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Abstract: Over the last decade, efforts have been oriented toward the development of suitable gels
for 3D printing, with controlled morphology and shear-thinning behavior in well-defined conditions.
As a multidisciplinary approach to the fabrication of complex biomaterials, 3D bioprinting combines
cells and biocompatible materials, which are subsequently printed in specific shapes to generate 3D
structures for regenerative medicine or tissue engineering. A major interest is devoted to the printing
of biomimetic materials with structural fidelity after their fabrication. Among some requirements
imposed for bioinks, such as biocompatibility, nontoxicity, and the possibility to be sterilized, the
nondamaging processability represents a critical issue for the stability and functioning of the 3D
constructs. The major challenges in the field of printable gels are to mimic at different length scales the
structures existing in nature and to reproduce the functions of the biological systems. Thus, a careful
investigation of the rheological characteristics allows a fine-tuning of the material properties that are
manufactured for targeted applications. The fluid-like or solid-like behavior of materials in conditions
similar to those encountered in additive manufacturing can be monitored through the viscoelastic
parameters determined in different shear conditions. The network strength, shear-thinning, yield
point, and thixotropy govern bioprintability. An assessment of these rheological features provides
significant insights for the design and characterization of printable gels. This review focuses on
the rheological properties of printable bioinspired gels as a survey of cutting-edge research toward
developing printed materials for additive manufacturing.
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1. Introduction

Printing technologies have a high impact on material engineering, which has regis-
tered a fast development during the last few years. From simple prototyping for visual
inspection purposes to advanced functional fabrication of a large diversity of products,
this versatile method offers flexibility, reliability, scalability, customization, durability, and
high speed. 3D printing is a fast-emerging technology that allows the manufacturing of
three-dimensional solid objects using a specific ink and a digital file and it is largely used
in various applications in healthcare, biotechnology, food, agriculture, automotive, locomo-
tive, and aerospace industries, as well as electronics, buildings, consumer goods, etc. [1–8].
During the last few years, hydrogel sheets obtained by 3D printing were submitted to shape
transformation with 4D printing technology, controlling the complex dynamics of material
in space and time, and inducing stimuli responsiveness [8–13]. A high interest is devoted
to bioprinting, a technique used for biologically relevant materials which allows accurate
positioning of ink and then deposition of cells in a 3D network in order to generate a new
tissue that resembles as much as possible the native one. These biomaterials are designed
through the synthesis of new compounds using green chemistry (polymers and functional-
ized peptides) that are then assembled in 3D networks, or by combining various procedures
to achieve dynamic and smart network structures (containing natural and/or synthetic
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molecules) with new functionalities required by the targeted applications [4,5,13–17]. Us-
ing specific experimental tools, 3D bioprinting refers to a series of transfer processes used
to combine molecules, living cells, scaffolds, and bioactive agents according to a specified
configuration to design biological materials (such as organs and living functional tissues
for transplantation) [3,10,17,18].

The bioinks are the printing precursors containing living cells and porous, cytocom-
patible biomaterials with complex flow behavior. Hydrogels as physical, chemical, or
interpenetrated networks are largely used for bioinks due to their ability to provide a
viable environment for the adhesion, growth, as well as proliferation of living cells. These
structures are suitable for the extrusion process presenting shear-thinning and thixotropic
behavior. The shear-thinning ability makes the ink printable and allows the shear forces to
align the macromolecules along the flow direction, decreasing the viscosity, a measure of
their resistance to flow. Thixotropy is a time-dependent behavior (during shear-thinning
or viscoelastic tests) that ensures low viscosity and network strength during printing and
makes the hydrogels regain their structure and stability after printing. However, the high
shear forces or residence times inside the printing needle affect the cell viability, thus among
the most important parameters are the shear stress during printing and the cell viability of
bioink [19–24]. The bioinks pass through a syringe (where the cells are not damaged by
flow) to a nozzle with a specific diameter and geometry. The maximum mechanical forces
act near the wall of the nozzle where the cell viability decreases exponentially as shear
stress rises [25,26]. The main cause of cell death was considered to be the mechanical forces
in the syringe that determine the extensional flow at the entrance of the needle [27,28].

A careful evaluation of bioink properties, its flow behavior, and printer characteristics
(nozzle diameter, operating temperature, printing pressure, etc.) represent an adequate
tool for printing optimization [29]. The applied shear stress must be carefully controlled
and maintained at a moderate level (shear stress threshold of 5 kPa [20]) that allows cell
differentiation and proliferation. Excessive shear stress disrupts the cell membrane and
determines cell death. Also, the wall friction contributed to a decrease in cell viability [20].
The shear dynamics during bioprinting can be evaluated using dimensionless parameters,
such as Weissenberg, Oldroyd, Reynolds, or capillary numbers [30].

There were developed various numerical and analytical fluid dynamics models to
describe the cells’ effect on material flow, taking into account the influence of the mechanical
forces inside of the printing head on the cell viability [20,25,28–34]. Thus, it was established
that the rheology and dynamics of the ink formulations and the applied shear stress
represent a critical key factor to judge the material’s printability, printing resolution, and
ink integrity [20,35–37]. The applied shear stress and shear-thinning behavior under well-
established conditions of shear rates must be examined for determining the printability of
bioinks. In addition, the viscoelastic parameters (G′, G′′, and tan δ) provide information
on the structure and stability of inks before and after the printing process. The printing of
highly viscous bioink is difficult to operate [28] and the performances remain modest when
high mechanical forces (high pressure) act on integrated cells during bioprinting [24]. The
cell viability is influenced by the applied shear stress, the rheological behavior during the
bioink flow, and the exposure time. Increasing the shear stress or the residence time inside
the needle negatively affects cell viability [19,21].

2. Rheological Parameters as Key Characteristics for Extrusion-Based 3D Printing

Rheology is a very useful technique for characterizing inks and evaluating the effects
of sterilization or storage conditions on the performance of 3D constructs [23]. Rheological
parameters are related to the fundamental processes involved in bioprinting and must be
systematically investigated to determine the optimal conditions for biocompatible printing
while preserving structural and functional integrity.

Various 3D printing technologies have been developed with different functions, mainly
known as extrusion-based printing, material jetting, vat photopolymerization, binder jet-
ting, powder bed fusion, directed energy deposition, and sheet object lamination. The first
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three processes have been adopted for bioprinting applications using device extrusion of
materials, inkjet printing, laser-assisted printing, selective sintering printing, or binder
jetting [17,38–40]. Recently, other bioprinting techniques with high resolution were devel-
oped, such as magnetic printing [41] or electrohydrodynamic jetting [42], however, they
are expensive or present low fidelity in 3D constructs.

The required properties of the inks depend on the used printing technique. Each
technique presents advantages and limitations [5,10,43]. For extrusion and inkjet-based
printing that use nozzles for biomaterial depositing, bioink viscosity plays an important
role. Highly viscous materials are not suitable for these technologies [28]. The knowledge
of viscoelastic properties is of high interest in bioprinting for determining the adequate
mechanical strength to hold the desired structure and the conditions in which solid-like or
liquid-like behavior prevails [19,44–46].

Extrusion-based 3D printing is one of the most versatile and cheap techniques used
to print fully functional parts of materials with various colors, such as plastics, food, or
living cells [6,47,48]. A variety of gels are used for extrusion-based bioprinting, such as ther-
mosensitive hydrogels (e.g., gelatin, pluronics, methylcellulose), and photocrosslinkable
hydrogels [49].

An extrusion bioprinter is mainly composed of a container (usually a syringe [50]) that
is loaded with biomaterials, a dispensing head (nozzle) that distributes the biomaterial out,
and a material storage mold where the bioink is deposited [51]. Extrudability is correlated
with the minimum pressure required for the material to be extruded at a given shear
flow rate. This method presents good scalability, and the ability to generate 3D vertical
structures, and favors high cell density. The main disadvantages of this printing method are
the shear stress effect on cell viability and the reduced printing resolution [14]. A pneumatic
force via pressurized air or a mechanical displacement by a screw or a piston allows ink
extrusion through the nozzle [26].

There is a high interest in the design of new bioinks, their optimization, and testing
in extrusion-based 3D bioprinting. The printing ability and performances of bioinks are
evaluated from rheological studies: gelation temperature, shear-thinning behavior, and
viscoelastic properties [16]. The viscosity of the extruded inks varies from 10−3 Pa s [52]
to about 6 × 104 Pa s [14]. The rheological properties are very important parameters for
the optimization of extrusion-based printing. The inks should be shear-thinning to be
easily extruded through a narrow nozzle, and after printing, the deformation should be
minimized to ensure shape fidelity. The thermoreversible gels are suitable materials, rapidly
reaching mechanical strength after gelation that ensures a self-healing ability [13,53,54].

The flow behavior and viscoelastic properties of inks are the key characteristics during
the extrusion-based process. Some general considerations are applicable to all bioprinting
setups, which suppose mainly that the materials are able to flow for shear stress values
above a certain limit and recover their structure at the cessation of flow. Thus, infor-
mation concerning the shear-thinning character, viscosity, yield stress, thixotropy, and
viscoelasticity are required for 3D printing inks (Scheme 1) [44,55–62].

Rheological properties of inks are strongly dependent on the physicochemical charac-
teristics of inks, namely chemical structure, composition, (supra)molecular architecture,
chain length or crosslinking degree, additives, etc. [63,64]. Also, for the gels, the environ-
mental conditions play an important role: pH, ionic strength, temperature, and pressure.
All these factors are considered for the material design and allow us to predict its processing
behavior. The viscoelasticity of inks depends on the deformation regime during printing
and the rheological response of gels is generally time dependent. A deep investigation
and an understanding of the rheological properties of each ink are important to enable
successful printing [44,65]. For some materials with stimuli-responsive behavior, like ther-
moreversible hydrogels for food or tissue engineering applications, the gelation/solidify
temperature is critical to determine the appropriate printing temperature [13,14,51,66].
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Scheme 1. Overview of key parameters in bioprinting.

Materials with pseudoplastic behavior are suitable for extrusion-based 3D printing.
At high shear rates, they easily flow through a moving narrow nozzle. During material
deposition, the viscoelastic effects are important and the kinetic energy is converted into
elastic and/or dissipated energy. The flow cessation occurs when the shear stress falls
below the yield stress, and the edges of the printing constructs are contoured. Thus, to
ensure shape fidelity, the thixotropy of the printing materials must be evaluated [57].
Furthermore, bioprinting enables the inclusion of cells or biologically active molecules
into the printed constructs in a customized, repeatable, and safe way. Comprehensive
rheological characterization and mechanical testing of the bioinks are imperative, to be done
in correlation with cell viability assays [19,21,22,25,28,33,34]. Systematic investigations of
correlations between these properties and the process parameters allow for predicting
biomaterial performances [15,17].

The evaluation of rheological parameters at relevant time scales for inkjet printing is
important for establishing the printing parameters of a given material [32,67]. Printable
ink has low viscosity during printing and suitable mechanical strength after printing,
thixotropic properties, and fast recovery.

The 3D-printing process based on extrusion can be divided into three stages, individu-
alized through the corresponding rheological properties of inks (Figure 1): extrusion (yield
stress, viscosity, and shear-thinning behavior), recovery (shear recovery and temperature
recovery properties) and a self-supporting stage (viscoelastic moduli and yield stress) [56].
Thus, a series of key rheological parameters are used to characterize the 3D printing process
during and after extrusion through the nozzle. However, it is not enough to determine
only in part these rheological characteristics. The shear viscosity, shear-thinning behavior,
and yield stress suppose destruction of the rest of the structure and these parameters allow
an understanding of the ink behavior during printing. The Newtonian viscosity (ηo) and
viscoelastic characteristics determined in the linear range of viscoelasticity (G′, G′′, and
tan δ) contain information about the material structure, before and after printing. Also,
the gelation point (gelation temperature in temperature sweep tests or gelation time at
constant temperature) is very clearly determined from dynamic measurements (following
the viscoelastic parameters as a function of temperature or time). The thixotropy tests
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(in continuous or oscillatory shear regimes) allow for the examining the time-dependent
recovery of the initial structure and stability after the printing process. The information
from the different rheological tests is complementary and must be analyzed as a whole.
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Figure 1. (a) Rheological tests required for testing printability of multicomponent food inks
(carrageenan–xanthan–starch gels) as 1D (pentagram), 2D (lattice scaffold) or 3D (cylinder) structures;
(b) photograph of the printer; Examples of printed shapes: (c) lattice scaffold or (d) hollow cylinder.
Adapted with permission from ref. [56] copyright 2018 Elsevier Ltd.

A detailed rheological characterization in various shear flow conditions, similar to
those existing during printing, allows us to save time, materials, and money. These
parameters are discussed further, and their meaning is briefly presented at the beginning
of each section to be more easily understood by readers less familiar with the notions
of rheology.

2.1. Viscosity

Generally, viscosity is the parameter that controls the flow of fluids in well-established
conditions of temperature and pressure and it is correlated with the fluids consistency in
response to an applied external force [68,69]. The material fluidity is given by the inverse of
viscosity. For versatile bioinks, this parameter is tunable by selecting the most appropriate
components and composition for a specific application and its knowledge facilitates the
usage of the same formulation in different commercial products.

The viscosity expresses the internal friction between the structural entities when they
move relative to one another under an applied force, being a measure of material’s resistance
to flow or tendency to change its shape. The flow of Newtonian fluids is characterized by a
linear relationship between the shear stress (σ [Pa]) and the shear rate (

.
γ [s−1])):

σ = η · .
γ (1)

The ratio of shear stress to shear rate per unit of time is known as the dynamic viscosity,
η [Pa·s].

For Newtonian fluids, the viscosity is independent of the shear parameters. However,
the materials used in 3D printing have a non-Newtonian behavior when the dynamic
viscosity coefficient depends on the shear rate. In such a case, it is called shear viscosity or
apparent viscosity. A complete shear flow curve shows three regions (Figure 2):
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Figure 2. A complete viscosity curve as a function of shear rate, described by the Carreau–
Yasuda model.

A Newtonian behavior is observed at low shear rates (σ→ 0 and
.
γ→ 0). The viscos-

ity corresponding to this region is called zero-shear viscosity, ηo (also denoted as initial,
first Newtonian, or maximum Newtonian viscosity) and its value is correlated with the
molecular characteristics, concentration, temperature, pressure, and other environmen-
tal parameters (pH, presence of other molecules, etc.). Determined in stationary shear
conditions, ηo contains information about the rest structure of the material. There are
materials for which ηo is not experimentally accessible; these systems flow at very low
shear stress values.

A decrease of the apparent viscosity (denoted as η(
.
γ)) occurs above

.
γc, in the pseu-

doplastic or non-Newtonian region;
.
γc depends on the material nature and structure and

it is a well-defined value only for low polydispersity; in many cases, this transition from
Newtonian to pseudoplastic covers a wide range of

.
γ. The pseudoplastic domain appears

for large macromolecules, self-assembling materials, or networks.
For high shear rates, the flow again becomes Newtonian, when the macromolecules are

oriented along the flow direction. The apparent viscosity at such high
.
γ or σ values is known

as the second Newtonian viscosity, η∞ (also named upper, minimum, or limiting viscosity).
For many systems, the η∞ value is not determined within the range of experimentally
accessible shear rates.

Experimentally, it is not possible to detect all three regions for any material. Newtonian
fluids present only the first Newtonian region and the rheological measurements give access
to ηo value. Viscoelastic materials containing macromolecules or supramolecular assemblies
in a fluid state present very often the first Newtonian region and the pseudoplastic one. For
highly viscous fluids or self-assembling systems, the second Newtonian viscosity (η∞) can
be experimentally evidenced. For a series of polymeric materials, a complete curve with
the three regions is obtained using several rheometers that operate in different domains
of shear stress and shear rate. In such cases, the viscosity data may be fitted using the
Carreau–Yasuda model:

η− η∞
ηo − η∞

=
[
1 + (λ · .

γ)a] n−1
a (2)

where λ is the relaxation time, n is the flow behavior index (the exponent of the power law
in the pseudoplastic region), and a is Yasuda exponent (for a = 2–Equation (2) becomes the
Cross model, Equation (3) [70,71]; λ = 1/

.
γc,

.
γc being the critical shear rate that delimitates

the transition from Newtonian behavior and non-Newtonian flow, i.e., the shear rate at
which the viscosity begins to decrease.

η = η∞ +
ηo − η∞

1 + (K · .
γ)

m (3)
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where K has the dimensions of time; m is the flow index (dimensionless parameter) and
expresses the degree of shear-thinning: a value of m closer to zero suggests a tendency
to Newtonian behavior and m increasing to unity indicates a pronounced shear-thinning
character [68].

A more simplified version of the Cross model is the Sisko equation that fits the viscosity
at high shear rates, where η∞ << ηo and K · .

γ >> 1 [68]:

η = η∞ + k · .
γ

n−1 (4)

where the flow index is given by n = 1 − m and k = ηo/K is known as the fluid’s consistency.
The viscosity curve from Figure 2 describes a shear-thinning fluid. A different flow

occurs for shear-thickening fluids, when the viscosity increases with increasing the shear
rate. This rheological behavior is less frequent and occurs for high concentrations of ceramic
suspensions, starch dispersions, foods, or dental composites. For associative polymers,
there is a maximum viscosity in moderate shear conditions and the shear-thickening effect
disappears at high enough shear rates [72–74]. For better control of ink properties, the
rheological characterization of precursors should be done [75–77].

A higher viscosity and network strength improve the mechanical properties of the
ink [78] and the printing resolution [79,80]; in addition, the rheological parameters of
inks and printing pressure should be optimized in order to avoid the decrease in cell
viability [27,78,81,82]. The behavior of high-viscosity fluids is sometimes associated with
that of solids. In the non-Newtonian region, the apparent viscosity can decrease more than
1000 times as compared with the value of ηo. For bioprinting, it is of interest to have a
material with low viscosity during printing in order to be easily extruded through a nozzle
when a high shear stress is applied. However, the viscosity at the exit from a nozzle, when
the flow is stopped, should be high enough to assure the shape fidelity of the construct.
Thus, the shear-thinning behavior is analyzed in steady state conditions by measuring the
shear viscosity as a function of shear rate. A power-law type dependence (according to the
well-known Ostwald-de Waele power-law model) is usually registered for pseudoplastic
(non-Newtonian) fluids:

η (
.
γ) = k · .

γ
n−1 or σ = k · .

γ
n (5)

where k (Pa·sn) is the flow consistency index (the apparent viscosity for a shear rate of 1 s−1)
and n is the flow behavior index and it expresses the extent of shear-thinning during flow.

Usually, the n value is around 0.81 for entangled macromolecular systems [83] and it
was also reported for physical hydrogels [54]. When increasing shear stresses are applied,
high n values indicate a pronounced shear-thinning behavior, and the materials can be
easily extruded out of the nozzle [13]. High values of k and η are associated with the
hard extrusion of materials from the nozzle; at high shear rates, inhomogeneous flows
appear [84] and the nozzle output can be blocked [69,85]. The range of optimum values of
viscosity for 3D bioprinters (inkjet, extrusion-based, laser-assisted) is considered between
0.03 Pa·s and over 6 × 104 Pa·s [40].

However, the simple power-law dependence can only be used to describe an ink flow
across the shear rate range to which the parameters k and n were fitted. Equations (2)–(4)
are more adequate for shear-dependent fluids. The values of ηo and η∞ are characteristics of
each formulation, being correlated with the physicochemical characteristics of the material.

2.2. Yield Stress

Generally, a plastic material presents very small or no deformation when it is subjected
to low shear stress. Above a certain level of shear stress, denoted as the yield stress, it
starts to flow, a behavior known as visco-plastic [71]. Thus, the yield stress (σo) represents
the minimum value of the shear stress (or external force) necessary to be applied in order
to break down the structure at rest and initiate the material’s flow (Figure 3). Its value is
associated with the mechanical strength of the material [86] and it can be used to evaluate
the ability of the bioinks to be extruded [67,87]. Thus, for σ > σo, the material presents
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fluid-like behavior and, for σ < σo, it preserves the characteristics of a soft solid matter.
The better results for yield stress are obtained by presetting the shear force in controlled
shear stress tests and they are influenced by the shear history and the used evaluation
methods [88].
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Figure 3. Schematic presentation of flow curves for various types of fluids.

The experimental data obtained in continuous shear experiments usually fit into yield
stress models (Bingham, Hershel–Bulkley, Casson, etc.) [68]. Usually, the Herschel–Bulkley
(HB) model is used to describe the flow behavior of inks [32,77]:

σ = σo + k · .
γ

n (6)

- For σ < σo, the material exhibits solid-like properties;
- For σ > σo and n < 1, the flow behavior is shear-thinning;
- For σ > σo and n > 1, the flow behavior is the shear-thickening.

Thus, the low-index n illustrates the pattern of the velocity profile for a non-Newtonian
flow. With increasing shear rate, the consistency index (k) decreases during shear-thinning
and increases for shear-thickening behavior. The parameters k, n, and σo, which describe
the shear flow behavior of non-Newtonian fluids depend on their composition and temper-
ature [32].

Some papers reported the existence of two σo values: a dynamic yield stress corre-
sponding to the destruction of the material structure and a static yield stress that maintains
the structure in the disturbed state [89–92]. Better results for yield stress are obtained by
presetting the shear force in controlled shear stress tests. They are influenced by the shear
history and the used evaluation methods [88]. Experimentally, the yield stress point of a
material can be determined from rheological data using different protocols:

- During continuous shear experiments through a double logarithmic plot of shear
viscosity as a function of shear stress obtained in shear stress-controlled or shear
rate-controlled conditions, the stress ramp tests can be applied for all types of soft gels
(for example Figure 4a [93]), but not for hard gels when wall slip appears. Stress can
be plotted as a function of viscosity, deformation, or shear rate [2,19,94]. Herschel–
Bulkley, Bingham, or Casson fits can be applied to the experimental data to determine
σo [2,69,95];

- During oscillatory shear experiments in amplitude sweeps tests, following the vis-
coelastic moduli as a function of shear stress (as for example Figure 4b). This method
is considered very accurate [69,96], however, the interpretation of the experimental
data must be carefully done [2,95,97].

Figure 4 shows the rheological data for hybrid hydrogels composed of polymers
and proteins [93,98], both methods presented above were used. In continuous shear
experiments, yield stress was determined as the shear stress at which the viscosity suddenly
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changes its dependence on shear stress (Figure 4a). In amplitude sweep tests, the σo value
was obtained from the intersection of the linear plot obtained at low shear stress (in the
linear range of viscoelasticity) and those obtained with the experimental data at higher
shear stress values (in the nonlinear range of viscoelasticity), as shown in Figure 4b. The
last method overestimates the yield stress [2].
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Figure 4. Illustration of yield stress determination from (a) the dependence of shear viscosity as
a function of shear stress determined in continuous shear conditions [93]; (b) from the variation
of the viscoelastic moduli as a function of shear stress in amplitude sweep tests. Two hydrogels
were considered for this discussion: sample 1 contains 30% BSA and 70% polymer and sample 2 is
composed of 70% BSA and 30% polymer. The polymer is a mixture containing 25% pullulan and 75%
PVA [98].

In the literature, the evaluation of yield stress in amplitude sweep tests takes into
consideration different values from the curves of G′ and G′′ as a function of shear stress or
strain [2,95]. Three possible points can be highlighted (Figure 4b):

- σL—as the end point of the linear range of viscoelasticity which is characterized by
linear dependences of G′ and G′′ on σ;

- σo—a cross of the dependences obtained in the linear and nonlinear ranges of vis-
coelasticity. Above σo, the deformation is very high, and the material is not able
to maintain the original structure, starting to show a liquid-like behavior instead of
solid-like behavior. This evaluation of σo seems to be adequate for various materials.
Usually, for a very fast evaluation, the shear stress corresponding to a 1% decrease of
G′ is considered as yield stress value, σo. For very soft samples where the signal is
weak, a deviation of 10% of G′ is taken into account as a yield point [97];

- σi—flow point, as the cross-over point where G′ and G′′ intersect; it is easy to deter-
mine experimentally the exact value of σi. Above σi, G′′ > G′, and the material starts
to flow.

Even some authors consider either σL, σo, or σi as yield stress (a more detailed
discussion can be found in references [2,95]), all empirical methods take into account that
the yield stress is located at the beginning of flow (starting point of non-Newtonian curve)
or in the transition zone between linear and nonlinear viscoelastic regime.

A material standing with large deformations before yielding can be considered more
stretchable. In this manner, the strain at the yield point may be seen as a measure of the
flexibility of materials. When a material is submitted to a stress that is lower than the yield
stress, it only undergoes elastic (reversible) strain, without permanent deformation.

Above the threshold value described by σo, the plastic behavior appears, characterized
by irreversible deformation of the material. Tomato ketchup is usually considered an
example of a material with yield stress; at rest, the structure is as a network without flow;
when the bottle with ketchup is shaken very strongly, the structure is destroyed and ketchup
flows easily.
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2.3. Viscoelastic Characterization

Viscosity and yield stress obtained in continuous shear conditions are essential param-
eters, however, in order to ensure the printability of materials, oscillatory shear experiments
are needed to evaluate the viscoelasticity of inks [67,99,100].

The viscoelasticity represents a time-dependent intrinsic characteristic of polymeric
materials, bioinks, or extracellular matrix frameworks [19,20,64,101,102]. Viscoelasticity
includes two components of deformation: a viscous component, i.e., a gradual deformation
induced by the external forces and a continuous reorganization of the fluid molecules, and
an elastic component, i.e., after removing the external force the material tends to reestablish
the initial structure and shape.

During oscillatory tests, a preset shear strain (γ) and the resulting shear stress (σ) are
sinusoidal functions with a time lag, δ, between the preset parameter and the registered
response. For ideal elastic material, δ = 0◦, γ, and σ are in phase; for an ideal viscous
material, δ = 90◦; between these two extreme behaviors, there exists a variety of viscoelastic
behaviors [71,88].

The oscillatory shear experiments carried out in the linear range of viscoelasticity give
access to the viscoelastic moduli, G′ and G′′, which are the real and imaginary components
of the complex shear modulus, G* [83]:

G ∗ (ω) = G′(ω) + i G′′ (ω) (7)

G* denotes the material’s overall stiffness under oscillatory shear deformations, as the
ratio between the shear stress amplitude, σA, and strain amplitude, γA:

G∗ = σA
γA

(8)

or

G ∗ (ω) = iω
∞∫

0

e−iω t G(t) dt (9)

G′ represents the elastic (storage) modulus, being a measure of energy stored (and
then returned) during a cycle of oscillation:

G′(ω) = ω

∞∫
0

sin(ωt)G(t)dt (10)

G′′ is defined as the viscous (loss) modulus, giving information on energy dissipation
during a cycle of oscillation:

G′′ (ω) = ω

∞∫
0

cos(ωt)G(t)dt (11)

where G(t) is the shear relaxation modulus, ω—oscillation frequency, and t—time.
Thus, the elastic (G′) and viscous (G′′) moduli of bioinks are usually analyzed in the

linear range of viscoelasticity (Figure 5a) by following their dependence on oscillation
frequency, ω (Figure 5b). The loss tangent (tan δ = G′′/G′) offers information on the
viscoelasticity degree of the bioink: tan δ < 1 suggests predominantly elastic (solid-like)
behavior and tan δ > 1 is obtained for preponderantly viscous fluids (liquid-like behavior).
In practical applications, when tan δ = 100, a fluid can be considered ideally viscous, and
for tan δ = 1/100 (0.01) the material presents ideally elastic behavior [88]. For bioprinting,
the gel-like structures are of interest and they present G′ and G′′ almost constant, G′ > G′′

(Figure 5b), and tan δ reaches values from 0.01 to 0.1. Within the linear viscoelastic range,
the stable network bioinks exhibit constant strength regardless of the oscillation frequency
range [69].
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Figure 5. Typical curves showing the evolution of the viscoelastic parameters for gels during an
amplitude sweep test (a) or frequency sweep test (b); typical curves for viscous fluids (uncrosslinked
system) (c). Weak physical or chemical networks, as well as self-assembling fluids, present intermedi-
ate behaviors between the gels (b) and viscous fluids (c).

High values of σo and G′ ensure the shape fidelity, minimize the ink deformation once
it is deposited, and thus avoid the structure collapsing after 3D printing [67,99,100,103,104].

Identification of the linear viscoelastic regime allows to obtain yield strain—the mini-
mum value of deformation before starting the flow as a viscous fluid (G′′ > G′). The yield
strain is correlated with the values required to be selected for the force pushing the syringe
piston or pressure for pneumatic 3D printing [35].

Uncrosslinked material behaves as a viscous fluid (Figure 5c): at low ω values, the
viscous character is predominant (G′′ > G′); for the high-frequency range, the elastic
behavior prevails. The oscillation frequency at the crossover point, for which G′ = G′′,
allows for determining the longest relaxation time, λ = 1/ωi (expressed in seconds). Usually,
for the region of low ω values (ω < ωi), the slopes are determined. For Maxwellian
behavior, G′ scales asω2 and G′′ asω1. At high frequencies (ω >ωi), the elastic modulus
becomes independent onω and its curve shows a plateau value. A decrease in the slope of
viscoelastic moduli dependences suggests self-assembling phenomena and small values of
these slopes are characteristic of weak gels or low crosslinked networks.

In oscillatory tests, the complex viscosity, |η∗|, is determined as the ratio between the
complex shear modulus: |η∗| = G ∗ /ω. For materials with supramolecular structure, such
as the gels, the so-called Cox–Merz rule [105] is not valid, i.e., the values of the complex
viscosity, η*(ω), obtained in oscillatory shear conditions, are higher as compared with those
of shear viscosity, η(

.
γ), obtained in the rotational test.

Long-term stability at rest could be evaluated from the analysis of the elastic modulus,
G′, as a function of time for ω = 0.01 rad/s. Even the curve shows a small variation at
the beginning of the test and G′ should be constant as a function of time. For a faster
assessment, higherω values can be used between 0.1 rad/s and 1 rad/s [69].

Another possibility to evaluate the viscoelasticity of materials is the analysis of creep
and recovery experiments allowing differentiation between solid-like, liquid-like, and
viscoelastic behavior (Figure 6).
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Figure 6. Creep and recovery curves illustrating typical behaviors of (a) elastic solids and viscoelastic
fluids and (b) pure viscous fluids.
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During creep experiments, a constant shear stress, σ, is applied and it determines a
time-dependent deformation which is composed of an instantaneous elastic deformation
(γE1), a delayed elastic deformation (γE2) followed by nonlinear deformation, γ(t), that
becomes linear when the stationary flow is reached (usually a few tenths of deformation
units [54,106]). When the shear stress is removed (at time t = t1, Figure 6), the recovery starts.
Firstly, the instantaneous elastic contribution (γE1) is recovered. Then, time-dependent
elastic deformation (γE2) is progressively recovered and it is due to delayed dynamic
processes in which the macromolecules are involved. Finally, the viscous contribution
is registered (γV) (viscoelastic fluid, Figure 6a). The strain recovery in time depends on
the material’s viscosity, chains conformation, connectivity, and ability to return to the
equilibrium conformation. Recently, it was shown that the gels with strong intermolecular
interactions behave as elastic solids for shear stress values below the yield stress (γV = 0)
and as viscoelastic fluids above σo (with all three components of the deformation: γE1,
γE2, and γV) [54,107]. The energy of deformation is stored during the creep test and when
the shear stress is removed, it is completely recovered and used for structure reformation
(elastic solid, Figure 6a).

For ideal viscous materials (Figure 6b), during the creep test, there is a continuous in-
crease of deformation in time and, after removing the load, the deformed state is maintained.
For such systems, the deformation is permanent and there is no elastic recovery (γE1 = 0
and γE2 = 0), the deformation energy is dissipated as heat and the viscous component
dominates the rheological behavior. Such materials are not of interest as inks.

The gels with viscoelastic behavior similar to those presented in Figure 6a are suitable
for 3D printing and they must have high strain recovery (RS):

RS(%) =
γe − γt1

γt1

·100 (12)

where γe is the final strain at equilibrium in the recovery step and γt1
represents the strain

at time t1, when the load is removed and the recovery starts.
The creep (shear) compliance, J(t) [1/Pa], represents the reciprocal value of the shear

modulus and it can be calculated as:

J(t) = γ(t)/σ (13)

The limiting value of J(t) for t→ 0 is known as instantaneous shear compliance, Jo,
and allows the determination of the instantaneous shear modulus, Go, which is an indicator
of the material’s deformability [69]:

limt→0 J(t) = Jo = γo/σ = 1/Go (14)

The instantaneous deformation, γo [%], is determined from the intersection of the
straight line at the beginning of the creep curve with the y-axis.

In addition, creep tests provide access to rheological information in the long-time
domain of the relaxation spectra (low-frequency range) that is not accessible using the
standard frequency sweep test (0.1 rad/s <ω < 100 rad/s) [108]. Also, these tests can be
used for very low shear rates to determine ηo value, which allows evaluating the average
molecular weight of polymers [69]. The slope at the end of the creep domain (steady-state
flow), ∆γ/∆t, is used to calculate the Newtonian viscosity:

ηo = σo / (∆γ/∆t) (15)

The experimental data obtained through the creep and recovery tests can be fitted
using Burgers model with four parameters (consisting of two elements, Maxwell and
Kelvin–Voigt, combined in series) [69,88,109–111]:

J(t) = Jo + J1[1− exp(−t/λr)] + t/ηo, for t ≤ t1 (16)
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J(t) = J1[exp((t1 − t)/λr))− exp(−t/λr)] + t1/ηo, for t > t1 (17)

where J1 [1/Pa] is the compliance associated with the Kelvin–Voigt element, ηo [Pa·s] is
the viscosity of the Maxwell dashpot, λr [s] is the retardation time associated with the
Kelvin–Voigt element and t1 is the time when the stress was removed.

Burgers model uses a relatively large number of parameters (four parameters in
Equations (16) and (17)), and it was not always able to describe the two steps of creep and
recovery for inks [111,112].

Another approach is fractional calculus [113], which is able to predict the complete
viscoelastic behavior. The application of the fractional calculus allowed a reasonable fitting
of both the creep and recovery steps [111,112]:

J(t) =
γ(t)
σ

=
1

Γ(α + 1)
[
λ1 tα H(t)− λ2(t− t1)

α H(t− t1)
]

(18)

The parameter, α, provides an indication of the degree of elasticity and varies between
0 and 1: α = 0 for ideal elastic materials and α = 1 for ideal viscous behavior; λ1 and λ2 are
the inverse of the elastic modulus during creep and recovery steps, respectively; Γ is the
gamma function and H(t) is the step function defined as:

H(t) =
{

0, i f t ≤ t1
1, i f t > t1

(19)

Equation (18) can be written as:

J(t) =
γ(t)
σ

=


1

Γ(α+1)λ1 tα, t ≤ t1

1
Γ(α+1) [λ1 tα − λ2(t− t1)α], t > t1

(20)

For materials that exhibit high deformation during the creep test, the applied shear
stress influences the structure at rest, and they may have a high resistance during recovery,
thus λ1 > λ2. The analysis of the (λ1 − λ2) difference provides information on recovery
behavior: a large difference suggests a high degree of permanent deformation and signifi-
cant changes in the internal structure of the material; a small (λ1 − λ2) difference is desired
for printable gels indicating that they present a high ability to recover their structure after
deformation [111,112]. The recovery time, trecovery, is also analyzed and it should not exceed
several tens of minutes.

2.4. Recovery Time and Self-Healing Ability

An ideal printable material presents high thixotropy or self-healing ability, the vis-
cosity (or other parameters) becomes low quickly when high shear forces are applied and
it recovers very quickly the initial value after removing the load. The self-healing ability
is given by the presence of dynamic reversible bonds in a polymer network. They are
destroyed when high forces are applied and then reestablished in time. From a structural
point of view, it is important that the intermolecular interactions that ensure the junction
points recover rapidly and to a high extent after printing. The self-healing ability is given
by the presence of dynamic reversible bonds in a network which are destroyed when high
forces are applied and then reestablished in time. Such reversible bonds could be nonco-
valent physical bonds (such as hydrogen bonding, hydrophobic, host–guest, electrostatic
interactions, π–π stacking, and metal coordination) [114,115] or covalent bonds (such as
disulfide or imine bonds, boronic esters, reversible diarylbisbenzo-furanone crosslinking,
and urea–urethane exchange) [115–119].

Thixotropic properties and recovery times can be investigated during the steady shear
or oscillatory regime of deformation [88]. The stable microstructure of a material at rest is
perturbed by shear forces. Then, when the shear forces are ceased, the material structure
tends to recover the equilibrium state. The ability to restore the original structure is known
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as self-healing and the time required for reaching again the equilibrium state or the initial
structure from the rest state is considered the recovery or self-healing time [2,77,120]. The
material recovery in time is known as thixotropy [121–123] and it is evidenced by the
reversible time-dependent structural changes after a deformation cycle which includes
low—high—low levels of deformation. These changes are reflected by the evolution in
time of the shear viscosity (η(

.
γ)) or viscoelastic parameters (G′, G′′, and tan δ) [123–125]. A

sample that was in equilibrium at rest is submitted to shear flow from low to high shear
rates, then the shear rate is decreased and the recovery of viscosity in time is followed [123].
Similarly, the viscoelastic parameters are monitored in a third test interval thixotropy
(Figure 7) [125]. However, the recovery time should be optimized since it influences cell
incorporation. Instantaneous recovery induces a heterogeneous cell distribution, very long
recovery time determines cell sedimentation, heterogeneous distribution, or poor shape
retention [126]. The optimal recovery time should be neither too long nor too short.
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Figure 7. (a) Illustration of a thixotropy test demonstrating the ability of hydrogels to rapidly recover
their structure after successive cycles of deformations. The deformation of 1% belongs to the linear
viscoelastic regime and the high level of deformation (γ = 100%) is in a nonlinear viscoelastic regime.
(b) Third test interval thixotropy demonstrates the ability of structural regeneration after successive
cycles of low (simulating the rest state) and high deformations, γ2 (the sample was submitted to
increasing levels of deformation during each cycle). Adapted from [125].

Tailorable properties can be induced by multiple crosslinking strategies using com-
bined methods [2,13,127–133], the incorporation of dynamic reversible bonds [134,135],
or the design of hybrid polymer–peptide materials [54,93] that allow different relaxation
mechanisms during bioprinting and ensure the shape fidelity. Recommended recovery
times for bioprinting are on the order of tens of seconds (Figures 6a and 7), for example
above 85 % recovery of elastic modulus or viscosity within up to 30 s [77,125,136,137]. After
extrusion and recovery, the bioink must resist external forces such as the weight of stacking
layers that could determine the deformation and poor shape fidelity. The elastic behavior
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of materials determines the structure recovery after the load was released. During deforma-
tion, the material is able to store energy by expanding or stretching the structural entities
involved in the supramolecular assembly, without destroying the structural integrity of the
material. The stored energy is the driving force to restore the initial structure and to assure
the shape fidelity of the material after the applied load was released [88].

The thixotropy test can be corroborated with other rheological behaviors, such as
full elastic recovery typical to solids (Figure 6a) in creep and recovery tests or viscosity
loops at increasing and decreasing shear rates in continuous shear experiments [54]. The
self-healing concept is now frequently used to characterize bioinks and it refers to the
ability of materials to regenerate their structure after being submitted to deformation. For
example, Figure 8 illustrates the porous/macroscopic structure and rheological behavior of
a self-healing 3D printing ink with dynamic covalent bonds (boronic ester), composed of 5%
(wt.) poly(N,N-dimethylacrylamide-3-acrylamidophenilboronic), 2.5% (wt.) poly(glycerol
monomethacrylate), and 0.5% (wt.) poly(dopamine) coated chemically reduced graphene
oxide [115]. Two pieces of this sample (marked as a and b in Figure 8) could heal in about
20 s, and the recovered gel showed good resistance to external forces.
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Figure 8. Self-healing and shear-thinning behavior for a 3D printing gel with dynamic covalent
bonds and a porous structure. Adapted with permission from ref. [115] copyright 2019 American
Chemical Society.

3. Rheology as a Prerequisite for Bioink Formulation and Optimization

The selection of materials for the ink formulation is based on their intrinsic properties
that influence printability. Tailored bioinks were obtained using composite biomaterials
with synergetic properties and improved printability. When multicomponent systems
are used to design complex inks, physical interactions, self-assembling phenomena, tem-
perature, or shear-induced phase transitions, or even possible chemical reactions, must
be taken into account. For each ink formulation, a preliminary rheological investigation
of the materials is a necessary step [77] since the appropriate viscoelastic properties are
crucial for optimum printability. There are many studies evaluating the performances of
different bioinks—a mixture of cells and biomaterials—and many attempts to improve
printability. Various materials were investigated as bioinks and they are presented in com-
prehensive reviews (see for example [3–9,11,12,14,138]). Suitable 3D inks were obtained
using polysaccharides and proteins [139–142], methacrylic polymers, vinyl derivatives, and
glycols [44,143–145], and ceramics or cement [6,39,95,146–148]. In many cases, the inks are
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multicomponent systems (smart polymers in solution or gel state), and the optimization of
printable formulations is very often done by rheology [35,36,47,56,149–155].

Polysaccharides are largely used for bioprinting [4,12,139]. Among the most commonly
used polysaccharides for bioinks design are found chitosan [156–158], alginate [159,160],
hyaluronic acid [133,161–165], pullulan [166], agarose [167,168], and carrageenan–xanthan–
starch [56]. Furthermore, proteins [37] and peptides [169] are incorporated into bioinks. The
most frequently used are collagen [170–172], gelatin and its derivatives [87,154,173–175],
fibrinogen in soft or hard tissues [176–178], egg white [179], etc. In addition, due to superior
mechanical properties, synthetic polymers are potential candidates for bioprinting, such
as polycaprolactone [180], poly(ethylene glycol) [144,145], and polyurethanes [54,181,182].
Additives are also used for changing the hydrogels’ rheology, for example nanofibril-
lated cellulose is added to alginate gels in order to improve the shape fidelity of the
bioink [183–186].

Rheological behavior, with respect to physicochemical composition, temperature, and
aging, gives the possibility of designing versatile viscoelastic ink by determining the critical
parameters of the inks and avoiding undesirable effects. The polymer structure (molecular
weight, concentration, supramacromolecular architecture, etc.) presents a high importance
in conferring the required rheological parameters of inks.

The rheology of polymer-based dopant-source inks is decisive for obtaining defect-
free droplets [187,188]. Determination of the shear viscosity is not enough for the jetting
performances, short timescale parameters are also necessary to evaluate the stability of ink
droplets. Thus, the jetting behavior was correlated with the elastic modulus determined at
5 kHz (using a special device, a piezoelectric axial vibrator rheometer) [188]. The presence
of air bubbles is detrimental to inkjet printing as they can prevent ink ejection from the
nozzles [187].

Gelatin methacrylate (GelMA)-based bioinks are frequently used for extrusion bio-
printing, presenting suitable rheological and photo-crosslinking characteristics [44,189–192].
Low concentrations (<5% w/v) of GelMA are favorable for cells, but such systems are not
printable. In printable constructs, usually GelMA is mechanically stabilized through a com-
bination with polysaccharides [192,193], proteins [194], or synthetic polymers [44,49,78].
For precise and controlled deposition, low viscosity and thus low-resistance to flow bioinks
are preferred, being able to promote the migration and growth of the encapsulated cells.
Viable and functional bioinks were obtained from GelMA and alginate [193] or gelatin [194]
(Figure 9).
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Figure 9. The rheological behavior of GelMA-based hydrogels: 5% GelMA, 5% GelMA/8% gelatin,
and 30% GelMA. (a) shear viscosity as a function of shear rate at 15 ◦C (open symbol) and 25 ◦C (full
symbol); (b) viscoelastic moduli as a function of temperature: G′ (full symbol) and G′′ (open symbol).
Adapted with permission from ref. [194] Copyright 2018 Americal Chemical Society.
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Nanocellulose-based materials are very attractive for 3D bioprinting due to the unique
characteristics of cellulose, namely printability, mechanical strength, biocompatibility,
biodegradability, and high cell viability [195–198]. At high shear rates, nanocellulose chains
in suspension align and form shear-thinning or shear-thickening thixotropic systems with
rapid recovery [199–201].

The addition of nanocellulose into the bioink formulations improved considerably
the printability [35,196,198]. Extrusion of tripeptide–alginate–cellulose bioinks resulted
in stable 3D structures for cellulose concentrations greater than 10%, and only above 40%
cellulose content the inks were able to stack multiple printed layers, without fusing [35]
(Figure 10). The bioinks’ optimization was done on the basis of rheological measurements.
The inks presented shear-thinning behavior with viscosity around 103 Pa·s at a shear rate
of 1 s−1, and the printed scaffolds recovered their structural integrity after the printing
process. The yield strain was 45%, whereas the elastic modulus (G′) reached values between
2.2 × 104 and 2.4 × 104 Pa, and tan δ = 0.3 (in the linear range of viscoelasticity).

Molecules 2023, 28, x FOR PEER REVIEW 18 of 30 
 

 

The addition of nanocellulose into the bioink formulations improved considerably 

the printability [35,196,198][35,196,198]. Extrusion of tripeptide–alginate–cellulose bio-

inks resulted in stable 3D structures for cellulose concentrations greater than 10%, and 

only above 40% cellulose content the inks were able to stack multiple printed layers, 

without fusing [35] (Figure 10). The bioinks’ optimization was done on the basis of rhe-

ological measurements. The inks presented shear-thinning behavior with viscosity 

around 103 Pa·s at a shear rate of 1 s−1, and the printed scaffolds recovered their structural 

integrity after the printing process. The yield strain was 45%, whereas the elastic modu-

lus (G’) reached values between 2.2 × 104 and 2.4 × 104 Pa, and tan = 0.3 (in the linear 

range of viscoelasticity). 

 

Figure 10. (a) Illustration of 3D printed scaffold of tripeptide–alginate–cellulose bioink; (b–e) SEM 

images: (b) top view; (c) higher magnification of the area marched in (b); (d) single mat filament (e) 

cross-section of the filament [35]. 

The printability of a variety of multicomponent food inks was extensively investi-

gated through different rheological tests [36,56,60,67,202–

205][36,56,60,67,202,203,204,205]. It was shown that the addition of Konjac improves the 

mechanical and rheological behavior of agar gels and makes the extrusion smoother [202]. 

For the food industry, research was oriented to improving the quality of life through ef-

ficient use of the existing food materials but also to design healthy and customized foods 

with various sensory properties for personalized nutrition [67,206][67,206]. By adding 

xanthan gum into κ-carrageenan ink, the printability and shape retention performances 

were improved; the gelation temperature and time, viscosity, yield stress, and viscoelas-

tic moduli increased, whereas the shear-thinning behavior was enhanced [56]. 

Haider et al. [207] reported recently a smart thermosensitive 3D network formed by 

a diblock copolymer of approximately 100 repeating units containing hydrophobic 

poly(2-N-propyl-2-oxazine) (pPrOzi) and hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx), 

suitable for extrusion-based 3D printing (Figure 11). The rheological investigations evi-

denced the gelation as a function of temperature and concentration, the viscoelastic and 

shear-thinning behavior, as well as the ability of rapid structure recovery, the hydrogel 

being suitable for tissue engineering applications (cell viability ≈97%). 

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Figure 10. (a) Illustration of 3D printed scaffold of tripeptide–alginate–cellulose bioink; (b–e) SEM
images: (b) top view; (c) higher magnification of the area marched in (b); (d) single mat filament
(e) cross-section of the filament [35].

The printability of a variety of multicomponent food inks was extensively investigated
through different rheological tests [36,56,60,67,202–205]. It was shown that the addition
of Konjac improves the mechanical and rheological behavior of agar gels and makes the
extrusion smoother [202]. For the food industry, research was oriented to improving the
quality of life through efficient use of the existing food materials but also to design healthy
and customized foods with various sensory properties for personalized nutrition [67,206].
By adding xanthan gum into κ-carrageenan ink, the printability and shape retention
performances were improved; the gelation temperature and time, viscosity, yield stress,
and viscoelastic moduli increased, whereas the shear-thinning behavior was enhanced [56].

Haider et al. [207] reported recently a smart thermosensitive 3D network formed by a
diblock copolymer of approximately 100 repeating units containing hydrophobic poly(2-
N-propyl-2-oxazine) (pPrOzi) and hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx), suitable
for extrusion-based 3D printing (Figure 11). The rheological investigations evidenced the
gelation as a function of temperature and concentration, the viscoelastic and shear-thinning
behavior, as well as the ability of rapid structure recovery, the hydrogel being suitable for
tissue engineering applications (cell viability ≈ 97%).
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Figure 11. (a) The 3D printability of 25 wt.% pPrOzi100-b-pEtOx100 based hydrogel with various
forms such as serpentine line, a star, and a double layer grid (pressure; 90 kPa, speed 2 mm/s) (left to
right). (b) The 3D printability of 25 wt.% pPrOzi100-b-pEtOx100 based hydrogel with 1 wt.% Laponite
XLG (12 layered star) (pressure; 120 kPa, speed 1 mm/s) [207].

3D printing is considered a versatile approach, suitable for achieving pharmaceuticals
from polymeric matrices of well-defined porosity, geometry, and size for controlled-release
dosage forms [208–210].

According to the high number of published papers (for example: [1–8,14,39,41,44,
48,67,78,131,157,159,163–167,170,176,179,182,183,193,207–212]), there is a huge interest for
printing techniques to design products of various shapes and functionalities for a wide area
of applications, from regenerative medicine and tissue engineering, foods, pharmaceuticals,
biotechnology, biomedical sensing and imaging, body robotics, electronics, and biosensors
to civil constructions, aeronautics, and space missions. Practically, 3D printing, known also
as additive manufacturing, can be regarded as a revolutionary and economic strategy to
produce materials.

3D bioprinting is a versatile approach that allows for the creation of tailored archi-
tectures capable of mimicking the extracellular matrix. The biological materials can be
deposited layer-by-layer in adequate conditions to generate customized tissue scaffolds
or organs. Thus, 3D bioconstructs provide the matrix able to promote cell attachment,
proliferation, and differentiation for the regeneration or replacement of functional tissues
or organs [213].

Systematic rheological investigation of bioinks and analysis of the viscoelastic parame-
ters is mandatory for the optimization of 3D bioprinting in order to ensure high quality,
shape fidelity, and cell viability of the 3D constructs.

4. Concluding Remarks

Due to their network structure and properties similar to natural tissues, various
gels are suitable biomaterials for 3D bioprinting, providing a viable environment for cell
adhesion, growth, and proliferation. From a rheological point of view, the most appropriate
bioinks behave as solid-like fluids, with yield stress, shear-thinning, and self-healing ability
(Scheme 1). Controlling the viscoelastic features of the biomaterials represents the key
factor in bioprinting [16,19,21,28–30,33,56,62,66,87,99,147,171].

Each printing technique requires specific rheological properties which allow for the
obtaining of performances in optimum conditions. As for example, a highly viscous mate-
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rial is difficult to be processed. Due to the high stiffness, it requires high forces and thus it
is not an optimum environment for cell culture. A weakly structured ink flows easily, but it
cannot ensure the material’s shape fidelity or the required mechanical properties. The flow
and viscoelastic characteristics govern the printability and these considerations are taken
into account for the a bioink design [19,35,37,55,56,67,77,115,188,194,214,215]. The rheolog-
ical tests presented in this paper provide crucial information concerning the printability of
the materials during different stages of printing, according to Scheme 1. In addition, the
viscoelastic parameters are very useful for assessing the printability of stimuli-responsive
materials (pH, temperature, electrical or magnetic field, light, biomolecules, mechanical
forces, etc.) [9,67,216]. As for example, the temperatures of interest are correlated with the
conditions of storage, use, or those developed during bioprinting. All these rheological
features need to be analyzed for bioink optimization. Tables 1 and 2 of [67] or Tables I and II
of [217] offers examples of such analysis for bioinks used for 3D printing (for applications in
the food industry [67] or materials for tissue engineering and regenerative medicine [217]).

Mechanical characterization is necessary to assess the shape stability of the printed structures
in the conditions of their use. The required mechanical load is correlated with the rheological
characteristics of the ink [214] and with the nozzle geometry [218]. Mainly, the inks’ functional-
ity depends on their printability [16,19,21,28,30,33,37,57,66,87,99,147,172,181,186,188,203,219,220]
and shape fidelity [53,54,67,183–186,221,222]. For bioinks, the assessment of biocompatibil-
ity is also required [21,22,195,196,223]. They should be biodegradable [182,216,224], able to
provide 3D tissue-engineered constructs with the appropriate biological environments and
biomechanical functions of the native tissue within the body (bone, skin, osteochondral or
cardiac reconstruction, etc.) [224]; also, they create space, being the replaced by new tissue
created in time [17,213,223]. Every ink has specific requirements for its viscosity which
depend on the printing process. The printability and shape fidelity of a printed scaffold is
improved by controlling the inks’ viscosity, which should be carefully optimized for each
application [15,215,225]. As an example, if the applied extrusion pressure is too high for a
viscous bioink, this will damage the living cells. Quantitative rheological measurements on
the ink are required for correct printability assessments under various conditions similar to
those existing in the targeted use. The shear-thinning behavior is a must for the bioinks
used in extrusion-based printing to allow the flow through the needle [15,120,226]. Fur-
thermore, upon material deposition on a substrate, the plotted shape must be preserved.
Thus, it is very important to ensure the recovery of the ink structure after the flow cessation
and long-term shape fidelity. The ink’s biocompatibility will enable a long-term culture of
the encapsulated cells. The cell viability tests should be performed for a minimum of two
weeks following the proliferation and protein synthesis assays, and it should be checked if
the printing process affects the cellular function or phenotype [23].

The final characteristics of the printed material may correspond with the functions for
which the construct was designed [23,78,227]. Very often, the inks fulfill only in part these
demands since it is difficult to incorporate these characteristics all together in a perfect
bioink structure. In some cases, a sacrificial mold (for example pluronics or gelatin) is
used to create two hydrogels’ 3D architecture (the second network may be, for example,
UV crosslinked methacrylate) able to fill any arbitrary geometry. Then one component
is removed (pluronic is washed below its gelation temperature) and a stable matrix with
controllable pore size, that favors cell attachment, is obtained [15,228,229]. Standards are
also required for sustainable advancement in bioprinting. They need to cover all activities,
from laboratory procedures to the implementation of biological processes [23].

The modeling of rheological behavior is necessary to develop general models for all
materials or categories of materials used for bioprinting. Different approaches are currently
used, from empirical models to phenomenological ones [32,34,84,111–113,122,217,230].

In conclusion, due to the complexity and diversity of printable materials, it is difficult
to incorporate in one single rheological approach a complete viscoelastic characterization
of bioinks, to define absolute criteria or clear limits of rheological parameters. The experi-
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mental measurements in various flow conditions are necessary for the optimization of the
materials and for selecting the parameters that influence the printability of each system.
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