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Abstract: With the ever-increasing world population, the energy produced from green, environmen-
tally friendly approaches is in high demand. In this work, we proposed a green and cost-effective
strategy for synthesizing a porous carbon electrode decorated with alumina oxide (Al2O3) from
cherry blossom leaves using the pyrolysis method followed by a sol-gel method. An Al2O3-coating
nano-layer (4–6 nm) is formed on the porous carbon during the composition fabrication, which further
adversely affects battery performance. The development of a simple rich-shell-structured C@Al2O3

nanocomposite anode is expected to achieve stable electrochemical performances as lithium storage.
A significant contributing factor to enhanced performance is the structure of the rich-shell material,
which greatly enhances conductivity and stabilizes the solid–electrolyte interface (SEI) film. In the
battery test assembled with composite C@Al2O3 electrode, the specific capacity is 516.1 mAh g−1 at a
current density of 0.1 A g−1 after 200 cycles. The average discharge capacity of carbon is 290 mAh g−1

at a current density of 1.0 A g−1. The present study proposes bioinspired porous carbon electrode
materials for improving the performance of next-generation lithium-ion batteries.

Keywords: biomass derived carbon; anode; alumina-rich coating; lithium-ion batteries; electrochemi-
cal performance

1. Introduction

Lithium-ion batteries (LIBs) with high energy density and high charge/discharge
capacity are in high demand for developing efficient energy storage systems [1,2]. Commer-
cial anodes based on carbonaceous materials are used extensively in the present day as LIBs,
because of their low cost, chemical stability, and superior conductivity. However, their low
capacity, poor rate performance, and inherent safety issues need to be addressed [3–5]. To
date, among anode materials, carbon offers significant potential because of its mechanical
strength, abundant reserves, and low charging voltage [6,7]. Moreover, it is imperative to
examine in detail how particle structure, including coatings and porous structures, impacts
the electrochemical performance [8]. Further, continuous breakage and generation of the
solid electrolyte interface (SEI) film leads to deteriorated battery performance [9].

Graphite has been used for lithium-ion batteries since 1991 when Sony released the first
subsequently commercialized available batteries [10]. The discovery of high-performance
carbonaceous materials and their application as battery anodes may be the key to the
development of the next generation of LIBs. Recycling, reducing, and reusing waste in
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daily life is essential for converting it into green energy [11]. To accomplish this, more work
needs to be done on exploring different biomass-derived carbon anodes [12–14]. These
anodes have been synthesized in similar approaches (mainly via pyrolysis combined with
acid or porogenic treatment), and display different performances as shown in Table 1.
Typically, the performance of biomass anodes is judged based on their surface and internal
structures, but this neglects how these differences affect their lithium-ion storage [14]. A
commercial biomass-derived battery will not be possible without such studies to generate
and optimize trends in the field [15,16]. In contrast, anode LIBs still suffer from low specific
capacity and initial coulombic efficiency (ICE).

Table 1. Summary of the electrochemical performance of different carbon-based anodes in LIBs.

Sample Specific Capacity
(mAh g−1) Cycles Current (mA g−1) References

Si/C 420.7 150 3C 2021 [17]

SiO2/C 530 100 500 2018 [18]

N/O doped carbon 307 500 1000 2022 [19]

Graphene- and rope-like nano carbons 355 1000 1000 2019 [20]

Microalgae-derived hollow
carbon-MoS2

300 880 5 2019 [21]

ZIF-8 derived N-doped carbon/silicon
composites 302 800 1 2021 [22]

Co0.85Se nanosheets/graphene 522.7 500 2 2018 [23]

Biomass-derived poly(furfuryl
alcohol)-protected aluminum 400 25 2018 [24]

Selenium-doped carbon 450 580 0.5 2020 [25]

Tin–nanoparticle/carbon–nanofiber 430 200 0.1 2016 [26]

ZnS@N-doped carbon nanoplates 536 500 0.5 2021 [27]

Co/ZnO/nitrogen-doped carbon 400 50 0.2 2022 [28]

ZnFe2O4/C 579 100 0.1 2016 [29]

C@Al2O3 516 200 0.1 This work

The abundance and low cost of biomass-derived carbon make it an ideal candidate for
use in supercapacitors [30], LIBs [31], and sodium ion batteries SIBs [15] to address the chal-
lenges mentioned above. Additionally, porous nanostructured carbon biomass can serve
as an interface between the lithium electrode and the electrolyte, allowing charge to trans-
fer [32,33]. A graphite electrode with a theoretical value of 372 mAh g−1 was determined,
which is lower to fulfill the current demands. Many approaches have been introduced to
carbon-based materials to address these problems, including cellulose/Al2O3 [34], Al into
novel Li3VO4@C [35], Si/Ni3.4Sn4/Al/C composites [36], Al/metal oxide composites [37],
and Al doped carbon Li4Ti5O12 as lithium-ion batteries for anodes [38]. In addition, the
expansion of silicon and the damage to the anode caused by electrolytes are relatively
reduced. Various strategies are used such as chemical vapor deposition being used to syn-
thesize composites with core-shell structures and varying carbon layers (2–30 layers) [39].
A layer of Al2O3 can improve the cycle stability of various Al/metal oxide composites by
acting as an artificial SEI film [40,41]. A coating of Al2O3 also reduces lithium inventory
loss but marginally reduces silicon active material loss. As a result, capacity decay is greatly
reduced [42]. A facile and cost-effective G/Si composite with Al2O3 coatings was proposed
by Zhu et al. [43]. Furthermore, the amorphous Al2O3 coating (thickness: 10–15 nm) en-
hances the electrochemical performance of the material and provides a stable artificial SEI
layer.
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Inspired by the above study, here we develop a simple two-step method, firstly
deriving porous carbon activated via pyrolysis and secondly using a cost-effective sol-
gel method. Biomass derived carbon showed a highly porous structure, which allowed
the nanoparticles of alumina oxide. The final nanocomposite C@Al2O3 showed excellent
electrochemical properties. In comparison with the modified pure carbon sample, the
C@Al2O3 composite with the rich-shell structure is better in cycle and rate performance.
The typical carbon sample has been delivered at the current rate of 0.1 mA g−1 with a
discharge capacity of 290 mAh g−1. On the other hand, the C@Al2O3 nanocomposite
provides an initial coulombic efficiency (ICE) of 65.9% and the anode reversible capacity is
516.1 mAh g−1 at a current rate of 0.1 A g−1 after 200 cycles. The compact Al2O3 layers on
porous derived carbon, with resultant cycle stability, can contribute to ionic conductivity.
Subsequently derived carbon enhances the conductivity of the composite. Due to the
rich-shell alumina protection, the composite C@Al2O3 electrochemical performance is
significantly improved. We believe a cost-effective sol-gel method would support new
possibilities for lithium anode storage.

2. Results and Discussion
2.1. Structural Properties of Derived Porous Carbon and C@Al2O3

Figure 1 illustrates the process of the hierarchical structure of C@Al2O3 composition
preparation. To activate biomass carbon, it should be cleaned of unwanted impurities and
then further treated with KOH at 1000 ◦C. After pyrolysis and impurities are removed,
carbon and Al2O3 are decorated with a low-cost sol-gel method. Due to the ultrasonic
treatment process and the sol-gel and annealing process, the very small Al2O3 nanoparticles
formed could be fast-wrapped in a carbon wall or adsorbed on its surface. Consequently,
C@Al2O3 nanocomposite is fabricated in this experiment to be utilized as anode LIBs.
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Figure 1. Schematic illustrations of carbon activation and C@Al2O3 composite preparation process.

Carbon derived from cherry blossom waste is activated with KOH, and the correspond-
ing morphology is shown in Figure 2a–c. Carbon materials with apparent high porosity are
observed in Figure 2a,b, which is in the form of deep digs with meso/microporous sizes.
Figure 2c shows the magnification of the deep digs with rough surface profile. In addition,
both high-resolution images and high-resolution pore images indicate a two-dimensional
layer. It can be concluded from the images above that the derived carbon is highly active
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and allows for encapsulation within alumina oxide nanoparticles. A porous structure,
which has a higher conductivity, limits the volume expansion and electrochemical per-
formance of anode LIBs. The SEM images displayed in Figure 2d–f show that the Al2O3
particles are well combined with carbon; these were intensively coated on the surface
of porous carbon even after being sonicated for approximately half an hour. Al2O3 has
a controlled and homogeneous growth mechanism, permitting solution deposition. As
shown in Figure 2e,f, Al2O3 nanoparticles appear to aggregate on porous carbon-coated
surfaces during annealing. Energy-dispersive X-ray spectroscopy (EDX) analysis was used
to investigate scale morphology, composition, and particle distribution. The nanocompos-
ite C@Al2O3 is shown in Figure 2g,h, and the elements Al, O, and C are detected. The
EDX further shows the particles are distributed and well organized. In these images, the
hybrid C@Al2O3 nanocomposite shows a compact coating and a free space structure, which
promotes excellent electrode performance during cycling.
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Figure 2. SEM images of cherry-blossom-derived porous carbon. (a,b) Porous morphology, (c) deep
holes areas, (d–f) hybrid C@Al2O3 composition wrapped with a carbon wall, (g) EDS of C@Al2O3

selected area, (h) corresponding elements fraction of C, O, and Al in C@Al2O3.

To better characterize the interface structure between the porous carbon and alumina
particles, TEM was used to observe the microstructures of derived carbon porosity and
C@Al2O3. Micro/mesopores and the rough area are two types of holes in carbon as shown
in Figure 3a. Lithium-ion traffic is allowed during cycling because of this high porosity.
Figure 3b, which is magnified from the yellow dotted box in Figure 3a, shows two different
zones. Typically, deep holes are defined by micro/macro holes and carbon two-demission
layers. Moreover, Figure 3c indicates that the carbon channels are highly interconnected
due to roughness on the surface. A mesopore allows lithium ions to pass quickly through
an electrolyte and electrode material, resulting in improved electrochemistry. Figure 3d for
sample C@Al2O3 shows that Al2O3 is well decorated within the nanocomposite structure.
In Figure 3e, Al2O3 nanoparticles are incorporated into the interstices of meso/micropores
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and covered in carbon walls. Moreover, C@Al2O3 hybrid composites that are highly packed
with carbon protection are adsorbent, limiting the aggressive nature of the structure. In
Figure 3f, a TEM image of a C@Al2O3 nanocomposite shows two distinct regions, with
(f1) indicating the typical carbon profile and (f2) showing the Al2O3 pattern. Thus, carbon
homogenously packed with Al2O3 could produce an exceptional performance as an anode
LIB. The stable Al2O3 and carbon network was formed using this simple deposition method,
which contributed to the overall electrochemical performance of the anode LIBs.
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composition distribution, (e) TEM image of the carbon coating and Al2O3 coating profile, and (f) two
profiles, (f1) typical carbon and (f2) Al2O3 of C@Al2O3 nanocomposite.

2.2. Material Structure Analysis

To investigate the phase evolution of carbon and the coated alumina particles in the
biomass derived composite material, X-ray diffraction analyses (XRDs) were performed
on the samples to determine the corresponding crystallinity. Figure 4a shows a spectrum
of C@Al2O3 nanocomposite and pure carbon. A typical broad peak can be found in the
nanocomposite showing the crystalline phase peaks at 26.01◦, 41.6◦, 44.20◦, 52.2◦, and
76.91◦. The crystal planes of carbon are (002) and (100) which correspond to 26.01◦ and
46.01◦, respectively. An excellent example of this is the conversion of Al(NO3)3 into Al2O3
without any byproducts occurring during annealing. According to TEM results, Al2O3
nanoparticles were formed out/inside the surface onto the carbon wall. According to
Figure 4b, measuring the ratio of the disorder-induced band (D-band, ~1350 cm−1) to the
graphitic band (G-band, ~1550 cm−1) in Raman spectra, D and G band are proportional
to defect structure and ordered graphite structure separately. Further, the degree of amor-
phousness can be quantified and compared. It was found that porous carbon (ID/IG = 0.9)
> C@Al2O3 (ID/IG = 0.83) is in order from most amorphous to least amorphous [44,45]. As
biomass-derived carbons in general are amorphous, and the recrystallization of carbon
requires high temperatures over 1000 ◦C for long periods, it is challenging for carbons to
crystallize [46].
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To evaluate the surface element distribution, X-ray photoelectron spectroscopy (XPS)
was utilized to capture a high-resolution spectrum of C@Al2O3. Figure 4c show the survey
spectra of the desired elements of C@Al2O3 nanocomposite such as Al 2p, O1s, and C 1s.
Figure 4d presents the Al 2p peak due to the reaction between functional groups such as
–NH2 and –OH groups, this 74.31 eV can be attributed to Al2O3 present on the surface of
carbon layers [47,48]. From the fit of O 1s spectra displayed in Figure 4e, it can be found
that there are three individual peaks centered at 531–532, 533–534, and 534–536 eV, which
correspond to C=O quinone type groups (O-I), C–OH phenol groups/C–O–C ether groups
(O-II), and COOH carboxylic groups (O-III) [49,50]. For C@Al2O3 composite samples, the
carbon–oxygen functional groups can improve the wettability of carbon materials further
to enhance the chemical reaction on the electrode/electrolyte surface for obtaining extra
electrochemical performance energy storage applications [51]. Figure 4f shows the XPS
spectrum of the C 1s, which can be divided into three major peaks of C=C/C–C (284.6 eV),
C=O (286–287 eV), and COOH (289–290 eV) [50,52].

2.3. Electrochemical Performance of Porous Carbon and C@Al2O3

To evaluate the effect of the composite C@Al2O3 on the battery performance, the
electrochemical tests are conducted on porous carbon and C@Al2O3 anode materials to
determine their capacity to store charge. Throughout this study, weight was used to
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determine specific capacities. Figure 5a,b shows the CVs of the two electrodes at a scan rate
of 0.1 mV s−1. There are three intense peaks in Figure 5a, the first cathodic scan, located
at 0.2, 0.69, and 1.26 V, respectively. In carbon anodes, the second and third cycles appear
at the same time and overlap nicely with each other [31]. It can be seen from Figure 5b
that the irreversible reduction peak appears at the beginning of the lithiation process and
disappears at the end of the process. Carbon can react with Li+ in this reaction, resulting
in a solid electrolyte interface (SEI). The reduction of LixAl2O3 is a broad cathodic peak
at approximately 0.51 V. A typical peak in the anodic process of C@Al2O3 was observed
between 1.2 and 2.0 V [53]. The facts above are consistent with previous studies [34]. A
comparison of the charge/discharge profiles of pure carbon and C@Al2O3 hybrids is shown
in Figure 5c,d for 0.1 A g−1. The C@Al2O3 sample had an initial coulombic efficiency of
65%, which resulted in 1150.9 mA h g−1 discharge capacity and 516.1 mA h g−1 charge
capacity, and the electrodes continued to provide the same specific capacity after 200 cycles,
achieving an average efficiency of 99.5%. The nanocomposite C@Al2O3 indicates good
capacity retention and as a result is a promising candidate as a LIB anode.
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profile of derived C@Al2O3, (c) charge-discharge vs. cyclic number of carbon C@Al2O3 sample at
a current rate of 500 mA g−1, (d) rate capability of C and C@Al2O3 at various current densities
of 100 to 1000 mA g−1, (e,f) EIS plot of two samples C, C@Al2O3, before and after cycles, (g) long
cycling performance of the C@Al2O3 nanocomposite, and (h) scheme of Li-ion transportation cycling
processes.

It is very important to investigate the long cycling life and stability of the electrode
materials. The rate capability of C@Al2O3 was further investigated at different current
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densities ranging from 0.1 to 1.0 A g−1 (Figure 5d). Using the C@Al2O3 electrode, discharge
capacities of 518.6, 372.4, 310.3, 380.5, 230.3, and 220.1 mAh g−1 are achieved at 0.1, 2.0,
0.2, 0.5, 0.7, and 1.0 A g−1, respectively. Due to the high rate measurements, the C@Al2O3
electrode was able to recover to 515 mA g−1 at 1.0 A g−1. In this respect, it confirms the
outstanding rate capability of C@Al2O3 electrodes. By examining the EIS of pristine carbon,
and C@Al2O3, we further investigated the electrochemical behavior of the composite
materials. An equivalent circuit for EIS is shown in Figure 5e. As C@Al2O3 electrodes
have smaller semicircles than the other samples, C@Al2O3 composites have lower charge
transfer resistance than C@Al2O3 (420 Ω). The Rct of carbon, however, is still lower than
that of C@Al2O3, which is due to its higher carbon content. This proves indirectly the
importance of the carbon layer. Figure 5f illustrates that, after cycling, the charge resistance
of the C@Al2O3 composite is much lower than (230 Ω), which indicates enhanced transport
kinetics for effective electron conductions and electrode reactions. By reducing charge
transfer resistance, more electrons and Li+ are transferred efficiently, resulting in improved
electrochemical performance.

As shown in Figure 5g, the C@Al2O3 electrode has excellent cyclic performance with a
high current density (0.1 A g−1). The C@Al2O3 nanocomposite’s first charge/discharge
cycle is 1110.5 mAh g−1 while after 200 cycles it surpasses both pure carbons (290.1 mAh
g−1) and hybrid C@Al2O3 (516.1 mAh g−1). Furthermore, C@Al2O3 has a capacity of
approximately 516 mAh g−1 at 0.1 mA g−1, as shown in Figure 5h schematic, which
indicates that C@Al2O3 has high cycling properties at high rates of charge and discharge.
At different current rates, a moderate mass loading of Al2O3 delivered a high performance
for C@Al2O3. A porous carbon had two factors that offset this effect: (1) its layered structure
provided a channel for Li ions to flow rapidly during charging and discharging, and (2) the
limited surface prevented excess Al2O3 nanoparticles from dispersing.

Carbon nanoparticles are pulverized during charge/discharge cycles, resulting in
continuous increases in capacitance. During pulverization, the Al2O3 nanoparticles were
exposed to more active sites, allowing for enhanced lithium storage, and the Al2O3 nanopar-
ticles were in contact with carbon-rich encapsulation, allowing charge transfer to occur
more efficiently. As cycling proceeds, a steady-state SEI on the surface of the C@Al2O3
electrode material would also be advantageous. The free transportation of lithium ion
provides a free gateway for electron channels; as a result the electrode C@Al2O3 delivers
excellent overall electrochemical performance as anode lithium storage.

In Figure 6a, TEM images show that, after 200 cycles, the C@Al2O3 particles are still
present. There is still an intact structure based on the stability of the structure. The TEM
image shows no further damage. In Figure 6b, we see the crystalline profile of C@Al2O3
coated with carbon. Carbon and Al2O3 particles play an essential role in stabilizing
the structure and shortening the Li-ion pathway. According to Figure 6c, this structure
exhibits three distinct characteristics: a rich coating of Al2O3; derived carbon reducing its
strength; and cracked areas caused by lithiation strains. A porous structure is shown in
Figure 6d,e for Li-ion transportation. In addition to retaining its structure after 200 cycles,
the anode exhibits excellent electrochemical performance. Figure 6f shows clearly in
high-resolution TEM images that the structure is still retained and shows the coating of
alumina on the carbon surface, which demonstrates the cause of high electrochemical
performance. Moreover, in Figure 6g, the schematic illustration of cycling performance
with the behavior of the Li+ ion transport indicates the gateway for free electron flow
within the electrode. The porous structure can effectively retrain the anode SEI and volume
changes during lithiation or delithiation. These anode LIBs with enhanced electrochemical
performance were obtained through the construction of carbon with Al2O3-rich shells using
a cost-effective sol-gel method.
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3. Experimental Section
3.1. Activation of Porous Carbon

Activated carbon refers to a wide range of carbonized materials with a high degree of
porosity and high surface area. Activating with potassium hydroxide in terms of surface
area and efficiency shows better results than sodium hydroxide for various applications [54].
This experiment involved drying cherry blossom leaves in sunny conditions. We washed
the dried leaves several times and then dried them for two days at 50 ◦C. The leaves were
crushed with a rotter and then set aside to become a fine powder. Following impregnation
with potassium hydroxide (KOH), the crushed leaves were treated with KOH at a ratio of
1:1, then transferred to a crucible plate and heated at 1000 ◦C for one hour at 15 ◦C min−1.
To remove impurities such as K, Mg, and so on, the sample was washed for 30 min with
diluted hydrochloric acid (HCl). As a final step after the HCl treatment, the product was
washed with deionized water.

3.2. Preparation of C@Al2O3

A typical preparation procedure of C@Al2O3 composites was as follows: To modify
the surface of the above derived active carbon, 1.0 g of derived carbon was dispersed in a
100 mL PVA aqueous solution (1.5 wt%) for 8 h, then the suspension was filtered, washed
with distilled water several times to remove the residual PVA, and dried at 70 ◦C in vacuum
for 10 h. Subsequently, 0.3 g PVA-modified active carbon was dispersed into aluminum
nitrate Al(NO3)3 (0.1 g) in 40 mL of ethylene glycol and stirring continued for 48 h at room
temperature. Then the ammonia solution with a concentration of 1.5 wt% added dropwise
was mixed thoroughly for four hours in an oil bath at 100 ◦C. After agitation for 1 h, the
insoluble black products were filtered, washed with distilled water and ethanol, then dried
at 70 ◦C in a vacuum overnight. The materials were annealed at 650 ◦C for 2 h under argon
flow to obtain C@Al2O3 nanoparticles.
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3.3. Material Characterization

To characterize the active materials, the X-ray diffraction (XRD) spectra of the powder
samples were measured using an X-ray diffractometer (Bruker D8 ADVANCE), Almelo,
Holland with Cu Kα (λ = 0.15405 nm) radiation source and further analyzed using X’Pert
HighScore Plus software 5.1. The sample morphology was tested via transmission electron
microscopy (TEM, JEM F200) and scanning electron microscopy (SEM, FEG 250), Tokyo,
Japan. The thermal stability and the carbon content of the active materials were investigated
using thermogravimetric and differential scanning calorimetry (TG-DSC, Mettler-Toledo),
Geneva, Switzerland. The crystal defects were evaluated via Raman spectrum using a
Jobin LabRam high-resolution spectrometer (HORIBA, France, SAS), in a scan range of
500–4000 cm−1 with a laser source of 532 nm. A Thermo Fisher, Tokyo, Japan, ESCALAB
Xi+ spectrometer was used to analyze the C@Al2O3 structure and determine its chemical
state. By using X-ray photoelectron spectroscopy (XPS, AXIS ultra DLD), using an Al Kα as
the X-ray source, we measured the chemical composition of the active materials.

3.4. Electrochemical Measurements

A coin-type cell was assembled to investigate the electrochemical performances of the
active materials. We prepared the anode electrodes by casting a slurry, which is composed
of 75% active material, 15% super-P carbon, and 10% poly (vinylidene fluoride) (PVDF).
It was determined that the active materials on the positive electrodes weighed ~1.5 mg
cm−2. The cells were assembled using the positive electrodes, Li foils, and Cellgard
2325 separators. An amount of 1 M LiPF6 was dissolved in dimethyl carbonate and
ethyl carbonate under a volume ratio of 1:1. A LAND-CT2001A battery test system was
used for the galvanostatic charge/discharge experiments. The electrochemical impedance
spectroscopy (EIS) and cyclic voltammetry (CV) were conducted using an electrochemical
workstation with Versatile Multichannel Potentiostat 2/Z.

4. Conclusions

The study proposed a two-step process of C@Al2O3 composite fabrication, i.e., first
deriving porous carbon from waste cherry leaves via pyrolysis and then compacting the
Al2O3 rich-shell coating via a low-cost sol-gel method. The fabrication of porous carbon
and Al2O3 samples with a well-organized structure and uniform packing force has been
successfully accomplished. A porous C@Al2O3 composite performed excellently as an
anode for lithium-ion batteries. A biomass carbon electrode and C@Al2O3 electrode showed
a highly reversible capacity of 516.1 mAh g−1 with a current density of 0.1 A g−1 after
200 cycles. It was found that the carbon is highly stable; for example, at a current density
of 0.1 A g−1 it achieved a reversible capacity of 290.1 mAh g−1. In the study, a dense,
rich alumina coating (about 10 nm) was found to be the most effective method to prevent
SEI formation, and enhanced electronic and ionic conductivity. The performance of a
porous structure made of C@Al2O3 is excellent, demonstrating the importance of using
biological waste with multi-chemically tunable structures for energy storage. The composite
C@ Al2O3 material with enhanced electrochemical performance for LIBs displays great
potential for being utilized to improve the performance and reduce the cost of LIBs.
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