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Abstract: As flexible wearable devices, hydrogel sensors have attracted extensive attention in the
field of soft electronics. However, the application or long-term stability of conventional hydrogels at
extreme temperatures remains a challenge due to the presence of water. Antifreezing and antidrying
ionic conductive organohydrogels were prepared using cellulose nanocrystals and gelatin as raw
materials, and the hydrogels were prepared in a water/glycerol binary solvent by a one-pot method.
The prepared hydrogels were characterized by scanning electron microscopy and Fourier transform
infrared spectroscopy. The mechanical properties, electrical conductivity, and sensing properties of
the hydrogels were studied by means of a universal material testing machine and LCR digital bridge.
The results show that the ionic conductive hydrogel exhibits high stretchability (elongation at break,
584.35%) and firmness (up to 0.16 MPa). As the binary solvent easily forms strong hydrogen bonds
with water molecules, experiments show that the organohydrogels exhibit excellent freezing and
drying (7 days). The organohydrogels maintain conductivity and stable sensitivity at a temperature
range (−50 ◦C–50 ◦C) and after long-term storage (7 days). Moreover, the organohydrogel-based
wearable sensors with a gauge factor of 6.47 (strain, 0−400%) could detect human motions. Therefore,
multifunctional organohydrogel wearable sensors with antifreezing and antidrying properties have
promising potential for human body monitoring under a broad range of environmental conditions.

Keywords: organohydrogel; double network; antifreezing; antidrying; strain sensor

1. Introduction

In recent years, the application of flexible, wearable, and stretchable electronic de-
vices has received a lot of attention, and they have a wide range of applications in elec-
tronic equipment fields, such as human life monitoring signals [1,2], flexible sensors [3,4],
electronic skin [5], human robotics [6], and so forth. Hydrogel is a good new wet and
soft material with high water content and soft-wet properties in a three-dimensional net-
work [7]. Ionic hydrogel conductors with high-strength stretchability, biocompatibility, and
transparency are potential candidates for wearable electronics. However, most flexible
conductive hydrogel sensors are completed by the introduction of conductive fillers (such
as carbon nanotubes [8], reduced graphene oxide [9], nano-metal particles [10], conductive
polymers [11], and so forth). Based on the abovementioned method, the inherent color,
and the limited ductility of hydrogel (commonly at 200–400%), the characteristics of the
easy aggregation of these conductive components in the polymer network degrade the
mechanical properties of this type of conductive hydrogel [12]. In addition, such conductive
hydrogels are usually black, and the transparency of the hydrogels is significantly reduced.
For a new generation of wearable and flexible electronics, a key performance combination
of robust mechanical properties, high sensitivity, visual transparency, and biocompatibility
is required. Hydrogels have emerged as a promising material candidate for next-generation
bioelectronic interfaces due to their similarities to biological tissues and their versatility in
electrical, mechanical, and biofunctional engineering [13–15].
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Introducing abundant, non-toxic natural polymer materials (such as chitosan (CS) [16],
sodium alginate (SA) [17], guar gum [18], and so forth) to prepare flexible conductive mate-
rials has become a current research hotspot. Gelatin is a macromolecular hydrophilic colloid
and a commonly used natural polymer derived from collagen, which is biocompatible
and biodegradable. However, the poor mechanical properties of gelatin-based hydro-
gels have hindered their development [19]. Chen et al. [20] designed reversible thermal
gelatin/polyacrylamide (gelatin/PAAm) double network hydrogels. Hydrogels have good
mechanical strength and self-healing properties. However, most hydrogel sensors based
on natural polymers lack adhesive properties and require external force to attach to the
human body and electronic skin, which leads to unsatisfactory signal detection in human
body monitoring. Zhang et al. [21] prepared purely physically crosslinked double network
(DN) hydrogel poly(sulfobetaine-co-acrylic acid)/chitosan–citric acid hydrogel. The hy-
drogel is highly stretchable, transparent, fatigue-resistant, self-adhesive, and self-healing.
Cellulose nanocrystals derived from the most abundant native renewable biomass have
unique and promising properties, such as sustainability, biocompatibility, a large surface
area, and high mechanical strength [22–24]. In this regard, cellulose is often combined with
inorganic salt ions (such as sodium chloride [25], lithium chloride [26], ferric chloride [9],
and so forth) to make conductive nanocomposite complexes, which play an important role
in toughening, crosslinking, and acting as a network support with excellent mechanical
properties. Song et al. [27] dissolved polyvinyl alcohol (PVA), cellulose nanofibers (CNF),
and aluminum chloride hexahydrate (AlCl3·6H2O) in dimethylsulfoxide (DMSO)/water
binary solvents to prepare ionic conductive hydrogels. The resulting ionic conductive
organohydrogels exhibited high stretchability (up to 696%), fast response (130 ms), wide op-
erating temperature (−50 ◦C to 50 ◦C), and long-term stability (30 days). The introduction
of ions can not only provide conductivity to hydrogels but also improve their mechanical
properties.

Meanwhile, due to the water molecular structure of the reversible network of the
hydrogel sensor, the hydrogel may become ice solid under long-term storage or low-
temperature conditions [28,29]. Therefore, this is an important indicator that traditional
hydrogel devices need to be used in a relatively mild environment to maintain their original
performance, which severely limits the operating temperature range and long-term dura-
bility of hydrogel sensors. The existence of the binary solvent system enables the antifreeze
hydrogel sensor to lower the freezing point of water in the hydrogel network, suppress the
formation of ice crystals, and increase the crosslink density of hydrogen bonds between
organic solvents and water molecules [30]. Ni et al. [31] reported a PVA/TA@talc molecular-
level ion channel ionic conductive organohydrogel. It had antifreeze and moisturizing
properties prepared by a simple EG/water binary solvent dispersion method.

Herein, we designed self-adhesive, highly stretchable, moisturizing, antifreeze, and
conductive organohydrogels with strain-sensitive and monitoring properties. First, cel-
lulose nanocrystals (CNC) were used as nanofillers by a simple one-pot method and
ultraviolet light irradiation. Double network ionic conductive organohydrogels were pre-
pared by dissolving poly(acrylic acid) (PAA)/gelatin (Gel) double network, metal ions
(Al3+), and tannic acid (TA) in the dispersion medium of water (H2O)/glycerol binary
solvent. Glycerol was added to improve the antifreezing performance and water reten-
tion performance of the hydrogels, and Al3+ and Cl- were incorporated to improve the
conductivity of the hydrogels. The introduction of TA gave the organohydrogels good
self-adhesive properties. The microstructure of the prepared hydrogel was characterized by
scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR).
The mechanical properties, electrical conductivity, antifreezing properties, water retention
properties, and sensing properties of the hydrogels were studied by means of testing meth-
ods, such as universal material testing machines and the LCR digital bridge. Strain sensors
assembled from organohydrogels exhibit excellent anti-dehydration (7 days), high ionic
conductivity (up to 0.14 S/m), and high sensitivity (GF = 6.47). The introduction of free
ions (Al3+) provides effective conductive ionic channels for organohydrogels, making it



Molecules 2023, 28, 2817 3 of 16

possible to detect human activities even at a temperature range (−50 ◦C to 50 ◦C) and after
long-term storage (7 days).

2. Results and Discussion
2.1. Preparation and Characterization of the Organohydrogels

As shown in Figure 1, PCGTA organohydrogels were synthesized by a simple one-pot
method and photopolymerization (Figure 1a). The interfacial region of organohydrogels is
the chain entanglement generated by the hydrogen bond association of gelatin chains [20].
The hydrogels used poly(acrylic acid) (PAA)/gelatin (Gel) double network, tannic acid
(TA)/metal ion (Al3+) coordination, and water/glycerin binary solvent as the dispersion
medium. The transformation to gel was realized after 0.5 h of UV irradiation (Figure 1b).
In addition, the introduction of TA as an adhesive gave PCGTA organohydrogels excellent
adhesion properties on various surfaces, such as glass, plastic, and metal materials. In this
organohydrogel network, the molecular structure of gelatin contains a large number of
active functional groups. Intermolecular hydrogen bonding enables gelatin to form a gel
(PAA and Gel double network structure) at a certain concentration and temperature; the
gelatin molecule is partially crosslinked by tannic acid [32]. Through double crosslinking
to enhance their mechanical properties, the interaction between these components enables
organohydrogel-based wearable strain sensors to detect, quantify, and monitor motion. The
dispersion medium of water/glycerol binary solvent at a temperature range (−50 ◦C–50 ◦C)
endowed the organohydrogels with excellent antifreeze and antidrying properties, and
maintained good strain sensitivity.
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Figure 1. (a) Schematic diagram of the process of preparing PAA/CNC/Gel/TA/Al3+ double
network ionic conductive organohydrogels by one-pot UV illumination. (b) Photographs of the
organohydrogel preparation process.

2.2. Morphology Characterization

To explore the microscopic morphology of the hydrogels, the organohydrogels were
washed to remove non-lyophilized glycerol. The SEMs of the hydrogels without glycerol
or with different CNC contents were characterized. As shown in Figure 2, the glycerol-free
hydrogel exhibited a wavy curve (Figure 2a). Moreover, no porous network structure
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was observed for organohydrogels without CNC (Figure 2b). With the addition of CNC,
the organohydrogels exhibited 3D porous network structures. A large number of porous
structures regularly exist in this organohydrogel (Figure 2c), while the number of pores is
strongly correlated with the TA and CNC crosslink density. The TA and CNC material is
connected to organohydrogel through hydrogen bonds [33]. The interconnected porous
structures of hydrogel provide a pathway for the movement of conductive ions, which is
beneficial to the conductivity.
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2.3. FTIR Analysis

As shown in Figure 3, all spectra contained characteristic absorption peaks in the
range of 3150–3650 cm−1, which are attributed to the stretching vibrations of -OH bonds.
With the increase of cellulose nanocrystals content, the peak of absorption bands of the
-OH stretching vibrations exhibited a red shift from a high wavenumber of 3354 cm−1

to a low wavenumber of 3317 cm−1. This indicates that strong hydrogen bonds were
formed between tannic acid, which is rich in phenolic hydroxyl groups, and cellulose
nanocrystals [34]. Moreover, the characteristic absorption peak 1634 cm−1 is attributed
to stretching vibration of C=O bonds [35]. The peak at 1031 cm−1 are fingerprint regions
related with pentasubstituted benzene rings of tannic acid [36].
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2.4. Mechanical Properties

The mechanical properties of the organohydrogels in compression, stretching, knotting
stretching, and puncture resistance were studied by tensile tests. Mechanical properties
are an important feature of flexible electronics, endowed with operationalization of the
internal conditions and mechanical deformation of electronic devices during practical use.
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As shown in Figure 4, due to the combination of double network and synergistic dynamic
physical crosslinking [37], the endowed PGTA organohydrogels exhibited excellent mechan-
ical properties. The organohydrogels could be largely reversibly compressed (Figure 4a)
and stretched (Figure 4b). Even when knotted and deformed, the organohydrogels could
be cyclically stretched to several times their original length without breaking (Figure 4c).
The outstanding flexible stretchability, fatigue resistance, and self-healing cycle stability
of organohydrogels are exemplified. In addition, the organohydrogels also had excellent
puncture resistance (Figure 4d) and the hydrogels could also withstand a weight of 500 g
(Figure 4e), which is equivalent to about 625 times their weight. Therefore, PGTA ionic
organohydrogels can serve as an important component of wearable strain hydrogel sensors
due to their excellent mechanical properties.
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Figure 4. PGTA organohydrogels exhibited excellent mechanical properties: (a) reversible compres-
sion; (b) reversible stretching; (c) knotted stretching; (d) puncture resistance; (e) length change of the
hydrogel when 500 g weight was applied.

The mechanical properties of the organohydrogels were studied by a universal testing
machine. Figure 5 shows the effect of the content of organic solvent and CNC on the
mechanical properties of the hydrogel. First, the tensile strength of PGTA hydrogel was
0.41 MPa, and the elongation at break was 366.54%. Compared with PGTA hydrogel,
both the tensile strength and elongation at break produced relative changes, the tensile
strength of PGTA organohydrogel was 0.08 MPa, and the elongation at break was 397.71%
(Figure 5a,b). This is due to the formation of hydrogen bond entanglement between
glycerol and water molecules, the increase of crosslink density, solid content, and physical
crosslinking, which improve the mechanical properties of organohydrogels. On the other
hand, the elongation at the break of the organohydrogels increased with the increase of
CNC content. This is due to the strong ionic reaction between Al3+ and the amino ions
of gelatin. With the increase of CNC content, the tensile strength and elongation at the
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break of organohydrogels increased to the peak, and the tensile strength and elongation at
break increased to 0.16 MPa and 584.35%. However, when they broke through the critical
point, this led to a sudden decrease in tensile strength and elongation at break (Figure 5c,d),
which may be caused by too many crosslinking points in the hydrogel. According to the
above results, the organohydrogels exhibited good mechanical properties, which are crucial
for the potential applications of organohydrogel-based wearable sensor electronics.
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2.5. Self-Adhesiveness

Reliable adhesion is one of the essential functions required for hydrogel-based wear-
able sensors. The presence of a large number of pyrogallol groups on tannic acid (TA)
imitates the polyphenolic properties of mussel photoproteins, and this process can mimic
the adhesion mechanism of mussels [38]. On the other hand, pyrogallol groups are intro-
duced by TA. The phenolic group interacts with the free carboxyl groups on the poly(acrylic
acid) (PAA) chain, and through this interaction (including hydrogen bond crosslinking,
metal complexation, and hydrophobic interaction), PGTA organohydrogels are produced
on various substrates with strong adhesion [39,40]. As shown in Figure 6, PGTA organohy-
drogels exhibited unique long-lasting self-adhesive properties to various substrate surfaces,
including PP, leather, a ball, rubber, glass, and iron (Figure 6a–f), among others. In addition,
the organohydrogel formed an adhesive surface between the two glass surfaces, bearing the
corresponding weight, respectively (Figure 6g), and without falling off in water (Figure 6h).
It is worth noting that the wearable sensor will form a stable contact with the biological
epidermal tissue under special circumstances to improve the accuracy and stability of
electronic signal monitoring. Finally, Figure 6i is a schematic diagram of the adhesion
mechanism of organohydrogels. In this network, the pyrogallol group of TA and the
carboxyl group on the PAA chain act synergistically, which can rapidly form noncovalent
bonds (such as hydrogen bonds and metal coordination) with other functional groups in
different substrates. Altogether, the compliance of organohydrogels with normal surfaces,
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abnormal surfaces, and adhesion under special wet conditions improves the lifetime of
hydrogel sensors.
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surfaces, including (a) PP; (b) leather; (c) ball; (d) rubber; (e) glass; (f) iron; (g,h) self-adhesiveness of
the glue to glass and laboratory gloves in water; (i) schematic illustration of the adhesion mechanism
of organohydrogels.

2.6. Antidrying Property

The unavoidable evaporation of water molecules in traditional hydrogels under ambi-
ent conditions severely weakens the performance of hydrogel sensors. For hydrogel-based
sensors, achieving water retention and long-term durability is still a challenge. PGTA
organohydrogel adopts a water/glycerol binary solvent system, and glycerol has proper-
ties, such as being colorless, non-toxic, and moisturizing. It has favorable properties for
surface moisture storage, biocompatibility, and wound healing [41]. As shown in Figure 7a,
the PGTA hydrogel and PGTA organohydrogel were stored under normal conditions at
room temperature (20 ◦C) for seven days, and the weights were recorded. Due to the
evaporation of water molecules, the weight of PGTA hydrogel began to decrease on the
second day, and only 25.97% of the weight remained after seven days. However, the PGTA
organohydrogel remained wet (over 90%) after seven days. This is due to the hygroscopic
and moisturizing effects of glycerin in the air, which makes the dynamic balance of water
molecules in glycerin difficult to be broken.
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Figure 7. (a) Weight change of PGTA organohydrogel and PGTA hydrogel after 7 days of storage at
20 ◦C; (b) weight change of PGTA organohydrogel and PGTA hydrogel after 12 h of storage at 50 ◦C;
(c) (i,ii) comparison of pictures of PGTA organohydrogel and PGTA hydrogel after storage under
different conditions.

In addition, the weight of PGTA organohydrogel remained above 80% of the original,
but the residual weight ratio of PGTA hydrogel was only 40% (Figure 7b). Due to the
rapid evaporation of water molecules at a high temperature of 50 ◦C, glycerin and water
molecules are entangled and crosslinked to form hydrogen bonds, which hinders the
evaporation of water molecules in the state. The dimensions of the PGTA organohydrogels
remained in their original shape after storage for seven days. In contrast, PGTA hydrogels
became smaller in size and showed curled morphology (Figure 7c). Based on the above
results, the water/glycerol binary solvent system endows organohydrogels with long-term
use and durability. Compared with conventional hydrogels, this facile method ensures the
durability of organohydrogels in further applications.

2.7. Ionic Conductivity

The introduction of Al3+ and Cl− in the PGTA organohydrogel provided it with con-
ductive properties, and the electrical properties of the hydrogels under different conditions
were studied; the results are shown in Figure 8. The organohydrogels were used as con-
ductors at a constant voltage of 3 V to enable LED diodes to emit light under mechanical
deformation (Figure 8a,b). This shows the excellent conductivity of the ionic conductive
hydrogels (Figure 8c).

In addition, compared with PGTA-Y0.5 organohydrogel, the ionic conductivity of
PGTA-Y2 increased twofold with the stepwise increase of Al3+ concentration, and the con-
ductivity of the organohydrogels increased from 0.07 S/m to 0.14 S/m (Figure 8d). This is
because the carboxyl groups on the surface of organohydrogels can attract ions and provide
more hopping sites for ion transfer [42]. These results demonstrate that the conductivity of
organohydrogels may be related to the amount of conducting ions. Additionally, the ionic
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conductivity of PGTA organohydrogel and PGTA hydrogel at room temperature of 20 ◦C
was investigated. The organohydrogels still retained excellent electrical conductivity after
being stored at room temperature of 20 ◦C for 7 days. However, the common hydrogel
shrank severely, and the ionic conductivity showed a linear decreasing trend (Figure 8e). In
summary, the introduction of metal ions provides a conductive network for the hydrogel
structure, which improves the electrical performance and stability of the hydrogel sensor.
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Figure 8. Circuit consisting of LED lights connected to conductive PGTA organohydrogels in different
states, including (a) original length and stretch and (b) deformed stretch; (c) schematic diagram of
the circuit with the organohydrogel as a conductor at a constant voltage of 3 V; (d) ionic conductivity
of PGTA organohydrogel at different concentrations of Al3+ (0.5–2 wt%); (e) ionic conductivity of
PGTA organohydrogel and PGTA hydrogel after storage at 20 ◦C for 7 days.

2.8. Sensing Performance

The sensitivity factor (GF) can provide a relatively stable assessment of the strain
sensitivity of hydrogels to external shape changes and is calculated from the slope of the rel-
ative resistance (R-R0/R0) versus strain. The fitted linear relationship between the relative
resistance change rate and tensile strain is an important property of hydrogel strain sensors.
It can be seen from Figure 9 that the hydrogel sensor could record stable electrical signals
(Figure 9a,b) in ten cycles of stretching and 100–400% stretching, converting mechanical
deformation into electrical signals. Notably, no significant loss of electrical signal or signs of
conductivity weakening were observed during several successive cycles of loading and un-
loading during strains ranging from 100–400%. In addition, Figure 9c shows the variation
curve of GF with strain, which can be divided into three linear response regions (0–150%,
GF = 3.71; 150–300%, GF = 4.55; 300–400%, GF = 6.47). This linear response also shows that
the sensor presents monotonicity in the relationship between strain and resistance change,
and is not disturbed by external factors, which ensures the reliability of the signal.
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Environmental resistance is one of the biggest obstacles limiting the practical appli-
cation of hydrogel wearable sensors. Therefore, the sensing performance of the PGTA
organohydrogel sensors after storage in harsh environments for 6 h (−50 ◦C and 50 ◦C)
and after storage at room temperature for 7 days was tested. As shown in Figure 10, all the
sensors exhibited excellent stability even in harsh environments (Figure 10a,b) and after
7 days of storage (Figure 10c), the ability to detect stable electrical signals, and reversibility;
furthermore, resistance returned to its initial value after a change. Similarly, the resistive sig-
nal of the organohydrogel sensor could remain almost constant during strain cycles, which
makes it suitable for use in wearable electronics under extremely harsh conditions. This
can be attributed to the following reasons: the rapid dissociation of physical interactions
including metal ion Al3+ coordination bonds and hydrogen bonds in the organohydrogel;
two water molecules in the hydrogel will combine with one glycerol molecule, which can
form strong hydrogen bonds; there are still some unbound water molecules in the hydrogel
under high temperature conditions, and these unbound free water molecules will evaporate
rapidly under high temperature conditions. In conclusion, organohydrogel sensors exhibit
excellent signal sensing capabilities under different conditions.
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2.9. Human Motion Detection

As shown in Figure 11, hydrogels can be easily fabricated into wearable strain sensors
(electronic devices) for monitoring human motion signals. Hydrogel sensors can be directly
attached to human joints, including fingers, wrists, and elbows, to effectively convert
human motion behavior into electrical signals in real time. According to the bending
behavior of the finger at different angles (0, 30, 60, and 90◦), the relative resistance process
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increases first and then decreases (Figure 11a), which is caused by the stretching of the strain
sensor. Furthermore, motion behaviors through different joints were precisely recorded
and distinguished according to patterns distinguishable by relative changes in the relative
resistance curves (Figure 11b,c). The wearable sensors attached to the wrist and elbow
sensed motion in real time, and the output electronic signals clearly show the intensity
and frequency of motion, demonstrating the excellent strain sensitivity of organohydrogel-
based wearable sensors. Based on these results, organohydrogels can be considered a
promising wearable device platform for the behavioral detection of human motion.
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Figure 11. PGTA organohydrogels as strain-sensitive wearable sensors for human motion monitoring:
(a) finger flexion; (b) wrist flexion; (c) elbow flexion.

3. Experimental Section
3.1. Materials

Gelatin (Gel) was purchased from Sinopharm Chemical Reagent Co., Ltd., Cellulose
nanocrystals (CNC) (Shanghai, China) were acquired from Guilin Qihong Technology
Co., Ltd., (Guilin, China). Acrylic acid (AA), glycerol (Gly), tannic acid (TA), aluminum
chloride hexahydrate (AlCl3·6H2O), and ammonium persulfate (APS) were purchased
from Shanghai Titan Scientific Co., Ltd., (Shanghai, China). N,N′-Methylene-bisacrylamide
crosslinker (MBA) was purchased from Shanghai Macklin Biochemical Co., Ltd., (Shanghai,
China). All reagents were used directly without further purification.

3.2. Preparation of the PCGTA Organohydrogels

PCGTA organohydrogels were synthesized by a one-pot method and ultraviolet pho-
topolymerization. First, AA (3.2 g), Gel (0.8 g), TA (0.04 g), MBA (0.1 g), APS (0.03 g), a series
of different concentrations of AlCl3·6H2O (respectively, 0.5, 1, 1.5, and 2 wt%), and CNC
(respectively, 0.025, 0.05, 0.075, and 0.1 wt%) were dissolved in deionized water/glycerol
(1:1). The mixed solution was vigorously stirred at 60 ◦C for 3 h with a constant temperature
heating magnetic stirrer. The resulting clear solution was then transferred to a PTFE mold
(80 mm × 10 mm × 2 mm) and cooled at room temperature for 0.5 h. Subsequently, it
was transferred to a UV ultraviolet curing lamp (20 W 365 nm) for a 0.5 h photocuring
reaction to form PCGTA organohydrogel. The first group of CNC with different contents is
represented as PCGTA-X organohydrogels, and the second group of Al3+ with different
concentrations is represented as PGTA-Y organohydrogels. In addition, the PGTA hydrogel
without glycerol was prepared as a comparison. The composition of the organohydrogels
is shown in Table 1.
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Table 1. Composition of the organohydrogels.

Samples Gel AA TA AlCl3·6H2O H2O Gly

PCGTA-X0
organohydrogel 0.8 g 3.2 g 0.04 g 0.3 g 7.83 g 7.83 g

PCGTA-X0.025
organohydrogel 0.8 g 3.2 g 0.04 g 0.3 g 7.83 g (With 5 g CNC 0.025 wt%) 7.83 g

PCGTA- X0.05
organohydrogel 0.8 g 3.2 g 0.04 g 0.3 g 7.83 g (With 5 g CNC 0.05 wt%) 7.83 g

PCGTA-X0.075
organohydrogel 0.8 g 3.2 g 0.04 g 0.3 g 7.83 g (With 5 g CNC 0.075 wt%) 7.83 g

PCGTA-X0.1
organohydrogel 0.8 g 3.2 g 0.04 g 0.3 g 7.83 g (With 5 g CNC 0.1 wt%) 7.83 g

PGTA
hydrogel 0.8 g 3.2 g 0.04 g 0.3 g 15.66 g 0 g

PGTA-Y0.5
organohydrogel 0.8 g 3.2 g 0.04 g 0.1 g 7.83 g 7.83 g

PGTA-Y1
organohydrogel 0.8 g 3.2 g 0.04 g 0.2 g 7.83 g 7.83 g

PGTA-Y1.5
organohydrogel 0.8 g 3.2 g 0.04 g 0.3 g 7.83 g 7.83 g

PGTA-Y2
organohydrogel 0.8 g 3.2 g 0.04 g 0.4 g 7.83 g 7.83 g

3.3. Scanning Electron Microscope

Samples of different PCGTA hydrogels were processed by freeze-drying to obtain
dehydrated hydrogels. The microscopic morphology of the hydrogel was tested with a
scanning electron microscope (SEM, JSM-7600F) at 15 kV.

3.4. Fourier Transform Infrared Spectroscopy

The hydrogel samples were dehydrated by Freezing Drier. Fourier transform infrared
spectroscopy (FTIR, CX-9600) was used to test the chemical structure of the samples, and
the group changes of the samples were analyzed according to the absorption area of the
sample groups. The resolution was ±2 cm−1, the wavenumber range was 4000–500 cm−1,
and the step size was 4 cm−1.

3.5. Mechanical Properties

Mechanical tests were performed using a universal material tensile testing machine
(CMT5504, MTS Systems, Shanghai, China) equipped with a 2 KN loading unit. The
organohydrogels were cut into long strips (60 mm × 10 mm × 2 mm) and subjected to
tensile tests at a loading rate of 20 mm/min. All samples were tested five times and the
average value was taken. There was no time interval between each test in the experiment,
and the elongation at break and tensile strength were obtained, respectively, through the
stress–strain curve.

3.6. Adhesion Tests

The adhesion performance of PGTA organohydrogel was tested by lap shear test. The
hydrogel sample was cut into a rectangular specimen (thickness 5 mm) and placed between
the surfaces of two materials (PP, leather, a ball, rubber, glass, iron, and glove) to test the
adhesive properties of the hydrogel.
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3.7. Moisture Retention Property Tests

PGTA organohydrogel and PGTA hydrogel were cut to the same size. The hydrogel
samples were kept at room temperature for 7 days (recorded every 1 day) and at 50 ◦C for
12 h (recorded every 2 h). The formula for calculating the weight ratio is:

Weight ratio =
Wt

W0
× 100% (1)

where Wt is the weight of the hydrogel after t h/day and W0 is the initial weight of the
hydrogel.

3.8. Ionic Conductivity Measurement

PGTA organohydrogels were cut into long strips (40 mm × 10 mm × 2 mm). LCR
digital bridge (LCR TH2832, Changzhou, China) was used to measure the resistance change
of hydrogels with different concentrations of Al3+ in real time, and to calculate the ionic
conductivity (σ) of the hydrogels. In addition, the hydrogels were subjected to a cyclic
tensile test (100–400%) by using a universal material testing machine to record the relative
resistance change of the hydrogels under tensile strain.

The ionic conductivity (σ) of the organohydrogels was calculated by the following
formula:

σ =
L

R× S
(2)

where σ represents the ionic conductivity of the hydrogel (S/m), L represents the length
of two adjacent electrodes of the hydrogel (m), R represents the resistance value of the
hydrogel (Ω), and S is the contact area of the hydrogel (m2).

3.9. Electrical Measurements

The strain sensitivity of the organohydrogels was tested and evaluated by the gauge
factor (GF), which tested the stretching cycle, electrical stability, and environmental re-
sistance (−50◦, 50◦, and after 7 days) of the organohydrogel sensors. LCR digital bridge
tester (LCR TH2832) was used to test the relative resistance change (∆R/R0) and GF of
the stretching/release cycle of the hydrogel sensors. The relative resistance change of the
hydrogels was calculated by the following formula:

Relative resistance change =
R− R0

R0
× 100% (3)

where R0 and R represent the electrical resistance (Ω) before and after tensile strain, respec-
tively.

The GF of the hydrogel was calculated by the following formula:

GF =

R−R0
R0

l−lo
l0

(4)

where l0 and l represent the length (m) of the organohydrogels after strain and before strain,
respectively.

3.10. Human Motion Detection Demonstration

This experiment was completed with the assistance of one volunteer; images and data
were released after obtaining informed consent. The hydrogel sensors were encapsulated
with polyimide tape and assembled into flexible wearable strain sensors that adhered to
different joints of the human body, such as fingers, wrists, and elbows, and measured the
resistance changes caused by different parts in real time.
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4. Conclusions

In summary, a stretch-adhesive ionic organohydrogel was prepared by a one-pot
water/glycerol binary solvent dispersion method and UV-illumination. It has the character-
istics of high water retention, frost resistance, long-term stability, high stretchability, strong
adhesion, and repeatable cycle. The surface of the organohydrogel has a three-dimensional
porous network structure. With the increase of cellulose nanocrystals content, the tensile
strength (0.16 MPa) and elongation at break (584.35%) of the hydrogel increased, but it
would break through the critical point and lead to a decrease. The organohydrogel exhib-
ited reversible adhesive properties to various substrates. Due to the presence of hydrogen
bonds between the binary solvent system and water molecules, which inhibit the formation
of ice crystal lattices at low temperatures and hinder the divergence of water storage under
various conditions, organohydrogels exhibit good antifreeze and long-lasting moisturizing
properties. Furthermore, the organohydrogel sensor exhibited sensing performances at
temperature range (−50 ◦C–50 ◦C) even after long-term storage (7 days). Thus, it may be an
ideal wearable strain or pressure sensor device to distinguish various human motions, such
as the bending behavior of different joints, due to its high sensitivity (Gauge factor = 6.47,
strain: 400%). In conclusion, this poly(acrylic acid)/gelatin based hydrogel sensor has
excellent stretchability, adhesion, freeze resistance, and desiccation resistance, and we
believe that the developed hydrogel has good potential for high-performance wearable
devices in low-temperature environments.
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