2+, Ca2+, Cr6+,

K+, Mg2+, Pb2+) and HA were 0–20 mg/L.

Pesticide mixture C0 = 0.25/2.5/5 mg/L, V = 0.1 L, m = 0.075 g,
t = 360 min, and T = 25 ◦C

Real water C0 = 10 mg/L, V = 0.1 L, m = 0.075 g, t = 360 min, and
T = 25 ◦C
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4. Conclusions

In this study, the SDBC600 modified by Fe-Zn showed good adsorption capacity. The
adsorption of diuron from water by SDMBC600 conformed to the pseudo-second-order
kinetic and the Langmuir isotherm model. SDMBC600 could achieve better adsorption
capacity for diuron in a wide pH range. The coexisting metal ions and HA in aqueous
solution had only negligible effects on the adsorption of diuron by SDMBC600 (76.3–111%).
The main mechanisms of diuron adsorption by SDMBC600 were surface complexation,
π–π binding, hydrogen bonding, and pore-filling. In addition, SDMBC600 had also good
adsorption capacity in real water conditions and it is structurally stable under water solu-
tion conditions. It could be regenerated up to four times, and still maintained 99.6% of the
initial adsorption capacity. The excellent adsorption capacity, environmental adaptability,
safety, and regeneration properties of SDMBC600 offered the possibility of excess activated
sludge resource utilization.
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