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Abstract: Mass Spectrometry Imaging (MSI) has emerged as a powerful imaging technique for
the analysis of biological samples, providing valuable insights into the spatial distribution and
structural characterization of lipids. The advancements in high-resolution MSI have made it an
indispensable tool for single-cell or subcellular lipidomics. By preserving both intracellular and
intercellular information, MSI enables a comprehensive analysis of lipidomics in individual cells
and organelles. This enables researchers to delve deeper into the diversity of lipids within cells
and to understand the role of lipids in shaping cell behavior. In this review, we aim to provide a
comprehensive overview of recent advancements and future prospects of MSI for cellular/subcellular
lipidomics. By keeping abreast of the cutting-edge studies in this field, we will continue to push the
boundaries of the understanding of lipid metabolism and the impact of lipids on cellular behavior.

Keywords: mass spectrometry imaging; single-cell; organelle; lipidomics; data analysis; matrix-assisted
laser desorption ionization (MALDI); secondary ion mass spectrometry (SIMS); multimodal imaging;
deep learning

1. Introduction

The significance of cellular biology has skyrocketed in the realm of biological sciences,
particularly when it comes to analyzing cellular processes at a single-cell level, such as
determining cell fate, aging, differentiation, and proliferation [1]. Cells and organelles
are the fundamental units of life and play a crucial role in the functioning of biological
systems. A comprehensive understanding of the molecular and cellular components of
these systems is critical to advancing our knowledge of biology and medicine. Lipidomics
is an area of research that concentrates on the examination of lipids, a heterogeneous
collection of biomolecules that have a pivotal impact on numerous biological functions,
including energy storage [2,3], membrane structure and function [4–6], and signaling [7,8].
Therefore, understanding the lipidomics of individual cells can give us important infor-
mation about cell function and cellular signaling pathways. The single-cell approaches,
e.g., fluorescence-activated cell sorting (FACS), single-cell sequencing, and mass cytometry,
have been widely used. For the majority of cellular analyses, cells are typically cultured
within Petri dishes or as suspensions prepared from tissue samples and isolated before
being sent into instruments. However, isolating a single cell requires precise technical skills
and equipment, and any mistake in the process can lead to contamination or loss of cells.
In addition, the process of single-cell isolation is often low-yielding, making it challenging
to study large populations of cells. The inter-cell analysis is also hindered during isolation,
since the spatial distribution of the cells in the natural state is lost, especially when cells
are obtained from tissues and re-cultured. Hence, image-based cell profiling has emerged
as a high-throughput strategy for intracellular and intercellular analysis, enabling the
quantification of phenotypic variations within diverse cell populations, which are among
the various techniques used for exploring omics.
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Mass spectrometry imaging (MSI) has been developed as a powerful imaging tool for
analyzing biological samples at the molecular level [9]. It allows for the simultaneous mea-
surement of multiple molecular species within cells and organelles. For cellular analysis,
MSI could provide the two-dimensional or three-dimensional molecule information of cells
and organelles, such as dynamic profiles of secondary ion mass spectrometry (SIMS) [10].
Moreover, with the ability to accurately identify and analyze the lipid structures of individ-
ual cells, MSI is providing new information about the complexities of cellular signaling
and the regulation of cellular functions [11,12]. Despite recent advancements in MSI, MSI
for cellular/subcellular lipidomics has a long way to go to become mature. The primary
challenge in mass spectrometry imaging is the collection of spatial lipid information at
the cellular scale (i.e., the high spatial resolution), in addition to the processing of data to
enable subsequent single-cell lipidomics analysis. This review provides an overview of the
recent advancements and future prospects of MSI for cellular/subcellular lipidomics.

2. Single-Cell and Single-Organelle Lipidomics

Single-cell lipidomics is a rapidly growing field that aims to study the lipid composi-
tion of individual cells. The significance of single-cell lipidomics lies in its ability to shed
light on the biochemical processes occurring within cells and the vital role played by lipids
in these processes. In addition to its fundamental importance, single-cell lipidomics also has
numerous applications in the study of diseases and pathological conditions. For instance,
lipid peroxidation, a chemical reaction that occurs when lipids in the cell membrane are ox-
idized by free radicals, leading to the formation of highly reactive and potentially harmful
compounds known as lipid peroxidation products, has been implicated in several diseases
and conditions, including neurodegenerative diseases, cardiovascular disease, cancer, and
aging [13,14]. Furthermore, the lipid component has an impact on many human diseases,
such as Alzheimer’s and cancer. Understanding the mechanisms and consequences of
lipid peroxidation is therefore a critical area of research, with potential implications with
regard to the prevention and treatment of various diseases. This knowledge could aid in
the development of new therapies and drugs for these conditions. Furthermore, it has been
shown that there is significant heterogeneity in cell-to-cell lipids [15]. Different cell types,
subcellular structures, and physiological states can exhibit different lipid compositions
and distributions which have significant impacts on the normal functions of cells and the
development of diseases. In-depth studies of this heterogeneity may provide new insights
and strategies for preventing and treating relevant diseases. Additionally, investigating cell-
to-cell lipid heterogeneity can aid in the discovery of new drugs and therapeutic strategies
targeting the lipid metabolism. Hence, single-cell lipidomics offer a more comprehensive
understanding of the heterogeneity of cells within a tissue, while traditional lipidomics
methods analyze the lipid composition of a cell population. By analyzing the lipid compo-
sition of individual cells, researchers can gain a deeper understanding of the diversity of
metabolism within a tissue and the role of lipids in regulating cell behavior.

Lipids also play a key role in the functioning of organelles, which are subcellular
structures that perform specific functions within the cell. The main organelles found in
these cells include the mitochondria, nucleus, Golgi apparatus, endosomes (E), endoplasmic
reticulum, lysosomes (LE), and peroxisomes. The study of organelle lipidomics, which
involves the analysis and characterization of lipids in specific organelles, offers numerous
benefits compared to examining the entire cell. The relationship between the distribution
of lipids in the organelles of animal cells are shown in Figure 1. Organelles exhibit distinct
lipid compositions and profiles that are directly linked to their functions. For instance,
the endoplasmic reticulum (ER) is a vital organelle that regulates lipid metabolism and
is the site of lipid synthesis and modification, including phospholipids, sphingolipids,
and cholesterol. By examining the lipid composition of the ER, researchers can gain a
deeper understanding of the regulation of lipid synthesis and trafficking, as well as the
impact of various metabolic and environmental stressors on ER function [16,17]. In the
Golgi, lipids undergo various chemical modifications, such as acylation, glycosylation,
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and phosphorylation, which alter their properties and functionality. Mitochondria also
play a crucial role in lipid metabolism and contain key enzymes involved in the oxidative
degradation of fatty acids, which provides energy for the cell. Furthermore, mitochondria
are the primary site of oxidative stress and lipid peroxidation, making the study of organelle
lipidomics particularly relevant to understanding cellular metabolism and the associated
pathologies. Additionally, researchers can gain insights into the functions of specific lipids
in cellular transport and signaling by analyzing the lipid profiles of vesicles [18].
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Figure 1. (a) Lipid organization in animal cells (G for Golgi, TGN for trans Golgi network, MITO for
mitochondria) [19]. The glycerophospholipids are denoted by the gray color, sphingomyelin by the
red color, and cardiolipids by the blue color. (b) Lipid sorting by lateral segregation [19].

3. Single-Cell and Single-Organelle MSI
3.1. Cultured-Based and Tissue-Based Samples

For single-cell/organelles MSI, the cells and organelles used in an experiment are
mainly from cell cultures and tissues (Figure 2). Despite the same aim to visualize in-
dividual cells, they are designed to cater to different requirements and present distinct
advantages and limitations. For cultured cells, the implementation of cellular MSI requires
several crucial steps of sample preparation, such as cell plating, washing and drying, and
fixation, which may result in the rupture of cells and the spreading of cytosolic contents
under adverse conditions. The optimization of sample preparations could improve the
performance of single-cell/organelle MSI [20]. Despite this challenge, the controllable
dispersion of cell plating affords the advantage of a low-resolution requirement for intra-
cell analysis, making image-based cell profiling a valuable technique in scenarios where
instrument limitations are present [21].

The tissue microenvironment contains richer biological information, which helps to
study diseases more intuitively. Hence, it is meaningful to image a whole tissue section at a
single-cell scale, which maintains the relationships of intercellular interactions in the tissue
microenvironment. For whole tissue sections, the steps of sample preparation are the same
as traditional MSI. Samples were obtained by cutting ~10 µm sections from frozen tissue
or paraffin-embedded (FFPE) tissue. A high resolution MSI technique is the cornerstone
of cell imaging for whole tissue sections, as the cells are crowded on the sections and too
large a pixel may contain multiple cells.
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(b) Tissue-based sample. The H&E staining and SIMS-MSI images of the mouse pancreas are from
Ref [23]. Scale bar, 100µm.

3.2. Recent Developments in High Spatial Resolution Instruments

The average cell size ranges from 20 to 30 µm for organisms such as live cells and skin
cells, with exceptions such as microglia, whose typical diameter measures 7 to 12 µm. The
size of cellular organelles is even more diminutive, with structures like the endoplasmic
reticulum and Golgi apparatus measuring less than 1 µm in diameter. Consequently, high
spatial resolution mass spectrometry imaging (MSI) instruments are required to investigate
the lipidome at a cellular or subcellular level. Microscope mode MSI utilizes a broad laser
beam to irradiate the sample in a manner similar to that of a conventional microscope light
source. The simultaneous acquisition and preservation of the distribution pattern of specific
ions during ionization is a distinguishing aspect of this method, enabling resolution without
the limitations imposed by ionization techniques [24,25]. Additionally, the flight path of the
ion is monitored to maintain this distribution pattern. In a recent study, microscope mode
MSI was used to image the stimulus-induced production of endocannabinoids in single
neurons at the subcellular level [26]. However, a comprehensive analysis of microscopy
mode MSI is not included in this review because its performance at the mass spectrometry
level is poor, with lower mass resolution, which has limited its widespread acceptance and
application. On the other hand, conventional microprobe mode MSI employs a scanning
probe to determine the location of molecules on the sample surface. For microprobe
mode MSI, sample surface analysis ions can be generated by laser ablation, ion beam
bombardment, and droplet extraction, followed by mass spectrometry analysis, and the
lateral spatial resolution of the ion image being restricted by the diameter of the scanning
laser (MALDI), ion beams (SIMS) or droplets (DESI). For MSI in microprobe mode, the ion
beam can be most easily focused, reaching a spatial resolution as high as tens of nanometers.
Laser ablation based MSI methods can reach a resolution of several micrometers, followed
by that of DESI in the tens of micrometers range. Given this, laser-based MSI and ion-beam-
based MSI are currently the most widely used methods for cellular and subcellular imaging.
In this discussion, we will delve into the principles and recent advancements in these two
MSI techniques.

3.2.1. Laser-Based MSI

The resolution of laser-based MSI can vary based on the type of laser focusing used.
There are two main categories: far-field technology and near-field technology. Near-
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field methods involve pixel ablation at distances from the sample surface that are much
smaller than one wavelength (typically in the nanoscale range), while far-field methods
ablate pixels at distances larger than this value (typically in the millimeter or centimeter
scale). Far-field technology has its resolution limited by optical diffraction, whereas near-
field technology does not have this limitation. Within near-field technology, there are
further subcategories including apertureless tip enhancement techniques and aperture tip
desorption techniques [27]. The group led by Wei Hang has made significant contributions
to the advancement of near-field-based MSI with aperture tip desorption. In 2019, Hang
et al. developed a near-field desorption post ionization time-of-flight mass spectrometer
(NDPI-TOFMS) which was able to achieve a resolution ranging from 250 nm to 350 nm,
and even imaged HeLa cells with a resolution of 250 nm(Figure 3a) [28]. They continued to
innovate by introducing Micro-Lensed Fiber Laser Desorption Mass Spectrometry Imaging,
allowing for cell imaging at a resolution of 300 nm without the need for an AFM imaging
process, which can often be cumbersome (Figure 3b) [29].
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Matrix-assisted laser desorption/ionization (MALDI) is a most widely used ionization
technique of far-field-based MSI [31]. The fundamental principle behind MALDI is the
ionization of the sample through laser-assisted desorption and ionization. To achieve this,
a sample is combined with a matrix, which absorbs the laser energy and facilitates the
desorption and ionization of the sample molecules. The resulting sample-matrix mixture is
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then deposited on a sample target and subjected to a laser pulse. This laser pulse causes the
sample molecules to be ionized and desorbed from the matrix into the mass spectrometer
for analysis. For the applications of MALDI in single-cell imaging, spatial resolution is the
most important limiting factor. The spatial resolution of MALDI is influenced by several
factors, including laser spot size, matrix size, and sample preparation method. The laser
spot size is a crucial factor in determining the spatial resolution of MALDI, as smaller laser
spots provide higher spatial resolution. However, this comes with the disadvantage of
lower sample collection efficiency and signal intensity. The size of the matrix crystals used
in MALDI also contributes to the spatial resolution, with larger crystals scattering the laser
light and reducing the spatial resolution [32]. Finally, the sample preparation method used
can impact the spatial resolution of MALDI, with smaller sample spots deposited onto the
MALDI target, resulting in higher spatial resolution, while larger spots scatter the laser
light and reduce the spatial resolution.

For most commercial instruments, the pixel size of MALDI MSI are in the range of
5–20 µm [33], which is not adequate for imaging at the cellular or subcellular level. Theo-
retically, a higher resolution can be achieved by focusing the laser beam to a smaller pixel.
However, reduced ion abundance and ion suppression effects can hinder the acquisition of
an ion image of high quality at high spatial resolution. The post-ionization (PI) strategy,
laser-induced post-ionization (MALDI-2), in which the beam of a PI laser interacts with the
expanding particle plume in an nitrogen cooling gas, has been developed to increase the
ion yields at a ~5 µm lateral resolution [30] (Figure 3c). By improving the laser focusing
objective and applying the matrix, the atmospheric pressure (AP) MALDI setup with a
lateral resolution of 1.4 µm has been used to identify various metabolites expressed at
the subcellular scale in a single-celled eukaryotic organism P. caudatum [34]. To elevate
the MALDI-MSI to a new level, M. Niehaus et al. proposed the t-MALDI-2 [22], which
combines the transmission-mode MALDI with MALDI-2 (Figure 3d). In t-MALDI-2, the
600 nm resolution has been achieved and the distribution of glycolipids and phospho- in
a Vero B4 cell has been visualized. With ongoing advancements in the technology and a
better understanding of the factors that influence spatial resolution, such as laser focusing
objectives and matrix applications, it is expected that laser-based MSI will continue to
evolve and provide even more precise and detailed results.

3.2.2. Ion-Beam-Based MSI

As the most widely used ion-beam-based MSI, Secondary-ion mass spectrometry
(SIMS) is a surface analysis technique that utilizes a focused primary ion beam to sputter
surface molecules from a sample and create secondary ions [35]. The secondary ions are
then analyzed by a mass spectrometer to determine their mass-to-charge ratios. SIMS
provides high-resolution, subsurface chemical imaging with lateral resolutions in the
nanometer range, which allows researchers to identify chemical compounds at the molecu-
lar level within complex samples, providing a detailed understanding of their composition
and distribution. In the realm of single-cell imaging, the detection sensitivity of secondary
ion mass spectrometry (SIMS) and the minimization of ion fragmentation are of utmost
importance. One of the inherent limitations of SIMS is the limited abundance of molecular
ions available for lipid structure identification due to the generation of a large number of
fragment ions. The size of the primary ion beam has a direct effect on the spatial resolution,
with smaller beam sizes providing improved resolution but also reducing the number of
ions. This presents a challenge in lipid annotation, as the number of molecular ions becomes
even more limited. Furthermore, the energy of the primary ions has a significant impact as
it determines the depth of sample penetration. While using higher energy ions can result in
a smaller primary ion beam size, it also increases fragmentation and complicates molecular
annotation efforts.

SIMS can achieve a lateral resolution of 10 nm in specific configurations. In order to
effectively gather enough signals from secondary ions produced by biological samples such
as lipids, a lateral resolution of −100 nm is often utilized. This resolution is deemed ade-
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quate for imaging cellular structures, but the limitations of hard ionization mode and low
ion yield in small pixels have restricted the full potential of SIMS for cellular/subcellular
lipidomics analysis. Recently, researchers have made strides in addressing these limitations
by both increasing the ion yield and softening SIMS. Gas Cluster Ion Beam SIMS (GCIB-
SIMS), an ionization method that minimizes fragmentation, has been developed as an
alternative to conventional SIMS. The development of 3D OrbiSIMS, a hybrid instrument
that combines the high spatial resolution of GCIB-SIMS and the high mass resolution of
orbitrap, has enabled the visualization of metabolites in three dimensions with subcellular
resolution [36] (Figure 4a). The type of cluster ion beam used in GCIB-SIMS has a significant
impact on the imaging quality. To further improve the resolution of GCIB-SIMS, the Wino-
grad group proposed the use of a 70 keV CO2 cluster ion beam. This innovative approach
has been shown to effectively image high molecular weight phospholipids (PLs) in subcel-
lular structures at a resolution of 1 µm [37] (Figure 4b). Furthermore, the John C. Vickerman
group discovered that the use of H2O clusters eliminates the compromise between sensitiv-
ity and resolution, resulting in a 10–100 times increase in ion production compared to Ar1000
beams and C60 [38]. When compared to Ar2000 cluster beams, water cluster beams have the
potential to enhance the ion yield in a 1 µm2 area by 100–1000 times [39]. This innovative
H2O cluster GCIB-SIMS has been successfully applied to image neurons in frozen-hydrated
samples at the single-cell or subcellular level [40]. In addition, SIMS has low sample surface
damage, allowing for multiple analyses or coupling with other imaging modalities. For
example, (H2O)n-GCIB and C60-SIMS can be combined to enable the multi-omics imaging
of different cell types in breast cancer tissues (Figure 4d) [41]. It is also worth noting that
Dae Won Moon et al. achieved the subcellular SIMS imaging of wet cells without treatment
by using single-layer graphene, preserving the natural distribution of lipid molecules in
cells to the greatest extent possible (Figure 4c) [42]. These advances in SIMS-MSI have
opened new avenues for imaging biological samples with unprecedented detail and clarity.

3.3. Data Acquisition of Single Cells and Organelles

Although the mass spectra are recorded at a single-cell scale, the MSI data are not
sufficient for the single-cell analysis directly. This is because the correlation between
the spectra and the cells cannot be established, and there is no visual representation
of the cell size, shape, and location through MSI. Moreover, the cell membranes of the
majority of cells on the tissue sections or on the Petri dishes are tightly adhered to each
other, with thicknesses ranging from 7–8 nm [43], meaning that a pixel may contain the
lipid analytes from two or more cells, even if the resolution is ultra-high. Furthermore,
tissue sections are typically cut from fresh frozen or paraffin-embedded tissues, and an
unfavorable cutting angle and speed could result in cell stacking. In light of these difficulties,
single-cell segmentation methods have been introduced to accurately assign the measured
data to individual cells for subsequent analysis. Cell segmentation is supposed to detect
the cells and cut the counter of each cell precisely, aiming to label each pixel with the
corresponding cell.

In the past decades, the techniques for single-cell recognition are gradually maturing,
especially as unsupervised and deep learning methods in medical imaging are on the rise.
U-Net [44,45] is a pioneering algorithm to apply segmentation to single-cell analysis via
deep neural networks, which generate pixel-level annotations of cell edges, cell interiors,
and backgrounds. These annotations are then transformed into the final segmentation mask
via thresholding of the probability maps. Another kind of segmentation approaches involve
the initial localization of individual cells through the employment of a rough representation
of shape, followed by a subsequent refinement of said shape. The bounding boxes that are
used as means of localization can be subjected to a process of refinement, resulting in an
instance segmentation, which is achieved through the classification of the pixels contained
within each box. A notable example of this methodology can be seen in the implementation
of Mask R-CNN [46]. However, this kind of strategy is not suitable for a situation where
the cells are crowded (e.g., on a tissue section). U-Net plays an important part in the field
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of biological image segmentation, because many outstanding works are conducted on
the basis of the U-Net. On the basis of U-Net, Stardist [47] predicted the a star-convex
polygon for each pixel, while Cellpose [48,49] was proposed as a robust algorithm for
cellular segmentation, and employs the vertical and horizontal gradients of the topological
maps of cells and significantly outperforms Mask R-CNN and Stardist. In a recent study,
Noah F. Greenwald et al. constructed Mesmer, which represents a singular, user-friendly
solution for cell segmentation that achieves human-level accuracy across various tissue
types and imaging techniques, without requiring manual parameter adjustments from the
user [50].
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Figure 4. (a) Schematics of 3D OrbiSIMS [36]. (b) Schematics of a high-energy GCIB-SIMS MSI with
Lateral Resolution of 1 µm [37]. (c) [i] Schematics of the SIMS imaging analysis based on single-layer
graphene. [ii] The sputtering process for the head group of a phospholipid molecule from a wet cell
membrane [42].(d) Schematic of the workflow on the cell-type specific profiling of multiomics [41].

Despite significant progress in the development of segmentation techniques, accu-
rately assigning measurement data to individual cells remains a challenge in the field of
single cell analysis. Two main methodologies exist to tackle this issue. The first method
involves segmenting the cells first and then using the segmentation results to guide the
sampling process. On the other hand, the second method involves conducting the sampling
according to conventional techniques, followed by data assignment. Akos Vertes et al. tried
to segment the cells first, and then find cell centroid positions, enabling the automation of
sequential f-LAESI-MS analysis of tissue-embedded single cells through programmable au-
tomatic sampling on L.longiflorum leaf (Figure 5a) and Allium cepa bulb (Figure 5b) [51,52].
However, this approach has only been validated for plant tissues so far, likely due to the
larger size and clearly visible cell walls of plant cells under light microscopy, which makes
cell segmentation achievable through the thresholding of gray-scale levels.
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Figure 5. (a) Coordinate-guided cellular MSI [51]. (i) The centroid of cells are found on the micro-
scope images. (ii) The movement of X-Y stage is shown by the dash line. (b) Validation for the
centroid-based cellular MSI. Images under optical microscope before sampling (i), were sampled by
predetermined trajectory (ii), and after sampling (iii).

Although the feasibility of these protocols in animal tissues has yet to be conclusively
proven, it is feasible to apply similar ideas to the imaging of individual organelles. Jonathan
V. Sweedler and colleagues proposed image-guided protocols that leverage brightfield
images and sequences of image algorithms to automatically identify the location of each
dense-core vesicle (DCV) and electron-lucent vesicle (LV) and profile their peptide and lipid
contents (Figure 6a) [53]. In 2021, spatial single nuclear metabolomics (SEAM) was intro-
duced as a means to achieve the spatiotemporal analysis of metabolomics at a single-nuclear
scale. This methodology relies on the segmentation of regions of interest, accomplished
through the use of metabolic markers, such as m/z 134.04 as a nuclear [54] marker, and is
capable of accommodating a diverse range of biological samples, from cell culture assays to
complex tissue sections (Figure 6b) [23]. The task of segmenting nuclei is relatively straight-
forward, as they can be detected by means of their genetic material, metabolite composition,
and optical properties. Besides, the scattered distribution of nuclei within the tissue, in
contrast to the compact distribution of cells, presents a convenience for this methodology.
Despite its scalability and ability to segment nuclear regions, SEAM still requires prior
knowledge of the corresponding metabolic markers, and the assignment of lipid content in
the cytoplasm, organelles, and cell membrane remains elusive. Aligning the segmented
microscopy images before laser ablation with the post-MALDI microscopy images which
record the laser ablation marks, SpaceM assigns the individual ablation marks (i.e., pixels)
to cells (Figure 6c) [54]. This method has no data redundancy in that every pixel is labeled
with the corresponding cells and can be used for subsequent analysis. SpaceM reveals the
metabolic states of cultured cells, but its applicability to tissue-embedded imaging has not
been evaluated.
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Figure 6. (a) Schematic of image-guided MALDI-MSI workflow for high-throughput single-DCV
measurements [53]. (b) The schematic of the cell segmentation(SIMS-cut) used in SEAM [23]. (i) The
top 20 ions localized in the nucleus. (ii) The utilization of the Potts model as a prior for pixel
labels and the use of restricted Boltzmann machines (RBMs) as a conditional distribution for pixel
intensities. (iii) The resulting nucleus segmentation mask. (c)The schematic of SpaceM. Alignment
of the segmented microscope image (i) with the MALDI-MSI images (ii) to obtain the integrated
image (iii).

4. Limitations and Future Perspectives
4.1. High-Throughput

The utilization of image-based analysis strategies is commonly known for its high-
throughput nature. However, in the context of Mass Spectrometry Imaging (MSI), the
imaging process for the analysis of the lipidome of individual cells on a pixel-by-pixel
basis can be rather lengthy. This is particularly true for microprobe-mode MSI, where
higher resolution results in a prolonged imaging process and the requirement for ultra-high
resolution when imaging at the cellular/subcellular level. Moreover, the implementation of
tandem mass spectrometry further limits imaging throughput. Efforts have been directed
towards accelerating high-resolution MSI, such as the implementation of compressed
sensing, and dynamic sparse sampling [55,56], with the aim of improving throughput.
However, the imaging process still requires the comprehensive scanning of all pixels on the
slides, even though only a fraction of these pixels correspond to the cells or organelles of
interest. To overcome this limitation and enhance MSI throughput, it is imperative to first
precisely locate each cell or organelle, that is, to perform single-cell or organelle recognition,
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and then to program the scan path accordingly. Historically, this task was achieved through
manual means, which was both time-consuming and labor-intensive. To address this issue,
various statistical and supervised learning techniques, such as support vector machines,
genetic algorithms, and Markovmodels [57–59], have been employed to automate single-
cell or organelle recognition. Moreover, the utilization of color information in cell images,
in addition to the conventional grayscale changes at cell edges, has been shown to be an
effective means of assisting cell detection [60], but only in imaging techniques that capture
information in color dimensions. With the advent of deep learning, various protocols
have been established that leverage deep neural networks to increase the efficiency and
accuracy of cell detection [61–64]. In conclusion, the low throughput of single-cell MSI
can pose a significant limitation to its widespread use, and there remains ample room for
improvement in this area. The integration of advanced techniques such as deep learning
and image-guided protocols may hold the key to resolving this issue and advancing the
field of single-cell imaging.

4.2. Sensitivity and Coverage

Sensitivity refers to the ability to detect low levels of analytes within the sample and is
often quantified by the limit of detection (LOD). High sensitivity is of utmost importance
in high spatial resolution mass spectrometric imaging (MSI) due to its ability to detect
molecular species with low abundance within cells and subcellular structures. This attribute
is particularly relevant in biological systems where the molecular composition of cells
and subcellular structures can exhibit significant variability, and where low-abundance
molecular species can have a critical impact on cellular processes. The specific roles
played by different isomers of phosphatidylcholine (PC) in cell signaling and membrane
organization have been well documented in the literature. These lipid isomers can be
distinguished through tandem mass spectrometry. However, the high spatial resolution of
the instrument poses a challenge in terms of the abundance of ions that can be analyzed
in a single pixel during MS analysis. The higher the resolution, the fewer ions that are
available for analysis, making it difficult to perform multiple MS/MS analyses. The
success of wide-coverage MS/MS analysis at the single-cell scale heavily relies on the
sensitivity of the instrument. This is because the sensitivity of the instrument determines the
minimum amount of sample that can be analyzed in a single pixel, as well as the accuracy
and reliability of the results. A more sensitive instrument can detect low-abundance
species, improving the coverage of lipid structure identification and enabling a more
comprehensive analysis of cell signaling and membrane organization. In the context
of single-cell or organelle analysis, sensitivity and the low abundance of molecules can
significantly limit the variety of lipids that can be structurally identified. However, merely
increasing sensitivity is not enough, as traditional data-dependent acquisition (DDA)
tandem mass spectrometry analyzes only a few ions within a narrow isolation window
at a time to identify their structures, while other analytes are wasted and can only be
analyzed in subsequent injections. The development of data-independent acquisition
(DIA) tandem mass spectrometry methods has increased the utilization rate of analytes
with lower abundance to some extent, as multiple ions can be fragmented concurrently.
However, the obstacle to the application of DIA lies in how to analyze the obtained mass
spectra, and various deconvolution methods have been proposed to make it possible to
use DIA mode MSI for the analysis of lipid spatial distribution [65,66]. In a study at a
tissue level, Guo et al. utilized photochemical derivatization to enhance the imaging of
20 phospholipid C=C-localized isomers [67]. This method has the potential to achieve
single-cell scale identification of the spatial location of these lipid isomers, as long as the
sensitivity of the imaging is improved to an adequate level. Therefore, the optimization
of sensitivity remains a lively area of research, with ongoing efforts aimed at developing
advanced techniques to improve the LOD and enhance the accuracy of MSI experiments.
Moreover, existing research has demonstrated that the sensitivity of mass spectrometry
imaging can be improved through chemical derivatization methods that enhance ionization
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and increase molecular stability [68]. The development of these techniques is crucial for
the advancement of MSI in the field of biological research, allowing for a more precise and
comprehensive analysis of cellular and subcellular processes.

4.3. Multimodal Imaging

The integration of MSI with other imaging modalities offers a more comprehensive
insight into cellular information, especially when MSI alone is not yet capable of providing
sufficient detail for single-cell imaging. As previously mentioned, MSI faces difficulties in
characterizing the size, shape, and boundaries of cells in tissue sections, which can be easily
achieved through other imaging techniques such as fluorescence microscopy. However,
the implementation of multimodal imaging presents several challenges, including the
requirement for the preservation of the molecular composition of cells and the avoidance
of significant ion suppression. The integration of multiple sets of data generated from
different imaging modalities requires accurate alignment at the micron level, given the
micron-scale resolution of cellular structures.

The integration of multiple ionization methods of MSI has the potential to yield
a more comprehensive analysis of substances. While each single ionization technique
has its limitations, the combination of multiple MSI modes provides a broader scope
of substance analysis. For instance, MALDI excels in detecting large molecules such
as proteins, however it lacks the necessary spatial resolution. Conversely, SIMS boasts
a high spatial resolution, yet the molecular ions produced are low in abundance and
biased towards smaller molecules like metabolites. By integrating MALDI-MSI with
SIMS-MSI, researchers have been able to enhance the information content and image
quality of mass spectrometry imaging [69,70]. Furthermore, even within the same class
of ionization imaging, multiple modalities can be integrated, as demonstrated by the
successful combination of H2O cluster GCIB-SIMS and C60 SIMS. The multimodal MSI
offers the potential to provide a more comprehensive understanding of cellular biology.
However, it also presents a number of challenges that must be addressed in order to obtain
accurate and reliable results. The development of robust and reliable multimodal imaging
methods will significantly enhance our ability to study cellular biology at a high level
of detail.

5. Conclusions

In recent years, advancements in mass spectrometry imaging (MSI) of high spatial
resolution and sensitivity have paved the way for analysis in cellular/subcellular lipidomics.
With improved techniques and methods for data analysis, MSI is now a powerful tool for
complete cellular lipidomics analysis. By providing in-depth information on the spatial
distribution and structure of lipids in individual cells, MSI has the potential to greatly
deepen our understanding of metabolic diversity within tissues and the crucial role of lipids
in regulating cellular behavior. The detailed characterization of biomolecules from single
cells or organelles in tissues also requires tandem MS imaging, which may become the next
climax of MSI. Certainly, instrumental and methodological innovation are necessary to
support such research efforts. However, limitations such as the speed and sensitivity of MSI
imaging, as well as the challenge of assigning measurement data to individual cells, may
present barriers to the widespread application of MSI in cellular lipidomics. Nevertheless,
these limitations also present opportunities for future development and improvement in
the field, particularly in the development of computational methods [71]. The integration
of multimodal imaging methods has the potential to bring a fresh perspective to cellular
lipidomics and further expand our knowledge of lipid metabolism and its impact on cellular
behavior. It is worth mentioning that functional MSI (fMSI) represents a new and widely
applicable in situ bioactive imaging method, and the progress of many fMSI-related works
also indicates that there may be more possibilities for single-cell functional lipidomics
analysis through mass spectrometry imaging [72]. In conclusion, as we continue to stay
updated on the latest advancements in the field, we can expect to see more breakthroughs
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and exciting developments in cellular/subcellular lipidomics through the application of
MSI technology.

Author Contributions: Writing—original draft preparation, D.L.; writing—review and editing, Z.O.
and X.M.; funding acquisition, X.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by The National Key R&D Program of China (2022YFC3401900).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lodish, H.; Berk, A.; Kaiser, C.A.; Kaiser, C.; Krieger, M.; Scott, M.P.; Bretscher, A.; Ploegh, H.; Matsudaira, P. Molecular Cell

Biology; Macmillan: New York, NY, USA, 2008.
2. Mashek, D.G. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD. Mol. Metab.

2021, 50, 101115. [CrossRef] [PubMed]
3. Welte, M.A.; Gould, A.P. Lipid droplet functions beyond energy storage. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2017,

1862, 1260–1272. [CrossRef] [PubMed]
4. Bretscher, M.S. Membrane Structure: Some General Principles: Membranes are asymmetric lipid bilayers in which cytoplasmically

synthesized proteins are· dissolved. Science 1973, 181, 622–629. [CrossRef]
5. Nicolson, G.L.; Ferreira de Mattos, G. A Brief Introduction to Some Aspects of the Fluid–Mosaic Model of Cell Membrane

Structure and Its Importance in Membrane Lipid Replacement. Membranes 2021, 11, 947. [CrossRef] [PubMed]
6. Yèagle, P.L. Lipid regulation of cell membrane structure and function. FASEB J. 1989, 3, 1833–1842. [CrossRef] [PubMed]
7. Mollinedo, F.; Gajate, C. Lipid rafts as signaling hubs in cancer cell survival/death and invasion: Implications in tumor progression

and therapy: Thematic review series: Biology of lipid rafts. J. Lipid Res. 2020, 61, 611–635. [CrossRef] [PubMed]
8. Wahli, W.; Michalik, L. PPARs at the crossroads of lipid signaling and inflammation. Trends Endocrinol. Metab. 2012, 23, 351–363.

[CrossRef]
9. Buchberger, A.R.; DeLaney, K.; Johnson, J.; Li, L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future

Insights. Anal. Chem. 2018, 90, 240–265. [CrossRef]
10. Guerquin-Kern, J.-L.; Wu, T.-D.; Quintana, C.; Croisy, A. Progress in analytical imaging of the cell by dynamic secondary ion

mass spectrometry (SIMS microscopy). Biochim. Biophys. Acta (BBA)-Gen. Subj. 2005, 1724, 228–238. [CrossRef]
11. Cuypers, E.; Claes, B.S.; Biemans, R.; Lieuwes, N.G.; Glunde, K.; Dubois, L.; Heeren, R.M. ‘On the Spot’Digital Pathology of

Breast Cancer Based on Single-Cell Mass Spectrometry Imaging. Anal. Chem. 2022, 94, 6180–6190. [CrossRef]
12. Prade, V.M.; Sun, N.; Shen, J.; Feuchtinger, A.; Kunzke, T.; Buck, A.; Schraml, P.; Moch, H.; Schwamborn, K.; Autenrieth, M. The

synergism of spatial metabolomics and morphometry improves machine learning-based renal tumour subtype classification. Clin.
Transl. Med. 2022, 12, e666. [CrossRef] [PubMed]

13. Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive oxygen species-induced lipid
peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Med. Cell. Longev. 2019, 2019, 5080843. [CrossRef] [PubMed]

14. Qi, J.; Kim, J.-W.; Zhou, Z.; Lim, C.-W.; Kim, B. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the
modulation of lipid peroxidation–mediated cell death in mice. Am. J. Pathol. 2020, 190, 68–81. [CrossRef] [PubMed]

15. Li, Z.; Cheng, S.; Lin, Q.; Cao, W.; Yang, J.; Zhang, M.; Shen, A.; Zhang, W.; Xia, Y.; Ma, X. Single-cell lipidomics with high
structural specificity by mass spectrometry. Nat. Commun. 2021, 12, 2869. [CrossRef] [PubMed]
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