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Abstract: Platycodon grandiflorum (PG) is a traditional Chinese medicine with a long history, but its
active compounds have not been reported. In this study, novel carbon dots (CDs), PG-based CDs
(PGC-CDs), were discovered and prepared from PG via calcinations and characterized by trans-
mission electron microscopy; high-resolution transmission electron microscopy; X-ray diffraction,
fluorescence, ultraviolet-visible, and Fourier-transform infrared spectrometers; X-ray photoelectron
spectroscopy; and high-performance liquid chromatography. In addition, the safety and antioxidant
activity of PGC-CDs was evaluated by RAW264.7 cells and LO2 cells. The therapeutic effects of
PGC-CDs on hyperbilirubinemia and liver protection were evaluated in a bilirubin-induced hyper-
bilirubinemia mice model. The experiment confirmed that the diameter range of PGC-CDs was
from 1.2 to 3.6 nm. PGC-CDs had no toxicity to RAW264.7 cells and LO2 cells at a concentration of
3.91 to 1000 µg/mL and could reduce the oxidative damage of cells caused by H2O2. PGC-CDs could
inhibit the increase levels of bilirubin and inflammation factors and increase the levels of antioxidants
and survival rate, demonstrating that PGC-CDs possessed anti-inflammatory and anti-oxidation
activity. PGC-CDs may reduce the content of bilirubin, so as to reduce a series of pathological lesions
caused by bilirubin, which has potential in treating hyperbilirubinemia and preventing liver damage
induced by hyperbilirubinemia.
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1. Introduction

As a Chinese herbal medicine with the homology of medicine and food, the medicinal
Platycodon grandiflorum (PG) taken from the root of the plant PG was first recorded in
Shennong Herbal Scripture and widely used in China. As is known to all, the way Chinese
herbal medicine is processed affects its efficacy in most cases, and its chemical composition
and pharmacological action may change with the change of processing method. Likewise,
the medicinal constituents of PG can be affected by the processing temperature and time [1].
As a matter of fact, as early as more than 1000 years ago, the earliest record of charring
PG in China was found in Zhou Hou Bei Ji Fang, which was the first book recording the
processing method of burning crushed PG and treating coma with PG Carbonisata (PGC).
Later, many studies have found that the medical use of PGC was expanded, and it can be
used to treat inflammation, metabolic diseases and so on. However, the material basis and
mechanism of PG after carbonization are still unclear.

In recent years, carbon dots (CDs) with unique advantages, such as water solubility,
good biocompatibility and photochemical stability, and low toxicity or non-toxicity, have
attracted great attention in many fields, especially in the biomedical field. Due to the
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many values of CDs in the biomedical field, the biological activities of CDs have been
gradually explored and reported, such as antibacterial [2], antiviral [3], anti-tumor [4], anti-
oxidation [5], anti-allergy [6] and immunomodulatory [7] activities. These good biological
activities suggest the broad prospects of CDs in the field of biopharmaceutics. As a natural
medicine, Chinese herb has a wide range of development and research value. At present,
many researchers have extracted CDs from Chinese herbal medicine by calcinations and
demonstrated the fascinating bioactivity, such as the hypoglycemic effect of Jiaosanxian-
derived CDs [8], the kidney protection effect of Phellodendri Chinensis Cortex Carbonisata
CDs [9], the brain protection effect of Semen pruni persicae and Carthamus tinctorius
L.-derived CDs [10], the thermoregulation effect of Lonicerae japonicae Flos Carbonisatas
CDs [11], the anti-inflammatory effect of Mulberry silkworm cocoon CDs [12], the anti-frost
effect of Artemisiae Argyi Folium Carbonisata CDs [13], the anti-anxiety and calming effect
of cigarette mainstream smoke CDs [14] and so on. Although CDs have been extracted
from many Chinese herbs so far and proved to have considerable biological activity, there
is still no research to prove whether the CDs derived from PG (PGC-CDs) have biological
activity, so it is worth further exploration and research.

Hyperbilirubinemia is characterized by bilirubin beyond the normal range, which is
harmful to the human body and has high morbidity and mortality [15]. There are many
etiological factors, such as genetic factors, liver factors, gastrointestinal factors and so
on [16]; the specific pathogenesis is not clear, which also increases the difficulty of its
treatment. Remarkably, a high concentration of free bilirubin can easily pass through
the blood–brain barrier and enter the brain, causing excitotoxicity, promoting the release
of free radicals and pro-inflammatory factors, leading to plasma membrane disturbance,
oxidative stress, neuritis and other pathological changes, making nerve cells denature and
causing apoptosis, resulting in nerve dysfunction eventually [17–19]. It may also leave
neurological sequelae that can seriously affect quality of life and, more critically, cause death
from nuclear jaundice [20–23]. Currently, the treatment methods for hyperbilirubinemia
mainly include anti-inflammatory or bilirubin-lowering drugs, phototherapy and blood
exchange. However, most patients do not respond well to these therapies or experience
adverse reactions. Therefore, the improvement of phototherapy and blood exchange
therapy, as well as the search for new effective drugs, have become the focus of current
research. Studies have shown that excessive bilirubin deposited in the body can also cause
liver dysfunction [24]. The liver is an important organ for transforming and excreting
bilirubin. Studies have shown that patients with severe bilirubin elevations may need a
liver transplant [25]. In order to minimize the harm of hyperbilirubinemia to the human
body, it is necessary to establish an overall plan to protect the potentially damaged liver and
other important organs while preventing and treating nerve damage, such as bilirubinemia,
in clinical practice. In recent years, with the development of nanotechnology, fluorescence
probes [26] and kits [27] made by CDs were used for bilirubin detection, realizing the first
application of CDs in the field of hyperbilirubinemia. However, it has been observed that
no drugs have been developed to treat hyperbilirubinemia by taking advantage of CDs,
and this study tries to break through the gap in this field.

In this study, we first obtained PGC-CDs from carbonized PG and characterized it,
naming it as PGC-CDs. In addition, the safety and antioxidation activity of PGC-CDs was
evaluated in cells. It was found that the serum bilirubin level could be decreased by increas-
ing the MRP2 content in the liver of rats [28]. Therefore, by using the bilirubin-induced
hyperbilirubinemia mice model, the therapeutic effect of PGC-CDs on hyperbilirubinemia
and the preventive effect on liver damage induced by hyperbilirubinemia was evaluated,
and the mechanism was discussed.

2. Results
2.1. Characterization of PGC-CDs

Transmission electron microscope (TEM) images (Figure 1A) exhibited PGC-CDs
had monodispersed and uniform distribution, with particle sizes ranging from 1.2 nm to
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3.6 nm (Figure 1A); the average diameter was 2.3 nm, and the lattice spacing was 0.228 nm
(Figure 1D). X-ray Diffraction (XRD) patterns (Figure 1B) showed that there was an obvious
diffraction peak at 2θ = 22,765◦, which was attributed to the fact that the PGC-CDs consisted
of randomly arranged amorphous carbons [29].
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As can be seen from the fluorescence spectrum in Figure 1C, the maximum excitation
wavelength and emission wavelength of PGC-CDs were 321 nm and 432 nm, respectively.
The ultraviolet-visible (UV-Vis) spectrum of PGC-CDs (Figure 1E) showed that there was a
slight absorption peak at 218 nm that may be caused by the π–π* transition of the conjugated
C=C bond.

As can be seen from Figure 1F, the characteristic peaks of PGC-CDs in the Fourier
transform infrared (FTIR) spectrum were distributed at 3440, 2920, 2851, 1629, 1384, 1057
and 556 cm−1. The characteristic peak at 3440 cm−1 suggested the possibility of the
stretching vibration of the –O–H bond or –N–H bond, while the absorption peaks at 2920
and 2851 cm−1 were caused by the stretching vibration of the C–H bond of CH2 on PGC-
CDs’ surface, and the characteristic peak at 1629 cm−1 was generally considered to be
caused by a C=O bond [30]. The stretching vibration peak of C–N was usually located at the
characteristic peak of 1384 cm−1, and the characteristic peak of 1057 cm−1 was attributed
to the stretching vibration of the C–O–C bond [31–33].

The element composition and surface-active group of PGC-CDs were obtained by
observing X-ray photoelectron spectroscopy (XPS). As can be seen from Figure 2A, there
were 3 obvious peaks at 284.76, 531.83 and 399.36 eV, confirming the presence of C (75.04%),
O (22.12%) and N (2.84%). The spectrum of C1 (Figure 2B) was divided into 3 peaks at
284.77, 286.32 and 288.34 eV, corresponding to C–OH, C–O and C=O. The O1s spectrum
(Figure 2C) had 3 peaks at 531.66, 533.02 and 533.95 eV, which belong to C–O, C=O and
H–O–H, respectively. Furthermore, Figure 2D showed 2 peaks of the N1s spectrum at
399.79 and 400.39 eV, which were attributed to C–N–C and N–H, respectively. The data of
XPS determined that rich functional groups, such as carboxyl, hydroxyl and amine groups,
existed on the surface of the PGC-CDs, which was similar to the results of FTIR.

The high-performance liquid chromatogram (HPLC) results of the PGC and PGC-
CDs aqueous solutions are shown in Figure 3. PGC contained abundant small molecules
(Figure 3A). No obvious characteristic peak was found in the HPLC chromatogram of PGC-
CDs (Figure 3B), indicating that no active small-molecule compounds were identified in



Molecules 2023, 28, 2720 4 of 19

the PGC-CDs, so the influence of small-molecule compounds on subsequent experimental
results can be excluded.
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2.2. Cellular Toxicity

The safety of drugs is a prerequisite and necessary condition for their clinical applica-
tion. In this study, the safety of PGC-CDs at different concentrations (1000~3.91 µg/mL)
was evaluated by CCK-8 assay. As shown in Figure 4A, when PGC-CDs were not given,
the cell viability was calculated to be 100% according to the cell viability formula, which
was the normal viability of RAW264.7 cells. As a reference, when the value of cell viability
was less than 100%, this indicated that it could inhibit cell proliferation; when the value
of cell viability was equal to or more than 100%, this indicated that PGC-CDs did not
inhibit cell growth and even promoted cell proliferation. The results showed that PGC-CDs
at different concentrations did not inhibit the cell viability of RAW264.7 cells. On the
contrary, PGC-CDs showed the ability to improve cell viability at a concentration from 1000
to 3.91 µg/mL, which proved that PGC-CDs had no cytotoxicity at the concentration of
<1000 µg/mL. PGC-CDs did not affect the cell viability of LO2 cells at a concentration from
1000 to 3.91 µg/mL (Figure 4B). The safety of PGC-CDs provided a basis for subsequent
studies on its biological activity.
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Figure 4. Effects of PGC-CDs on the viability and oxidative stress of cells. (A) Effects of various
concentrations of PGC-CDs on RAW264.7 cells viability. (B) Effects of various concentrations of PGC-
CDs on LO2 cells viability. (C) Dose-dependent effects of H2O2 on the viability of RAW264.7 cells.
Effects of PGC-CDs on SOD (D) and MDA I in RAW264.7 cells with H2O2-induced model. They were
divided into control group (Control), model group (Model), and 250 (250), 125 (125) and 62.5 (62.5)
µg/mL of PGC-CDs groups, n = 6. Compared with the control group, ## p < 0.01. Compared with the
model group, ** p < 0.01.

2.3. Effect of PGC-CDs on H2O2-Induced RAW264.7 Cells

H2O2 can directly enter the cell membrane and cause oxidative damage [34]. Different
concentrations of H2O2 have certain inhibitory effects on the growth of RAW264.7 cells, and
the cell viability decreased with the increase of H2O2 concentration (Figure 4C). Compared
with the control group, different concentrations of H2O2 significantly inhibited the survival
of RAW264.7 cells (p < 0.05). When treated with 0.4 mmol/L H2O2, the survival rate of
RAW264.7 cells reached 50.36%. Therefore, 0.4 mmol/L H2O2 was used to establish the
cellular oxidative stress model. According to Figure 4A, PGC-CDs at 250, 125 and 62.5 µg/mL
were selected to study its effect on H2O2-induced RAW264.7 cells. SOD and MDA are
commonly used to evaluate the antioxidant effect. As shown in Figure 4D, compared with
the model group (26.58 ± 3.45 U/mgprot), 250, 125 and 62.5 µg/mL of PGC-CDs could
significantly increase the SOD activity (45.15 ± 5.47, 60.78 ± 6.61 and 57.14 ± 9.11 U/mgprot,
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p < 0.01). As shown in Figure 4E, compared with the control group (2 ± 0.45 nmol/mgprot),
the content of MDA in the cells of the model group (17.78 ± 2.12 nmol/mgprot) increased
significantly (p < 0.01). A total of 250, 125 and 62.5 µg/mL of PGC-CDs (12.68 ± 1.63,
8.98 ± 2.60 and 11.16 ± 3.15 nmol/mgprot, p < 0.01) significantly inhibited the increase of the
content of MDA in cells caused by H2O2. These results indicated that PGC-CDs reduced the
oxidative damage of cells and showed an antioxidant effect in cells.

2.4. Effects of PGC-CDs on General Condition

Before modeling, mice in each group were in a good mental state, with stable breathing
and normal activities. All mice were sensitive to external stimulation and did not have
abnormal behaviors, such as tremor and prone position. After intraperitoneal injection of
bilirubin for 4 h, the mice in the bilirubin group (Bil group) showed poor spirit, almost
no activity and obvious tremor in limbs. Eight hours after modeling, the mice had slow
breathing, dark yellow urine, decreased response to external stimuli and body fibrillation.
Twelve hours after modeling, the mice lay prostrate with lusterless hair. Twenty-four
hours after modeling, part of their skin began to yellow, and the stool volume of the mice
decreased. Forty-eight hours after modeling, the hair of the mice was visibly messy and
dull. Compared with the Bil group, the general condition of the mice in the PGC-CDs group
was significantly improved. The body weight (Figure 5A) and food intake (Figure 5B) of
the mice within 1 week after modeling were observed and counted, and the survival rate
(Figure 5C) was calculated. Compared with the Bil group, the body weight, food intake
and survival rate of the mice in the PGC-CDs groups were significantly increased, and the
differences were statistically significant.
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and high (H), medium (M) and low (L) dose PGC-CDs groups (5.80, 2.90 and 1.45 mg/kg), n = 8.
Compared with the control group, ## p < 0.01, # p < 0.05. Compared with the Bil group, ** p < 0.01,
* p < 0.05.

2.5. Effects of PGC-CDs on Neurological Function

The neurobehavioral function score is often positively correlated with nerve injury
and can assist in evaluating the efficacy of therapeutic drugs. Tarlov scores have been
widely used after being improved by scholars [35]. In many studies [36,37], they were
used to evaluate the neurological function of animals by observing the motor status of
the limbs. The Tarlov scores of mice in the control group, Bil group and PGC-CDs groups
from 4 h to 48 h after modeling are shown in Table 1. Before the establishment of the
model, the activities of mice in each group were normal, and the Tarlov scores were 4. After
intraperitoneal injection of bilirubin, the Tarlov score of the Bil group was significantly
lower than that of the control group, and it was the lowest score at 24 h after modeling,
indicating that the nerves of hyperbilirubinemia mice were damaged to a certain extent. It
is worth noting that the Tarlov scores of the PGC-CDs groups were significantly higher than
that of the Bil group, indicating that PGC-CDs can effectively improve hyperbilirubinemia.
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Table 1. Tarlov scores of mice in each group at 4 h, 8 h, 12 h, 24 h and 48 h after modeling (Mean ± SD).

Group
Tarlov Score

4 h 8 h 12 h 24 h 48 h

Control 4 ± 0 4 ± 0 4 ± 0 4 ± 0 4 ± 0
Bil 1.33 ± 0.52 ## 1.17 ± 0.41 ## 1.50 ± 0.84 ## 1 ± 0 ## 1 ± 0 ##

H 2.67 ± 0.52 * 2.33 ± 1.03 3.17 ± 0.75 * 2.33 ± 1.21 3.33 ± 1.21 **
M 3.67 ± 0.52 ** 3.83 ± 0.41 ** 3.67 ± 0.52 ** 3.83 ± 0.41 ** 3.83 ± 0.41 **
L 3.33 ± 1.21 3.67 ± 0.82 ** 3.67 ± 0.82 * 3.17 ± 1.17 3.80 ± 0.45 **

Compared with the control group, ## p < 0.01. Compared with the Bil group, ** p < 0.01, * p < 0.05.

2.6. Effects of PGC-CDs on Biochemical Levels

The protective effect of PGC-CDs on liver damage induced by hyperbilirubinemia
was evaluated by detecting levels of DBIL, IBIL, TBIL, TBA, ALT and AST. At 24 h af-
ter the establishment of the hyperbilirubinemia model, the levels of DBIL (Figure 6A),
IBIL (Figure 6B) and TBIL (Figure 6C) in the Bil group (2.13 ± 0.49, 6.61 ± 1.07 and
8.75 ± 1.52 µmol/L, p < 0.01) were significantly higher than those in the control group
(0.37 ± 0.11, 1.15 ± 0.30 and 1.52 ± 0.27 µmol/L). It indicated that the model of hyper-
bilirubinemia was established successfully. Compared with the Bil group, the level of DBIL
in the high-, medium- and low-dose PGC-CDs groups were 2.12 ± 0.39, 1.71 ± 0.49 and
1.73 ± 0.17 µmol/L, respectively. Compared with the Bil group, the level of IBIL in the
low-dose PGC-CDs (5.16 ± 0.45 µmol/L, p < 0.05) was significantly decreased; how-
ever, there was no significant reduction in IBIL in the high-dose and medium-dose PGC-
CDs (6.25 ± 0.94 and 5.73 ± 1.42 µmol/L). The TBIL of the low-dose PGC-CDs group
(6.89 ± 0.58 µmol/L, p < 0.05) was significantly lower than that of the Bil group, and the
high- and medium-dose PGC-CDs groups (8.38 ± 1.27 and 7.44 ± 1.88 µmol/L) did not
significantly reduce the levels of TBIL. Figure 6D shows the effect of PGC-CDs on the TBA
of liver damage induced by hyperbilirubinemia, which was significantly higher in the Bil
group (13.50 ± 2.22 µmol/L, p < 0.01) than the control group (1.80 ± 0.45 µmol/L). In sharp
contrast, the high-, medium- and low-dose PGC-CDs groups (8.23 ± 2.91, 6.12 ± 1.93 and
7.41 ± 1.71 µmol/L, p < 0.01) significantly reduced levels of TBA, and PGC-CDs signif-
icantly alleviated TBA elevation. Levels of ALT and AST can reflect the extent of liver
damage. ALT (Figure 6E) and AST (Figure 6F) in the Bil group (579.83 ± 164.10 and
827.65 ± 178.66 U/L, p < 0.01) were significantly higher than those in the control group
(29.86 ± 4.45 and 105.77 ± 10.57 U/L), indicating that the model caused serious liver
damage. It is worth noting that the elevated ALT was significantly inhibited in the high
and medium doses of the PGC-CDs groups (245.17 ± 98.34 and 218.50 ± 57.39 U/L,
p < 0.05), but the low-dose PGC-CDs group (467.33 ± 289.02 U/L) showed no significant
decrease. The increase of AST was significantly inhibited in the high- and medium-dose
PGC-CDs groups (444.17 ± 145.06 and 488.27 ± 122.28 U/L, p < 0.05), and the level of AST
was also decreased in the low-dose group (658.43 ± 342.65 U/L), but the difference was
not statistically significant. The results indicated that PGC-CDs had the ability to prevent
liver damage induced by hyperbilirubinemia.

2.7. Effects of PGC-CDs on Inflammatory Factors

Levels of IL-6 and TNF-α reflect the inflammatory state of the body. To investigate the
effect of PGC-CDs on inflammatory factors of liver damage induced by hyperbilirubinemia,
we tested the content of IL-6 and TNF-α. As shown in Figure 7A, B, the levels of IL-6 and
TNF-α in the Bil group (23.09 ± 2.34 pg/mL, p < 0.01, 121.14 ± 5.08 ng/L, p < 0.05) were
visibly higher than those in the control group (13.39 ± 4.17 pg/mL, 79.62 ± 18.61 ng/L),
indicating that liver damage induced by hyperbilirubinemia may stimulate the production
of inflammatory factors. Figure 7A shows that the high-, medium- and low-dose PGC-CDs
groups (17.79 ± 2.10, 17.43 ± 1.52 and 16.20 ± 1.20 pg/mL, p < 0.01) could significantly
inhibit the increase of IL-6. As shown in Figure 7B, the medium-dose PGC-CDs reduced
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the sharply elevated level of TNF-α (98.68 ± 4.50 ng/L, p < 0.01), while both the high- and
low-dose groups (111.73 ± 3.60 and 108.46 ± 5.40 ng/L, p < 0.05) could reduce the increase
of TNF-α. The results suggested that PGC-CDs can improve inflammation by lowering
levels of inflammatory factors.
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Figure 6. Effects of PGC-CDs on biochemical levels in serum of mice with hyperbilirubinemia model.
(A) Direct bilirubin (DBIL); (B) Indirect bilirubin (IBIL); (C) Total bilirubin (TBIL); (D)Total bile acid
(TBA); I Alanine aminotransferase (ALT); (F) Aspartate aminotransferase (AST). They were divided
into control group (Control), Bil group (Bil), and high (H), medium (M) and low (L) dose PGC-CDs
groups (5.80, 2.90 and 1.45 mg/kg), n = 6. Compared with the control group, ## p < 0.01. Compared
with the Bil group, ** p < 0.01, * p < 0.05.

2.8. Effects of PGC-CDs on SOD, MDA, GSH and CAT Levels in Liver Tissue

SOD can remove free radicals and reduce the burden on the liver. As shown in
Figure 7C, SOD activity in the Bil group (225.78 ± 83.31 U/mgprot, p < 0.01) was signifi-
cantly lower than that in the control group (486.86 ± 124.07 U/mgprot). Compared with
the Bil group, SOD activity in the medium- and low-dose PGC-CDs groups (472.82 ± 70.57
and 407.25 ± 53.35 U/mgprot, p < 0.01) was significantly increased, while SOD activity in
the high-dose group (302.71 ± 100.76 U/mgprot) was also increased. The level of MDA
reflects the function of the liver. As shown in Figure 7D, compared with the control group
(2.19 ± 0.74 nmol/mgprot), the level of MDA in the Bil group (5.04 ± 0.94 nmol/mgprot,
p < 0.01) was significantly increased, indicating that the liver function was seriously dam-
aged. Levels of MDA in all doses of the PGC-CDs groups (3.04 ± 1.08, 2.56 ± 1.47 and
2.61 ± 0.76 nmol/mgprot, p < 0.01) were lower than that in the Bil group. GSH is directly
or indirectly involved in many life activities of the body and has a protective effect on
the body. As shown in Figure 7E, changes in the level of GSH are shown. Compared
with the control group (102.71 ± 31.18 µmol/gprot), the level of GSH in the Bil group
(25.80 ± 10.09 µmol/gprot, p < 0.01) was significantly decreased, while the increase of GSH
in the high-dose PGC-CDs group (43.70 ± 26.98 µmol/gprot) was not significant, showing
no statistical significance. Levels of GSH in the medium- and low-dose PGC-CDs groups
(77.64 ± 24.18 and 74.65 ± 9.07 µmol/gprot, p < 0.01) notably increased the level of GSH.



Molecules 2023, 28, 2720 9 of 19

CAT can eliminate harmful hydrogen peroxide and protect the liver. As shown in Figure 7F,
the level of CAT in the Bil group (6.38 ± 2.17 U/mgprot, p < 0.01) was significantly reduced
compared with the control group (61.04 ± 12.26 U/mgprot). Notably, levels of CAT were
significantly increased in all doses of the PGC-CDs groups (21.46 ± 6.78, 58.48 ± 8.80 and
51.57 ± 9.65 U/mgprot, p < 0.01). These results suggested that PGC-CDs had a good effect
on antioxidants and preventing liver damage induced by hyperbilirubinemia.
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Figure 7. Effects of PGC-CDs on inflammatory factors and oxidative stress in mice. Effects of PGC-CDs
on inflammatory factors interleukin-6 (IL-6) (A) and tumor necrosis factor-α (TNF-α) (B) in serum
of mice with hyperbilirubinemia model. Effects of PGC-CDs on superoxide dismutase (SOD) (C),
malondialdehyde (MDA) (D), glutathione (GSH) I and catalase (CAT) (F) in liver tissues of mice with
hyperbilirubinemia model. They were divided into control group (Control), Bil group (Bil), and high
(H), medium (M) and low (L) dose PGC-CDs groups (5.80, 2.90 and 1.45 mg/kg), n = 6. Compared
with the control group, ## p < 0.01, # p < 0.05. Compared with the Bil group, ** p < 0.01, * p < 0.05.

These studies have shown that PGC-CDs played an extremely important role in
improving general conditions, reducing the level of bilirubin, enhancing liver function,
resisting inflammation and oxidative damage, and improving the survival rate.

2.9. Histopathological Analysis

Hematoxylin and eosin (H&E) staining was used to observe the effect of PGC-CDs on
liver tissue (Figure 8). No abnormal pathological changes were found in the liver tissue of
the control group. In the Bil group, under the low-power (Figure 8A) and medium-power
microscope (Figure 8B), there was severely damaged liver tissue and a disordered hepatic
cord, with a large amount of cholestasis and infiltration of inflammatory cells. Significantly
enlarged and binucleated hepatocytes, or even necrotic hepatocytes, were seen with the
high-power microscope (Figure 8C). In contrast, the pathological damage was significantly
improved in the PGC-CDs groups, cholestasis and inflammatory cell infiltration were
reduced apparently, and the shape and size of liver cells were significantly improved.
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Figure 8. Effects of PGC-CDs on liver pathology in mice. Histological changes of liver obtained from
mice of control group (Control), Bil group (Bil), and high (H), medium (M), and low (L) doses of
PGC-CDs (5.80, 2.90 and 1.45 mg/kg) in (A) magnification at 50×, (B) magnification at 100× and
(C) magnification at 200×.

3. Discussion

In traditional Chinese medicine, PGC is a kind of traditional medicine prepared by
calcinations processing. Compared with PG, PGC contains fewer volatile components, and
its pharmacological activity has changed accordingly. However, the material basis of its
efficacy is not clear at present. Some scholars have found that the compounds contained in
herbal medicines in the process of high-temperature processing can be transformed into
CDs through dehydration, calcinations and carbonization, which have different biological
activities from the original medicinal materials [38–40]. Therefore, in this study, we success-
fully obtained PGC-CDs from PGC and discovered PGC-CDs were approximately spherical,
with an average particle size of 2.3 nm, and mainly contained C, O and N elements, as
well as carboxyl, hydroxyl, amino and other functional groups, indicating that PGC-CDs
have better water solubility, more uniform particle size and new pharmacological activity
different from the original medicinal compound. In addition, its safety was verified by
cytotoxicity assay. Meanwhile, the antioxidant activity of PGC-CDs in cells was confirmed.
The main elements of plant part-derived CDs are C, O, H and N atoms, which present in var-
ious functional groups and provide good water solubility [41,42]. In particular, doping of
elements such as N would give different activity to CDs [12,41]. CDs prepared by different
methods, reaction conditions and raw materials often have different properties; CrCi-CDs
performs a neuroprotective effect on cerebral ischemia and reperfusion injury [41]. CDs
synthesized from soybean milk not only have good photoluminescence properties, but
also good electrocatalytic activity for oxygen reduction reactions [43]. Differences between
PGC-CDs and other CDs were observed in terms of their structural features, optical charac-
teristics and different biological activities [10,38,40,44], which may be due to the fact that
their precursors consist of different compounds [45], and the carbon backbone condensed
upon heating differs from the surface moieties.

The etiology of hyperbilirubinemia Is very complex; It is one of the most common
diseases of newborns, and it also occurs in people in various conditions, such as hepatitis,
cirrhosis, sepsis, liver transplantation and heart surgery [46]. Studies [46–52] have shown
that hyperbilirubinemia and liver injury interact with each other. When liver clearance
is low [53], hyperbilirubinemia may occur. Meanwhile, patients with hyperbilirubinemia
may need liver transplantation [54,55]. Therefore, liver protection is particularly important
in the treatment of hyperbilirubinemia. Clinically, the late manifestations of neonatal
hyperbilirubinemia are developmental delay, cognitive impairment and behavioral and
psychiatric disorders [56]. Studies have reported that neonates with inadequate energy
intake or significant weight loss were at high risk for severe hyperbilirubinemia, while
adequate feeding and a low percentage of weight loss significantly reduced the risk of
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jaundice [57,58]. In addition, comprehensive nursing could promote the physical and
mental development of neonates with hyperbilirubinemia [59]. Therefore, continuous mon-
itoring of body weight, food intake and neurological function and effective interventions
are important for the prevention and treatment of hyperbilirubinemia. It was found that
PGC-CDs had a good inhibitory effect on hyperbilirubinemia by studying the body weight,
food intake, survival rate and neurological function of mice. This might be related to the
electrostatic adsorption of CDs [60] and the anti-inflammatory and antioxidant effects of
PGC-CDs, which could reduce the damage of excessive bilirubin on mice and improve
their general state.

The treatment of hyperbilirubinemia should solve the state of high levels of bilirubin
as soon as possible and reduce the content of bilirubin, which is toxic to humans. In this
study, the serum biochemical results of DBIL, IBIL and TBIL increased sharply, indicating
the successful establishment of a hyperbilirubinemia model. PGC-CDs can significantly
reduce the level of serum bilirubin and TBA, which may be related to the electrostatic
adsorption of CDs [60]. In addition, as a 1.2 nm to 3.6 nm macromolecular component
with abundant surface groups, PGC-CDs may have a similar effect to macromolecular
albumin and can bind to bilirubin, thus reducing the pathological damage of bilirubin
to the liver. Moreover, the therapeutic effects of medium and low doses of PGC-CDs
were better than those of high doses of PGC-CDs, which may be due to the fact that the
particle density of PGC-CDs in a high dose was large, the aggregation and sedimentation
were increased, the dispersion and fluidity were poor, and the activity was reduced [61].
Patients with hyperbilirubinemia often have higher levels of ALT and AST, and it is always
necessary to require hepatoprotective therapy. ALT and AST increased sharply in the Bil
group, indicating that hyperbilirubinemia can cause liver damage. It was a remarkable fact
that all doses of PGC-CDs reduced the levels of ALT and AST, suggesting that PGC-CDs
had a protective effect on liver damage induced by hyperbilirubinemia. This result was
particularly important because the protective effect of PGC-CDs on the liver was achieved
without affecting the levels of total bilirubin in plasma. Of course, pathological observations
further confirmed this result.

Some chronic inflammation can cause hyperbilirubinemia [62,63]. The use of anti-
inflammatory drugs can effectively reduce neonatal hyperbilirubinemia mortality and
avoid nerve damage [20]. Levels of inflammatory factors in the Bil group increased sharply,
suggesting that mice were in a state of severe inflammation, which inevitably affected
liver function and bilirubin metabolism. It was noteworthy that all doses of PGC-CDs
could significantly reduce levels of IL-6 and TNF-α, showing great anti-inflammatory
activity. Inflammation caused by elevated bilirubin increases mortality from the disease.
The results of this study suggested that PGC-CDs could inhibit levels of IL-6 and TNF-α in
the treatment of hyperbilirubinemia and its associated liver damage, thereby reducing the
mortality of hyperbilirubinemia. From the mechanism analysis, PGC-CDs could inhibit
inflammation, increase hepatic blood flow, reduce edema, inhibit vascular activity and
stabilize the cell membrane and lysosomal membrane. It could also reduce tissue edema,
reduce the damage of tissue cell structure and inhibit the release of inflammatory factors,
so as to enhance the body’s tolerance of hyperbilirubinemia.

In fact, oxidative stress reactions are common in the presence of excessive biliru-
bin [64,65]. Levels of SOD, GSH, CAT and other substances involved in scavenging
reactive oxygen free radicals in the body decrease, leading to the increase of the content
of active oxygen free radicals in the body, which in turn cause oxidative stress and
damage. The level of MDA usually increases when liver cells or tissues are damaged.
The results of this study showed that the activity of SOD, the level of GSH and CAT of
mice in the Bil group, which decreased significantly, while the level of MDA increased,
suggesting that the liver suffered more serious oxidative stress after hyperbilirubinemia.
After PGC-CDs pre-treatment and SOD activity, the level of GSH and CAT increased
obviously, while the level of MDA decreased significantly, indicating that PGC-CDs
could effectively improve the antioxidant capacity of the body. From the mechanism
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analysis, PGC-CDs could antagonize the excitotoxic response of glutamate to hepato-
cytes, could restore the reduced antioxidant enzymes in red blood cells to the normal
level and played a protective role. At the same time, they could reduce the generation
of reactive oxygen species and reduce the function of mitochondrial overload, so as to
exert antioxidant effect.

The hyperbilirubinemia model Induced by the direct Injection of bilirubin Is a stable,
economical and simple model [49]. This study provided a reference for the establishment
of a liver damage model induced by hyperbilirubinemia. More importantly, this study
revealed that lowering bilirubin levels and controlling inflammation and oxidative stress
may be a potential strategy to reduce the harm of hyperbilirubinemia. However, this
study is only a preliminary exploration of the effects and mechanisms of PGC-CDs in the
treatment of hyperbilirubinemia and its induced liver damage, and further studies are
needed to clarify the deeper potential mechanisms of these effects.

4. Materials and Methods
4.1. Materials

PG was purchased from Beijing Qiancao Herbal Pieces Co., Ltd. (Beijing, China).
PGC-CDs were prepared in our laboratory, and bilirubin was purchased from Yuanye
Biotechnology Co., Ltd. (Shanghai, China). Other chemical reagents were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Beijing, China). Cell Counting Kit-8 (CCK-8)
was purchased from Dojindo Molecular Technology Co., Ltd. (Kumamoto, Japan). Mice
interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) enzyme-linked immunosorbent
assay (ELISA) kits were purchased from Kete Biology Co., Ltd. (Yancheng, Jiangsu, China).
Protein concentration kit was purchased from Solebo Technology Co., Ltd. (Beijing, China).
Malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and catalase
(CAT) detection kits were purchased from Jiangcheng Institute of Biological Engineering
(Nanjing, China). Deionized water (DW) was used throughout the experiment.

4.2. Animals

The experimental design and protocol were carried out in accordance with the ap-
proval of the Animal Experiment Ethics Committee of Beijing University of Chinese
Medicine, and the management of experimental animals followed the Regulations of
the People’s Republic of China on the Management of Laboratory Animals and other rele-
vant rules and regulations. Kunming male mice (body weight 30.0 ± 2.0 g) were purchased
from the Laboratory Animal Center, Si Peifu (Beijing, China). The feeding environment was
suitable, and the animals were kept at a temperature of 24.0 ± 1.0 ◦C, a relative humidity
of 55–65% and a 12 h light/12 h dark cycle, and allowed libitum feed and water. Twelve
hours before the hyperbilirubinemia model was established, all animals were fed no food
except water.

4.3. Preparation of PGC-CDs

The preparation process of PGC-CDs can be divided into carbonization, boiling and
purification (Figure 9). In total, 400 g of PG was weighed and placed in a clean and dry
crucible, then it was sealed with aluminum foil and put in a muffle furnace (TL0612, Beijing
Zhong Ke Aobo Technology Co., Ltd., Beijing, China) for calcinations. The temperature
process of the muffle furnace was as follows: the calcined temperature was increased to
70 ◦C within 5 min; after maintaining at 70 ◦C for 30 min, the temperature was increased
from 70 ◦C to 350 ◦C within 25 min, and maintained at 350 ◦C for 1 h. After the temperature
of the muffle furnace dropped to 40 ◦C, the PGC was further taken and crushed. Then
the PGC power was added to thirtyfold DW and boiled at 100 ◦C twice for 1 h, during
which a glass rod was used to stir evenly. The decoction was combined and filtered with an
0.22 µm microporous membrane, and the filtrate was collected and concentrated by a rotary
evaporator to obtain 1 g/mL PGC solution. The concentrated solution was transferred
into a dialysis membrane with a molecular weight cut-off of 1000 Da, and the dialysis



Molecules 2023, 28, 2720 13 of 19

membrane was placed in a beaker with DW for 7 days, during which the DW was replaced
every 4 h. When the liquid outside the dialysis membrane was transparent, the solution
was removed from the dialysis membrane and placed in a 4 ◦C refrigerator for future use.
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4.4. Characterization of PGC-CDs

TEM (Tecnai G220, FEI Co., Hillsboro, OR, USA) and HR-TEM (JEN-1230, Japan
Electron Optics Laboratory, Tokyo, Japan) were used to observe the morphology, particle
size distribution and lattice spacing of PGC-CDs [66]. XRD diffractometer (D8-Advanced,
Bruker AXS, Karlsruhe, Germany) was performed with Cu K-alpha radiation (wavelength
λ = 1.5418 Å) and used to analyze the crystal structure of PGC-CDs. The scanning range
was 5–90◦, and the scanning rate was 10◦/min. Optical properties of 0.5 g/mL of PGC-CDs
solution were detected by using fluorescence spectroscopy (F-4500, Tokyo, Japan) and
UV-Vis spectrophotometer (CECIL, Cambridge, UK). FTIR spectrometer (Thermo Fisher,
Fremont, CA, USA) was used to analyze the surface-group information of the PGC-CDs
solution. The spectral resolution was better than 0.25 cm−1, the number of scans per sample
was 64, and the scanning range was 4000–400 cm−1. The data were evaluated using Omnic
software. XPS (ESCALAB 250Xi, Thermo Fisher Scientific, Fremont, CA, USA) with a mono
X-ray source Al Kα excitation (1486.6 eV) was used to analyze the element composition
and surface-active group of PGC-CDs.

4.5. Fingerprint Analysis of PGC and PGC-CDs by High-Performance Liquid Chromatography

After pulverizing the PG and PGC-CDs, 200 mg of powder was accurately weighed and
added to 10 mL of methanol solution by ultrasonic treatment for 30 min. All solutions were
filtered by an 0.22 µm cellulose membrane before HPLC analysis. An Agilent series 1260
HPLC instrument (Agilent Technologies, Waldbronn, Germany) was used to detect PGC and
PGC-CDs. The chromatographic column of Ultimate C18 column (250 mm × 4.6 mm, 5 µm)
was selected. The mobile phase consisted of acetonitrile (A) and 0.1% phosphoric acid (B). The
gradient elution procedure was as follows: 10–20% A at 0–15 min; 20–35% A at 15–50 min;
35–75% A at 50–60 min; 75–80% A at 60–70 min. The flow rate of the mobile phase was
0.5 mL/min, the column temperature was 30 ◦C, the detection wavelength was 210 nm, and
the injection volume was 10 µL.
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4.6. Cytotoxicity Assessment: CCK-8 Assay

Drug safety is the primary consideration in the development of new drugs. The
CCK-8 assay was used to evaluate the cytotoxicity of PGC-CDs on RAW264.7 cells and LO2
cells [67]. RAW264.7 cells in Dulbecco’s modified Eagle’s medium (DMEM) containing 20%
fetal bovine serum were cultured in an incubator (37 ◦C, 5% CO2). After the cells were
counted, the cells were diluted to 1 × 105 cells/mL, and 100 µL were placed in the control
group and PGC-CDs groups of the 96-well plate. Next, 10 mL of phosphate-buffered saline
(PBS) was dropped around, and the cells were cultured for 24 h. Then, 100 µL of different
concentrations (1000, 500, 250, 125, 62.5, 31.25, 15.62, 7.81 and 3.91 µg/mL) of PGC-CDs
solution were added to each well, and the blank group and control group were to join the
same amount of DMEM. After the 96-well plate was washed with PBS for 3 times, 10 µL
CCK-8 reagent was added to each well for an additional 3 h of incubation. After 3 h, the
absorbance of each well at 450 nm was read using a microplate reader. The calculation
formula is as follows:

Cell viability(%) =
Aa − Ab
Ac − Ab

× 100

where Aa, Ab and Ac represent the absorbance of the PGC-CDs, blank and control
groups, respectively.

4.7. Evaluation of the Antioxidant Activity of PGC-CDs in Cells

The oxidative stress model of RAW264.7 cells induced by H2O2 was used to evaluate
the antioxidant activity of PGC-CDs in cells [68]. RAW264.7 cells were seeded into a 96-well
plate at a seeding density of at 2.0 × 105 cells per well and cultured in an incubator with
5% CO2 at 37 ◦C. Then, 100 µL of different concentrations (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8 and
1 mmol/L) of H2O2 solution were added to each well, respectively, and the same amount of
DMEM was added to the blank group and the control group. The cytotoxicity of H2O2 on
RAW264.7 cells for 24 h was evaluated by CCK-8 assay, and the optimal concentration of
H2O2-induced oxidative damage was selected. After the above screening, RAW264.7 cells
were cultured for 24 h. The treatment groups were pretreated with different concentrations
(250, 125 and 62.5 µg/mL) of PGC-CDs for 2 h, and the control group and the model group
were given the same amount of DMEM. After 2 h, the model group and PGC-CDs groups
were given 0.4 mmol/L H2O2, and the control group was given the same amount of DMEM
for 24 h. After 24 h, the SOD activity and contents of MDA in the cells were detected.

4.8. Bilirubin-Induced Hyperbilirubinemia Model and Drug Treatment

Based on previous studies [16,69], this study established the hyperbilirubinemia model
through intraperitoneal injection of bilirubin. Seventy mice were randomly divided into
5 groups, with 14 mice in each group: control group, Bil group, and PGC-CDs at high
(5.80 mg/kg), medium (2.90 mg/kg) and low (1.45 mg/kg) doses groups. Each group of
mice were subjected to intragastric administration of the corresponding drugs once a day
for 7 consecutive days. The PGC-CDs groups were given different concentrations of PGC-
CDs, while the animals in both the control and Bil groups were given normal saline. One
hour after the last intragastric administration, normal saline was intraperitoneally injected
into the mice in the control group, and bilirubin solution (150 mg/kg) was intraperitoneally
injected into the Bil group and PGC-CDs groups.

4.9. General Condition Observation

The general conditions of mice in each group before and after modeling were observed,
including spirit, respiration, skin color, hair, excreta and response to external stimulation.
Moreover, we recorded the body weight, food intake and number of dead mice in each
group before modeling and one week after modeling, and calculated the survival rate.
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4.10. Neurological Function Observation

According to the Tarlov scores [36,70], the neurological function of mice at different
time points before and after modeling was observed and recorded, and the neurological
function score was: 0 = no activity; 1 = can move slightly, but cannot stand; 2 = increased
activity frequency, but unable to stand on both feet; 3 = can walk a few steps or abnormal
gait, can stand; 4 = can walk and stand normally.

4.11. Biochemical Analysis

At 24 h after modeling, blood was collected from the orbit of mice and left standing
at 4 ◦C for 4 h; then, the serum was separated by centrifuge (1091× g, 10 min). Direct
bilirubin (DBIL), indirect bilirubin (IBIL), total bilirubin (TBIL), total bile acid (TBA), alanine
aminotransferase (ALT) and aspartate aminotransferase (AST) were determined by the
AU-480 automatic biochemical analyzer (Beckman Kurt Co., Ltd., Brea, CA, USA).

4.12. Detection of Inflammatory Factors and Markers of Oxidative Stress

After the mice were euthanized, their livers were removed and stored at −80 ◦C. A
total of 300 mg of liver tissues were added to 3 mL PBS (PH 7.4) in an ice bath, and the
samples were homogenized with a portable high-speed disperser (Ningbo Xinzhi Co., Ltd.,
Ningbo, China) for 2 min. The homogenate was centrifuged at 802× g for 10 min, and the
supernatant was recovered. The levels of IL-6 and TNF-α in serum were detected using
ELISA kits, and the levels of SOD (WST-1 method), MDA (TBA method), GSH (Microplate
method) and CAT (Visible light) in liver tissue were detected using special kits, according
to the manufacturer’s instructions.

4.13. Histopathological Analysis

100 mg of liver tissues of mice were excised and fixed with 8 mL of 4% paraformalde-
hyde solution for more than 48 h. Pathological changes in the liver of mice in each group
were observed by H&E staining.

4.14. Statistical Analysis

Statistical analysis of experimental data was performed using the Statistical Package
for Social Sciences (SPSS, version 20.0). Data results were presented as mean ± standard
deviation. Multiple comparisons were performed by one-way ANOVA, followed by the
LSD test and Tamhane’s test. p < 0.05 indicated that data had statistical difference, p < 0.01
was considered a statistically significant difference.

5. Conclusions

In summary, PGC-CDs, novel CDs, were prepared by calcinations from PG for the
first time. PGC-CDs have been shown to be effective in suppressing levels of inflammatory
factors and improving the body’s antioxidant function, demonstrating PGC-CDs may have
progressing potential for treating hyperbilirubinemia and preventing liver damage induced
by hyperbilirubinemia. This study provided a new idea for research on the material basis of
charcoal drugs and a broad prospect for the development of drugs for hyperbilirubinemia
and hepatoprotective drugs for hyperbilirubinemia. The present study is a preliminary
assessment of the therapeutic effects of PGC-CDs in hyperbilirubinemia. In the future, the
distribution of PGC-CDs in vivo after their interaction with bilirubin and their metabolism
using fluorescent labeling and other means are needed to explore their implied mechanisms
and biological activities. In addition, comparative studies of CDs from different sources in
terms of preparation, characterization and pharmacology to find better carbon sources and
preparation methods are the focus of our future research, which has important practical
significance and application value.
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PG Platycodon grandiflorum
CDs Carbon dots
PGC Platycodon grandiflorum carbonisata
PGC-CDs Platycodon grandiflorum-based carbon dots
TEM Transmission electron microscopy
HRTEM High-resolution transmission electron microscopy
XRD X-ray diffraction
UV-Vis Ultraviolet-visible
FTIR Fourier transform infrared
XPS X-ray photoelectron spectroscopy
HPLC High-performance liquid chromatogram
Bil group Bilirubin group
DBIL Direct bilirubin
IBIL Indirect bilirubin
TBIL Total bilirubin
TBA Total bile acid
ALT Alanine aminotransferase
AST Aspartate aminotransferase
IL-6 Interleukin-6
TNF-α Tumor necrosis factor-α
SOD Superoxide dismutase
MDA Malondialdehyde
GSH Glutathione
CAT Catalase
H&E Hematoxylin and eosin
DW Deionized water
DMEM Dulbecco’s modified Eagle’s medium
CCK-8 Cell counting kit-8
PBS Phosphate-buffered saline
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