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Abstract: The unusual and interesting architecture of the catalytic chamber of the SARS-CoV-2 RNA-
dependent RNA polymerase (RdRp) was recently explored using Cryogenic Electron Microscopy
(Cryo-EM), which revealed the presence of two distinctive binding cavities within the catalytic
chamber. In this report, first, we mapped out and fully characterized the variations between the
two binding sites, BS1 and BS2, for significant differences in their amino acid architecture, size,
volume, and hydrophobicity. This was followed by investigating the preferential binding of eight
antiviral agents to each of the two binding sites, BS1 and BS2, to understand the fundamental factors
that govern the preferential binding of each drug to each binding site. Results showed that, in
general, hydrophobic drugs, such as remdesivir and sofosbuvir, bind better to both binding sites
than relatively less hydrophobic drugs, such as alovudine, molnupiravir, zidovudine, favilavir, and
ribavirin. However, suramin, which is a highly hydrophobic drug, unexpectedly showed overall
weaker binding affinities in both binding sites when compared to other drugs. This unexpected
observation may be attributed to its high binding solvation energy, which disfavors overall binding
of suramin in both binding sites. On the other hand, hydrophobic drugs displayed higher binding
affinities towards BS1 due to its higher hydrophobic architecture when compared to BS2, while less
hydrophobic drugs did not show a significant difference in binding affinities in both binding sites.
Analysis of binding energy contributions revealed that the most favorable components are the ∆Eele,
∆Evdw, and ∆Ggas, whereas ∆Gsol was unfavorable. The ∆Eele and ∆Ggas for hydrophobic drugs
were enough to balance the unfavorable ∆Gsol, leaving the ∆Evdw to be the most determining factor
of the total binding energy. The information presented in this report will provide guidelines for
tailoring SARS-CoV-2 inhibitors with enhanced binding profiles.
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1. Introduction

Coronaviruses (CoVs) have been associated with significant disease outbreaks in East
Asia and the Middle East over the last two decades [1]. In 2002 and 2012, severe acute
respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS-CoV) started to
emerge. In December 2019, a coronavirus disease outbreak (COVID-19) occurred in Wuhan,
Hubei Province, China. The outbreak was initiated by the new virus SARS-CoV-2, which is
the seventh member of the CoV family. It quickly spread to nearly every part of China and
surrounding countries until it became a worldwide pandemic and global crisis [1,2]. The
COVID-19 pandemic is the third severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), which has led to over two million deaths worldwide [3,4]. Recently, several vaccines
have been produced to protect against the novel coronavirus disease (COVID-19); however,
those infected with COVID-19 need potent antiviral medications to be cured [5]. Although
a few drugs were approved for emergency uses, a promising drug with well-proven clinical
efficacy is yet to be discovered. Hence, researchers are continuously attempting to search
for potential drug candidates targeting the well-established enzymatic targets of the virus,
such as RdRp [5].

The structures of many coronavirus proteins have been determined by X-Ray crys-
tallography and Cryogenic Electron Microscopy (Cryo-EM). Since the first outbreak of
SARS-CoV-1 in 2002, a high-resolution atomic structure of the coronavirus RNA polymerase
has long remained elusive. The first Cryo-EM structure of the SARS-CoV-1 RNA-dependent
RNA Polymerase (RdRp) was reported recently in 2019 [3]. Since then, the COVID-19
pandemic has fueled scientific interest in coronavirus biology, and this has led to rapid
progress in the structural characterization of coronavirus replication and gene expression.
Months after the first case reports, a Cryo-EM structure of the SARS-CoV-2 RdRp was
reported, and this was quickly followed by identification of other structures of polymerase
complexes in different functional states [4]. Cryo-EM resolved the first structure of the
RdRp complex of the novel SARS-CoV-2 virus in April 2020, followed by two other studies
that reported similar structures [6,7]. RNA-dependent RNA polymerase (RdRp) is a crucial
enzyme in SARS-CoV-2 because it is responsible for genome replication and gene tran-
scription [8]. The RdRp complex is built up from several nonstructural proteins, which are
nsp12, nsp7, and nsp8. The protein nsp12 represents the core component and the catalytic
subunit of RdRp, while nsp7 and nsp8 are accessory factors that increase the binding and
processivity of the RdRp template [7]. The vitality of RdRp in the viral life cycle makes it
an excellent target for antiviral drugs, especially for those that have a nucleotide analog
scaffold structure, such as remdesivir [8–10].

Recently, Cryogenic Electron Microscopy (Cryo-EM) was used to determine the first
structure of a small molecule, non-nucleotide analog, suramin, bound to SARS-CoV-2
RdRp [11]. This drug has been found to be effective against both parasite and viral infection.
The in vitro studies showed that suramin might also inhibit SARS-CoV-2 replication as
well [12]. Interestingly, the structure of RdRp revealed a surprising and unfamiliar feature
that has an active catalytic site that encompasses two distinct binding cavities within a
so-called “catalytic chamber” (Figure 1).

The structure also shows that two suramin molecules bind to SARS-CoV-2 nsp12
in two different sites with distinctive interaction patterns [11]. This may be due to the
differences in amino acid residues and the architecture of each binding pocket. These
findings have prompted us to explore this uncommon feature of the so-called “catalytic
chamber”.
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Figure 1. Surface view of RNA-dependent RNA Polymerase (RdRp) (PDB ID: 7D4F) [11] , (shows 
the “catalytic chamber” housing two distinct binding sites/cavities, estimated with the Maestro 
Schrödinger [13].  The amino acid residues of binding site1 (BS1) and binding site2 (BS2) are also 
shown. 

The structure also shows that two suramin molecules bind to SARS-CoV-2 nsp12 in 
two different sites with distinctive interaction patterns [11]. This may be due to the differ-
ences in amino acid residues and the architecture of each binding pocket. These findings 
have prompted us to explore this uncommon feature of the so-called “catalytic chamber.” 

This project set out to address various questions and aspects; most importantly: (i) 
how the two binding cavities are conserved/varied in terms of their amino acid sequences 
and architecture, (ii) the preferential binding landscape of different antiviral drugs in re-
lation to each binding pocket, and (iii) the optimal co-inhibition therapeutics and whether 

Figure 1. Surface view of RNA-dependent RNA Polymerase (RdRp) (PDB ID: 7D4F) [11], (shows
the “catalytic chamber” housing two distinct binding sites/cavities, estimated with the Maestro
Schrödinger [13]. The amino acid residues of binding site1 (BS1) and binding site2 (BS2) are also
shown.

This project set out to address various questions and aspects; most importantly: (i) how
the two binding cavities are conserved/varied in terms of their amino acid sequences
and architecture, (ii) the preferential binding landscape of different antiviral drugs in
relation to each binding pocket, and (iii) the optimal co-inhibition therapeutics and whether
combination therapy would provide additive or synergistic therapeutic effects. In this
report, we reveal for the first time the structural and architectural characterization of the
two binding pockets of the “catalytic chamber” of the SARS-CoV-2 RdRp at an atomistic
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level and the chemical and structural aspects that govern the preferential binding of drugs.
Through the use of in silico and bioinformatics tools, we analyzed the preferential binding
landscape of eight antiviral drugs (remdesivir, suramin, favilavir, ribavirin, molnupiravir,
sofosbuvir, alovudine, and zidovudine) (Figure 2) in each of the binding pockets: binding
site 1 (BS1) and binding site 2 (BS2). We opted to select these particular antiviral drugs
based on the fact that they have been reported to exhibit potential inhibition activities
against SARS-CoV-2 RdRp [11,14].
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We believe that the information provided in this report will pave the road to a new era
of combination therapy protocols against COVID-19.

2. Methods and Results
2.1. SARS-CoV-2 RdRp Catalytic Chamber
Mapping and Characterization of the Two Binding Pockets, BS1 and BS2

Identification of the two binding cavities within the catalytic chamber of SARS-CoV-2
RdRp was carried out based on the experimentally resolved structure of RdRp in complex
with two suramin molecules (PDB ID: 7D4F) (Yin et al., 2021) [11]. The protein was stripped
of non-standard residues, such as co-factors and ions, excluding the two molecules of
suramin bound to the experimentally identified binding sites, BS1 and BS2. The binding
site residues that house the suramin molecules, 1 and 2, were determined by mapping out
amino acids that lie within 5 Å from each suramin molecule. The identified amino acids
sequence of binding of BS1 is: I494, V495, N496, N497, K500, A558, R569, H572, Q573, L576,
K577, A580, V588, I589, G590, T591, G683, A685, Y689, L758, and C813. However, the amino
acids that constitute the binding site of BS2 are: H439, F480, I548, S549, A550, K551, R553,
A554, R555, R836, I837, A840, G852, R858, S861, L862, and D865.

BS1 and BS2 were characterized using physicochemical attributes, such as size, volume,
degree of enclosure or exposure, degree of contact, hydrophobic/hydrophilic characteristics,
hydrophobic/hydrophilic balance, and hydrogen-bonding possibilities (acceptors/donors),
which are presented in Table 1.

Table 1. Characterization of RdRp Binding Sites.

Site Site Score Size Volume
A3 Dscore Exposure Enclosure Contact Phobic Philic Balance Don/acc

BS1 1.030 129 276.458 0.943 0.522 0.743 1.027 0.252 1.357 0.186 0.370

BS2 0.976 226 646.898 0.940 0.695 0.662 0.771 0.286 1.219 0.235 0.866

3. Structural Architecture of BS1 and BS2

Structural architecture and physicochemical attributes of binding sites are critical
determinants in the drug design of potential inhibitors. These determinants guide the
identification of structural aspects and choice of inhibitors that may exhibit optimal binding
affinities [15]. The size of a binding site is determined by the number of site points that
make up the binding site. As a rough rule of thumb, two to three site points typically
correspond to each atom of the bound ligand, including hydrogens [15]. Our results suggest
that BS2 with corresponding size 226 has a larger size compared to BS1 with size 129, as
shown in Table 1 and Figure 3B. This interesting finding could also mean that BS2 has the
potential to be the preferred binding pocket for relatively larger inhibitors, as opposed to
BS1. Nevertheless, our further studies will shed more light on this finding. Subsequently,
the volume of a binding site depicts the dimensions of the pocket when considering length,
weight, and width as well as the depth of the binding pocket [15]. The basic criteria in
determining the average volume for a druggable binding site require that the prospective
binding site should have a sitescore > 0.8 and a Dscore > 0.83. BS2 (646.898 A3) and exhibit
a relatively deeper cavity with a greater volume when compared to BS1 (276.458 A3), as
shown in Figure 3. We assume that BS2 is larger in size and volume compared to BS1 due to
its geometrical location near the entrance of the catalytic chamber where the potential RNA
primer strand binds. Exploring the size and volume of the catalytic chamber of SARS-CoV-2
RdRp could reveal vital information that underlies the uncommon mechanism of inhibition
in this region necessary to halt viral replication.
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Figure 3. Binding site size and volume analysis. (A) BS1 and BS2 of the catalytic chamber amino acid
molecular number surface view. (B) Binding pockets size comparison of BS1 and BS2. Difference of
red and blue motion of both pocket sites. (C) The volume of the specificity conferring moiety of the
pocket sites, estimated [13], differs significantly between BS1 and BS2.

4. Hydrophobicity/Hydrophilicity Profiles of BS1 and BS2

The hydrophobic and hydrophilic properties of the amino acid residues of the two
binding pockets were also compared. These properties, labeled phob and phil in Table 1,
measure the relative hydrophobic and hydrophilic attributes of the binding sites. The
phobic and philic scores were calibrated so that the average score for a tight-binding site
is 1. BS1 shows a slightly lower (0.252) hydrophobicity score compared to BS2 (0.286);
however, both binding sites display below-average hydrophobic characteristics, suggesting
that only a few of the constituent residues are hydrophobic, as displayed in (red) Figure 4.
Likewise, the hydrophilic scores for both binding sites are above average, exceeding the
average score of 1. However, BS1 (1.357) is slightly more hydrophilic than BS2 (1.219), as
shown in (blue) Figure 4. Conclusively, BS2 has a higher hydrophobic score and hydrophilic
score than BS1 and may be more suitable to molecules with such properties. Although
the hydrophilic scores of both BS1 and BS2 are above average, they include a few amino
acids that are hydrophobic. This pocket architecture allows hydrophobic amino acids
to move to the core of the protein to avoid water, and the hydrophilic side chains move
towards the outside of the protein to be more exposed to surrounding water. Together,
these observations may be considered in the design of inhibitors with preferential binding
profiles towards one pocket over the other.
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(b) BS2. Both binding pockets have large regions that are hydrophilic, although there are a few
hydrophobic regions.

5. BS1 and BS2 Binding Pocket Per-Residue Contribution Using Suramin as
a Prototype

Per-residue energy contribution of BS1 and BS2 amino acids towards the binding of
each suramin molecule was computed using MolDock scoring function [16] to elaborate
on the binding landscape of each site and whether they are conserved or if they varied
significantly in terms of their binding themes. Our per-residue energy contribution analysis
showed that the two binding sites contribute differently towards the overall binding of
each suramin molecule (Table 2). The active site residues (Asn496, Ile494, Arg569, Lys577,
Gly590, and Lys500) of BS1 were found to show the highest contribution towards the overall
binding to suramin 1; however, the residues (Arg555, Arg536, Arg553, LIe548, Ser549, and
Lys551) in BS2 are the major contributors to suramin 2 binding. These variations in
energy contributions between residues of the two distinct binding sites could define their
uniqueness towards inhibitor binding.
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Table 2. BS1 and BS2 Per-Residue Energy Contribution Analysis.

BS1/Suramin Complex BS2/Suramin Complex
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6. System Preparation and Molecular Dynamic Simulation

The X-ray crystal structures of RNA-dependent RNA polymerase (RdRp) were re-
trieved from the Protein Data Bank [17] (PDB code: 7D4F) [11]. These structures were
then prepared for molecular dynamic (MD) simulation using the UCSF Chimera software
package [18]. MarvinSketch 6.2.1, 2014, and Molegro Molecular Viewer (MMV) were used
for the ligands preparation and ensured that the ligands’ proper angles and hybridization
state were displayed [16,19]. AutoDock Tools GUI was used to describe the grid box at
the catalytic site of the protein [20]. The dimensions and co-ordinates of the grid box for
binding site 1 (BS1) were defined as follows: size x = 9.78025, y = 16.3064, z = 9.20736 with
center x = 119.265, y = 133.527, z = 145.034 and size x = 19.0436, y = 11.5639, z = 10.3082
with center x = 129.422, y = 124.624, z = 150.334 for binding site 2 (BS2). The Lamarckian
genetic algorithm was used to perform docking calculations [21]. The prepared systems
protonation states were optimized using Maestro Schrödinger [13]. The necessary hydrogen
atoms were corrected, and the neutral residues were capped to ensure protein stability
during the simulation. AutoDock Vina’s highest scoring docked pose was used as the
initial structure for a molecular dynamics (MD) simulation run [22,23].

Altogether, sixteen systems comprising the binding of the eight antivirals with each
binding site of RdRp enzyme were subjected to MD simulations using the Graphic Process
Unit version of the AMBER18 software package [24]. Protein optimization and explicit
solvation were carried out using the integrated LEAP module, while the AMBER18 soft-
ware forcefield was employed to define protein parameters [25]. The systems were partially
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minimized for 2500 steps with a restraint potential of 500 kcal/mol Å, followed by full
minimization of 10,000 steps. The systems were gradually heated from 0–300 K using
a Langevin thermostat in a canonical ensemble (NVT) [26]. Equilibration was also car-
ried out without restraints at a temperature of 300 k in an NPT ensemble for 1000 ps
while atmospheric pressure was maintained at 1 bar using the Berendsen barostat [27].
This was followed by MD production runs of 100 ns for each system, during which the
SHAKE algorithm was used to constrict all atomic hydrogen bonds [28]. The integrated
CPPTRAJ and PTRAJ modules [29] of AMBER18 were used to analyze resulting coordi-
nates and trajectories while obtained data were plotted using Microcal Origin software
(www.originlab.com) [30]. UCSF Chimera was also used to visualize and analyze structural
events. These are in accordance with our in-house MD simulation protocol, which has been
previously reported [31,32].

7. Dynamic Conformational Stability and Fluctuations

MD simulations were carried out to investigate the inhibition performance and in-
teractions of the potential eight ligands with BS1 and BS2. Validation of system stability
and flexibility is essential for tracing disrupted motions and avoiding artifacts that may
arise during the course of the simulation [33,34]. In this study, root-mean-square deviation
(RMSD) and root-mean-square fluctuation (RMSF) were calculated to measure the systems’
stability and flexibility during the 100 ns simulations [35,36]. The tracing to disrupt move-
ments and prevent artifacts that could appear during the simulation needs the stability of a
system to be validated. Therefore, we evaluated the stability of eight inhibitors inside the
BS1 and BS2. The orientation that the ligand displays within a specific binding site may
have an impact on ligand stability, as the therapeutic impact of a small molecule depends on
its stability in a target protein’s binding region. The root-mean-square deviation measures
the difference between a protein’s backbones from its initial structural conformation to its
final position. However, the residual conformational analysis is a measure of the nature of
fluctuation exhibited by individual residue corresponding to the effect of ligand induction
on the protein, cumulatively yielding its therapeutic efficacy. For all systems, RMSF was
calculated for each amino acid residue during MD simulation of 100 ns. Furthermore, to
indicate how the protein surface interrelates with solvent atoms and how it relays to the
compactness of the hydrophobic protein core, the solvent-accessible surface area (SASA) of
the protein upon ligand binding was calculated. This was accomplished by computing the
surface area of the protein observable to solvent across the 100 ns MD simulation, which is
vital for biomolecular stability. According to this analysis, the average values of RMSD,
RMSF, and SASA of the eight inhibitors within BS1 and BS2 are presented in Tables 3
and 4. Additionally, a structural visualization using simulation RMSD, RMSF, and SASA
post-analyses for the eight inhibitors inside the BS1 and BS2 are shown in Figures S1–S3,
respectively.

Table 3. RMSD, RMSF, and SASA profile of the eight ligands when bound to BS1.

Systems Estimated Averages (Å)
Ligand RMSD RMSF SASA

Remdesivir-BS1 1.58 1.06 14,011.99
Sofosbuvir-BS1 2.04 1.12 14,510.63
Alovudine-BS1 1.34 1.03 13,772.77

Molnupiravir-BS1 1.65 1.09 13,800.19
Zidovudine-BS1 1.72 1.08 13,706.09

Favilavir-BS1 1.57 1.17 14,271.97
Ribavirin-BS1 1.53 1.04 14,116.37
Suramin-BS1 1.62 1.20 13,911.23

www.originlab.com
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Table 4. RMSD, RMSF, and SASA profile of the eight ligands when bound to BS2.

Systems Estimated Averages (Å)

Ligand RMSD RMSF SASA

Remdesivir-BS2 1.87 1.14 11,018.38

Sofosbuvir-BS2 2.09 1.35 11,193.50

Alovudine-BS2 1.80 1.06 10,655.36

Molnupiravir-BS2 2.13 1.21 11,180.05

Zidovudine-BS2 2.12 1.22 11,245.66

Favilavir-BS2 1.64 1.20 10,948.94

Ribavirin- BS2 1.68 1.11 11,244.42

Suramin-BS2 1.78 1.24 11,142.55

8. Binding Free Energy Calculations

In order to estimate the binding interactions of these antiviral drugs to RdRp enzyme,
binding free energy calculations were carried out using the molecular mechanics/Poisson–
Boltzmann surface area (MM/PB-SA) method [37,38]. This approach is widely employed
and proven to be reliable in measuring binding free energies involved in protein–ligand
complex formation. Moreover, MM/PBSA is mathematically represented as follows:

∆Gbind = Gcomplex − Greceptor − Gligand (1)

Egas = Eint + Evdw +Eele (2)

Gsol = GGB/PB + GSA (3)

GSA = γSASA (4)

where van der Waals and electrostatic interactions are represented as Evdw and Eele while
Egas denotes gas-phase energy and Eint as internal energy. The solvation free energy
denoted by Gsol represents the solvation free energy and can be decomposed into polar and
nonpolar contribution states. The polar solvation contribution, GGB/PB, is determined by
solving the GB/PB equation, whereas GSA, the nonpolar solvation contribution, is estimated
from the solvent-accessible surface area (SASA), determined using a water probe radius
of 1.4 Å. Per-residue decomposition analyses were also carried out to estimate individual
energy contribution of binding site residues to the stabilization and affinity of remdesivir,
suramin, favilavir, ribavirin, molnupiravir, sofosbuvir, alovudine, and zidovudine. This
could provide more insights into the basis of the RdRp inhibition exhibited by these drugs
as high residual energy contributions could depict crucial residues.

9. Assessment of Comparative Binding Energies

An assessment of the comparative binding energies for RdRp in complex with the eight
antiviral drugs at the two distinct binding sites was conducted for the 100 ns simulation
run. The molecular mechanics/generalized Born surface area (MM/GBSA) method for
predicting binding energies was employed to estimate the binding affinities of each of the
eight antiviral drugs (Figure 2) at the two binding pockets of the RdRp enzyme (Table 5).

The MM/GBSA and molecular mechanics Poisson−Boltzmann surface area (MM/
PBSA) are very popular methods for binding energy prediction and are known to be more
accurate than most scoring functions in molecular docking. They are also computationally
less demanding than alchemical free energy methods. As shown in Table 3, this study
revealed that all antiviral drugs bind favorably to the two binding pockets due the high
∆Gbind values estimated for all systems. Furthermore, the energy terms contribute to the
binding free energy, with the most favourable components being ∆Eele, ∆Evdw, and ∆Ggas,
while ∆Gsol is unfavorable. The ∆Eele and ∆Ggas are enough to balance the unfavorable
∆Gsol, leaving the ∆Evdw as the determining factor of the total energy.
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Table 5. MM/GBSA-based binding free energy profile of each of the eight antiviral drugs at the two
binding pockets of RdRp enzyme.

Systems
Energy Components

(kcal/mol)

Ligand ∆Evdw ∆Eele ∆Ggas ∆Gsol ∆Gbind

Remdesivir-BS1 −41.9522 −335.8092 −377.7613 325.1969 −52.5645

Remdesivir-BS2 −42.7075 −90.9436 −133.6512 109.1042 −24.5469

Sofosbuvir-BS1 −34.6272 −15.0141 −49.6413 25.2979 −24.3434

Sofosbuvir-BS2 −32.0037 −19.3497 −51.3534 33.6064 −17.7470

Alovudine-BS1 −21.7154 −8.8406 −30.5559 13.5672 −16.9888

Alovudine-BS2 −19.2905 3.337 −15.9536 5.5781 −10.3754

Molnupiravir-BS1 −22.4816 −34.6077 −57.0892 43.4611 −13.6282

Molnupiravir-BS2 −26.1253 −24.0320 −56.1573 35.6699 −14.4874

Zidovudine-BS1 −24.3850 −31.0102 −57.3952 40.5715 −14.8237

Zidovudine-BS2 −15.3793 −193.9331 −209.3124 198.1934 −11.1190

Favilavir-BS1 −7.5696 −37.4859 −79.4035 90.7847 −11.3812

Favilavir-BS2 −7.3014 −28.6874 −72.1635 85.046 −12.8825

Ribavirin-BS1 −8.5964 −20.8937 −63.3037 76.6451 −13.3414

Ribavirin-BS2 −7.7187 −27.1752 −69.8784 83.4503 −13.5719

Suramin-BS1 −8.6775 −48.0019 −89.7680 102.9012 −13.1331

Suramin-BS2 −7.7503 −51.9245 −94.8926 107.5886 −12.6959

All energies are in
kcal/mol.

∆Eele =
electrostatic energy

∆Evdw = van der
Waals energy

∆Gbind = total
binding free energy

∆Gsol = solvation
free energy

∆G = gas phase
free energy

In BS1, remdesivir demonstrates the most favorable binding, with an estimated bind-
ing energy of −52.56 kcal/mol, while favilavir is the least favourable, with an estimated
binding energy of −11.38 kcal/mol. Similarly, in the BS2 system, remdesivir shows the
strongest binding among all the antiviral drugs, with an energy of −24.55 kcal/mol, while
alovudine shows the least binding, with an estimated energy of −10.38 kcal/mol. A com-
parison of energies of all antiviral drugs across the two binding sites reveals that five out
of the eight antiviral drugs show stronger binding in BS1 compared to their energies in
BS2 comprising remdesivir (from −52.56 kcal/mol to −24.55 kcal/mol), sofosbuvir (from
−24.34 kcal/mol to −17.75 kcal/mol), alovudine (−16.99 kcal/mol to −10.38 kcal/mol),
zidovudine (from−16.82 kcal/mol to −11.12 kcal/mol), and suramin (−13.13 kcal/mol
to −12.70 kcal/mol). These observed drops in energies among all five drugs in BS2 could
suggest that BS1 is the most preferred binding site for remdesivir, sofosbuvir, alovudine,
zidovudine, and suramin. Likewise, in BS2, molnupiravir, favilavir, and ribavirin show
stronger energies as compared to their energies in BS1, suggesting that BS2 could be the
most preferred binding site for these drugs. Conclusively, based on these findings, the
preferred binding site is dependent on the specific inhibitor involved, as the inhibitors used
herein demonstrate affinity to either of the binding pockets.

10. Conclusions

The interesting architecture of the catalytic chamber of RNA-dependent RNA poly-
merase (RdRp) with its two unique binding sites, BS1 and BS2, prompted us to investigate
the potential use of multiple inhibitors as combination therapy against COVID-19. The ar-
chitecture of the binding sites BS1 and BS2 within the catalytic chamber and the preferential
binding modes of eight antiviral drugs in each binding site were thoroughly analysed in
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order to understand the underlying factors that govern preferential drug binding. Analysis
of data obtained in this study revealed that the hydrophobic drugs remdesivir and sofos-
buvir were found to bind better in both binding sites than the relatively less hydrophobic
drugs alovudine, molnupiravir, zidovudine, favilavir, and ribavirin, with the exception
of suramin, which displayed overall weaker binding affinities in both binding sites when
compared to other drugs, despite its apparently high hydrophobic character. The low
binding affinity of suramin may be attributed to its high binding solvation energy, which
disfavors its overall binding. Moreover, hydrophobic drugs showed higher binding affini-
ties towards BS1 when compared to BS2, while less hydrophobic drugs did not show a
significant difference in binding affinities in both binding sites. This may be attributed
to the fact that BS1 has more hydrophobic architecture compared to BS2. Furthermore,
our findings revealed the energy terms that contribute to the binding free energy, with
the most favourable components being the ∆Eele, ∆Evdw, and ∆Ggas, while ∆Gsol was
unfavorable. The ∆Eele and ∆Ggas for hydrophobic drugs were enough to balance the
unfavorable ∆Gsol, making the ∆Evdw the major determining factor of the total energy.
The information presented in this report will lay the foundation for further research and
development of co-inhibition therapies and represents a major contribution to the field of
SARS-CoV-2 research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28062806/s1, Figure S1: Structural representation of
alterations occurring during the binding of the selected eight antiviral to RdRp Catalytic Chamber
BS1 and BS2.; Figure S2: Structural representation of alterations occurring during the binding of the
selected eight antiviral to RdRp Catalytic Chamber BS1 and BS2.; Figure S3: The time evolution RMSF
of each residue of the enzyme C-α atom over 100 ns.
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