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Abstract: To fulfil the growing needs of the global population, sustainability in food production must
be ensured. Insect pests and pathogens are primarily responsible for one-third of food losses and
harmful synthetic pesticides have been applied to protect crops from these pests and other pathogens
such as viruses and fungi. An alternative pathogen control mechanism that is more “friendly” to the
environment can be developed by externally applying double-stranded RNAs (dsRNAs) to suppress
gene expression. However, the use of dsRNA sprays in open fields is complicated with respect to
variable efficiencies in the dsRNA delivery, and the stability of the dsRNA on and in the plants,
and because the mechanisms of gene silencing may differ between plants and between different
pathogen targets. Thus, nanocarrier delivery systems have been especially used with the goal of
improving the efficacy of dsRNAs. Here, we highlight recent developments in nanoparticle-mediated
nanocarriers to deliver dsRNA, including layered double hydroxide, carbon dots, carbon nanotubes,
gold nanoparticles, chitosan nanoparticles, silica nanoparticles, liposomes, and cell-penetrating
peptides, by review of the literature and patent landscape. The effects of nanoparticle size and surface
modification on the dsRNA uptake efficiency in plants are also discussed. Finally, we emphasize
the overall limitation of dsRNA sprays, the risks associated, and the potential safety concerns for
spraying dsRNAs on crops.

Keywords: RNA interference; non-transformative; exogenously applied dsRNA; biopesticide; delivery
system; nanocarrier

1. Introduction

As the world population is expected to reach 9.8 billion by 2050 [1], global agricultural
production has to be increased to meet food needs. Crop pests, pathogens and the diseases
they carry are a key challenge for modern agriculture with respect to coping with the
rising demand, contributing to up to 40% productivity losses worldwide [2]. Hence,
the agriculture industry relies on chemicals (bactericides, fungicides, nematicides and
others) to protect crops. According to the Food and Agriculture Organization Corporate
Statistical Database (FAOSTAT), the world recorded a high average pesticide use, alone,
per unit of cropland between 2010 and 2019. Approximately 2.60 kg of pesticides were
applied per hectare over the ten-year period, which equates to a total of 4.9 million tons of
pesticides used annually [3]. Although chemical use brings the primary benefit of higher
crop yields, pesticide sprays open up Pandora’s box of deleterious environmental and
human health problems. For example, chemical pesticides can pollute soil and water,
leading to a decline in water quality, harming terrestrial and aquatic species, and negatively
impacting soil health [4]. For humans, acute pesticide poisonings accounted for 385 million
cases and 11,000 fatalities per year globally [5]. Due to the adverse effects of pesticides,
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the global agriculture industry has moved towards the aim of reducing crop losses while
lowering chemical pesticide use. Several countries, especially the US and Brazil, have grown
genetically modified (GM) plants that constitutively produce pesticidal and pathogenic
proteins and, arguably, minimized adverse environmental effects [6,7]. However, the
development of GM crops typically necessitates 10 or more years of R&D and several
million dollars’ worth of investment [8]. More worrying, extreme weather changes have
led to the rising expansion of pests and pathogens’ geographic distributions, increased
their survival and increased risk of invasion by migratory pests and plant pathogens. Other
factors, such as globalization in trading and people’s movement, also pose unforeseen
challenges to modern agriculture [9].

Scientists have explored RNAi, which is a specific post-transcriptional cellular mech-
anism, as an alternative tool for crop protection strategies. RNAi technology allows the
manipulation of regulatory mechanisms to silence genes in plant and animal cells using
sequence-specific, small double-stranded RNAs (dsRNAs). Mimicking a laser-guided
mechanism in precision, dsRNAs are produced by copying complementary gene sequences
of pests and pathogens, and these dsRNAs can be used as a template to destroy pests’
and pathogens’ mRNA sequences, ultimately disrupting protein production [10]. Trans-
formative RNAi technology made possible the creation of pest and/or pathogen-resistant
transgenic papaya, potato, apple, maize, alfalfa, soybean, tobacco, plum and tobacco [11].
However, similar to the GM approach, the development of transgenic RNAi crops can be
challenging due to stringent regulations, lengthy development timelines and intensive
resource commitment that is required before commercialization [11].

As an alternative to the transgenic approach, scientists have explored the use of naked
dsRNAs, which can be applied directly onto plants without inserting plasmid DNAs. Also
referred to as spray-induced gene silencing (SIGS), the first report of exogenous dsRNAs in
plants was carried out by mechanically inoculating bacterially produced naked dsRNAs
on pepper mild mottle virus (PMMoV) infected plants to induce RNAi effects for the
triggering step of post-transcriptional gene silencing, thereby targeting viral RNAs for
degradation [12]. Besides using bacterial systems, these naked dsRNAs can be synthesized
in vitro using T7-RNA polymerase [13] or via chemical synthesis [14]. However, these
naked dsRNAs are relatively short-lived and susceptible to nuclease degradation upon
exposure to UV radiation, in-plant environment, soil and water environment [15,16], unless
they are encapsulated [17] or layered with nanoparticles [18].

Another important challenge for spray-on applications of dsRNAs is the unique
barriers of walled plant cells. The plant cell wall is composed of a tough semipermeable
matrix that serves not only as a protective barrier to the external environment but also
as a barrier to the uptake of foreign materials into plant cells [19]. While the plant cell
wall permeability may be dynamic in nature, previous studies suggested that a plant cell
wall size exclusion limit ranges between 5 and 20 nm [20]. The relatively small pore sizes
would likely restrict the movement of larger nanoparticles, thus preventing delivery of
encapsulated dsRNAs into and throughout the plant. Several barriers to RNAi-mediated
control, such as poor cellular uptake, high levels of dsRNAs degradation and absence of
systemic RNA transport have been reviewed in detail by Joga and colleagues [21], and
more recently by Bennett and colleagues [22].

One possible approach to solving challenges associated with impaired endosomal
escape, dsRNA degradation and poor cellular uptake of dsRNA is by using nanocarriers
as a delivery vehicle for dsRNAs [23]. Nanocarriers, as defined by the Union of Pure
and Applied Chemistry (IUPAC), is a particle of any shape with dimensions in the range
of 1–100 nm. In this review, we present recent developments in various nanomaterial
mediated biomolecule (nanocarrier) delivery strategies for plant systems. The focus of this
review is to discuss the effects of these design variables, in particular nanoparticle sizes
and surface modifications, on the dsRNA uptake efficiency and biological effects within
plant cells. This review also summarizes the purpose of using each nanocarrier based on
three parameters, namely, RNA size, nature of target and method of delivery. Finally, we
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highlight the limitation of topical RNAi technology, the importance of technological risk
and safety evaluation, and potential future research avenues in this domain.

2. Non-Transformative RNAi Strategies

Recent publications on non-transformative RNAi strategies were reviewed by search-
ing the Thompson Reuters Web of Science (WoS) database using combinations of search
terms (Queries), asterisks and Boolean operators. Queries were as follows: (1) TS = (topi-
cal*) AND TS = (*RNA silencing); (2) TS = (topical*) AND TS = (*RNA*) AND TS = (crop);
(3) TS = (topical*) AND TS = (*RNA*) AND TS = (plant). This selection was further refined
to include research articles only that were published between 2017 and 2022. The initial
search found 1631 journal publications. Next, duplicated entries were removed, and ab-
stracts of the papers were reviewed manually to filter publications that met two inclusion
criteria: (1) research articles and (2) methodological approach that uses nanoparticles to
deliver RNAs into plant cells. The filtering process resulted in 16 relevant publications that
experimentally investigated potential applications of topical dsRNA sprays on crops.

These publications described seven novel designs of nanocarriers (delivery vehicles)
for RNAs into plant cells. Important details, such as nanoparticle design, RNA silencing
activity and mode of delivery are presented in Tables 1 and 2. The summary of the
nanotechnologies is also represented in Figure 1 and is further discussed in the following
sections. Additionally, other molecules that were not identified using our search queries
will not be discussed herein (such as engineered polymer nanoparticles). A collective
example of engineered nanoparticles that have been reviewed recently is by Pugsley and
colleagues [24].
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Table 1. Summary of various design strategies of delivery vehicles for RNAs. aChemical synthesis method used for the preparation of the respective delivery vehicles.

No Delivery Vehicle Synthesis Method a Surface Modification Particle Sizes RNA Size Ref.

1 Layered Double Hydroxide
(LDH)

Co-precipitation Mg3Al–NO3-LDH 80 to 300 nm 330 bp and 977 bp dsRNA
hairpin [18]

Co-precipitation Mg3Al–NO3-LDH 50 to 120 nm 300 bp dsRNA [25]

Co-precipitation Mg3Al–NO3-LDH 30 to 90 nm 30–40 bp dsRNA [26]

2

Carbon Dot (CD) Solvothermal Branched
Polyethyleneimine 2.7 to 3.9 nm 22 nt siRNA [27]

CD-Branched
Polyethylenimine (bPEI) Hydrothermal

Lipid modification
(addition of

1,2-epoxytetradecane)
220 nm 250 bp dsRNA [28]

3 Carbon Nanotube (CNT) HiPco Not reported 776 nm (length),
1.567 nm (height) 19 nt siRNA [29]

4 Cell-penetrating peptide (CPP)
(i.e., Bp100)

Chemical
synthesis Polycation (KH)9 100 to 300 nm 456 bp dsRNA [17]

5 Gold (Au) Nanoparticle

Chemical
synthesis Poly-l-arginine 60 to 100 nm 355 bp dsRNA [30]

Chemical
synthesis Polyethyleneimine 6 to 30 nm 21 bp siRNA [31]

6 Chitosan Nanoparticle Chemical
synthesis Hydrochloric acid (HCl) 73.25 nm 40 bp DNA producing 21 nt

ssRNA [32]

7 Star Polycation (SPc) Chemical
synthesis

hpRNA-SPc Not reported 331, 333, 413 and 508 bp
hairpin dsRNA [33]

dsRNA-SPc Not reported 359 and 489 bp dsRNA [34]
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Table 2. Summary of mode of delivery for RNAs, its targets or desired effects.

No Delivery
Vehicle

Mode of
Delivery Target/Effect Exposure Durability Efficacy Ref.

1
Layered Double

Hydroxide (LDH)

Topical application
on A. thaliana leaves

or spray
atomizer on

V. unguiculata and
N. tabacum

Viruses.
Silences replicase gene of

PMMoV and target gene of
CMV

200 µL samples of
15 µg

CMV2b-dsRNA–LDH,
sprayed at
day 0 only

Partial degradation
was observed for
naked dsRNAs

after 2 min while
dsRNA-LDHs
remain intact

LDH-only treated plants
developed more necrotic

lesions compared to
dsRNA-LDH at the same time

points (Day 1 and 5).
LDH-dsRNA offered higher

protection against the virus at
20 days post spraying

[18]

S. lycopersicum pollen
drenching

Virus.
Silences target gene of CMV

Concentrations of
LDH-50 and dsRNA

were 100 and 10 mg/L.
Treatment is up to 7 days

Complete
degradation for

naked dsRNAs after
10 min while

dsRNA-LDHs remain
intact

Treatment for 3 days with
LDH–dsRNA led to a 16.7%

decrease in GUS protein
activity.

No significant changes were
observed with naked dsRNAs

alone after treatment for
7 days

[25]

Leave spray, petiole
adsorption or root

dripping

Fungus.
Silences FoCYP51, FoChs1 and

FoEF2 genes of Fusarium
oxysporum

Leaves spray & petioles
adsorption:

300 µg of dsRNAs
in 3 mL of ddH2O per

plant
Root dipping: 3 µg of

dsRNA in 3 mL of nano
solution per plant

Degradation of naked
dsRNA began after

1 min and completed
after 10 min.

dsRNA bounded LDH
is still intact after 1 h

of incubation

Disease severity that was
observed for leaves spray

(10%),
petioles adsorption (15%)
and dipping roots (35%)

[26]

2 Carbon Dots (CD) Low-pressure spray

Host Plant.
Silencing GFP transgenes and

endogenous genes in
N. benthamiana and

S. ycopersicum

Concentration of
siRNA/CD is 12 ng/µL,
and is sprayed on plants

at Days 1, 7 and 14

Complete degradation
of naked dsRNAs in

15 min.
dsRNA-CDs remain

intact after a
60-minincubation

A 79% reduction was observed
in the phenotypic tissues at

Day 5 after treatment.
Bleaching phenotype persisted
up to 20 days after treatment

[27]
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Table 2. Cont.

No Delivery
Vehicle

Mode of
Delivery Target/Effect Exposure Durability Efficacy Ref.

3
CD-Branched

Polyethylenimine
(CD- bPEI)

Leave spray and
petiole immersion

Virus.
Silences RNA polymerase and

coat protein genes of
Grapevine leafroll associated

virus-3 (GLRaV-3)

A 0.00092 g/mL and
translatedinto a 32×

dilution factor

Degradation of naked
dsRNAs began after

2 h while
dsRNA-CDs-bPEI

remain intact

Virus titre decreased over
three weeks after a single-dose
administration, but multiple
doses are needed to improve

fruit quality

[28]

4 Carbon Nanotube
(CNT)

Needleless syringe
infiltration on leaves

of N. benthamiana

Host Plant.
Silences mGFP5 transgenes in

leaves

Concentrations: siRNA
(100 nM) SWNT

(2 mg/liter)

Degradation (94%) of
naked dsRNAs

after 6 h.
dsRNA-SNWT

degradation (30%)
after 6 h

Gene silencing efficiency was
up to 95% within 1 day after

infiltration
[29]

5
Cell-penetrating
peptides (CPP)

(i.e., Bp100)

Needleless syringe
infiltration on A.
thaliana leaves

Insect.
Silence GFP and firefly

luciferase genes

100 µL of the
dsRNA-peptide,

incubated for up to 36 h

Naked dsRNAs
were slightly degraded

after 12 h while the
dsRNA-peptides

remain intact

No silencing effects was
observed for naked dsRNAs

while genetic down-regulation
was observed for

dsRNA-peptides within 12 h
and up to 36 h

[17]

6 Gold Nanoparticle

Not tested on plants
(insect cell assay

only)

Insect.
Silences Luciferase gene in

Spodopteria frugiperda

dsRNA
(50 µg/mL)

dsRNA-Au showed
better endosomal

escape compared to
dsRNA alone.

Up to 58% reduction of the
luciferase activity for

dsRNA-Au
compared to dsRNA alone

[30]

Needleless syringe
infiltration on

mGFP5
N. benthamiana leaves

without needle

Host Plant.
Silences mGFP5 transgenes in

N. benthamiana leaves
100 ng of siRNA

Complete degradation
was observed after 30
min of incubation for
naked dsRNAs while

dsRNA-Gold NP
remain intact

No upregulation of NbrbohB
suggests low to no stress to

plant tissues
[31]

7 Chitosan
Nanoparticle Not tested

Virus.
Silences coat protein gene of

Tomato mosaicvirus

200 µg/mL of the
dsRNA-chitosan. Not reported

dsRNA-chitosan has low
toxicity with no inhibitory

effects on root development
[32]



Molecules 2023, 28, 2700 7 of 20

Table 2. Cont.

No Delivery
Vehicle

Mode of
Delivery Target/Effect Exposure Durability Efficacy Ref.

8 Star Polycation (SPc)

Spray on oilseed
rapes leaves infested
with Myzus persicae

using pneumatic
water sprayer

Insect.
Silences essential genes.

ATP-A: 413 bp, LOC111039523;
ATP-d: 383 bp, LOC111041166;
ATP-G: 301 bp, LOC111040044

of M. persicae

0.2 µL dsRNA/SPc
formulation sprayed at

Day 0

Complete degradation
was observed for
naked dsRNAs in

12.5% of aphid
hemolymph after

1.5 h while dsRNA-SPc
remain intact.

Control efficacy was 61% on
Day 3 after treatment with

SPc-dsRNA and
maintained at 50% until

Day 6.

[33]

Root drenching

Insect.
Silencing

M. persicae
vestigial (vg) & Ultrabithorax

(Ubx) genes
involved in wing formation.

Exposing radish seedling
to 200 µL dsRNA/SPc
formulation at Day 0

prior to M. persica
transplantation

Not reported

About 40% of M. persica
developed effective wings

when both dsRNA-genes were
used

[34]
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2.1. Layered Double Hydroxide (LDH)

Layered Double Hydroxides (LDH, Figure 2) are hydrotalcite-like, 2D-ionic lamellar
nanoparticles that consist of positively charged layers. A general formula of an LDH
is [M2+

1−xM3+
x(OH)2][An−]x/n·zH2O, where M2+ and M3+ are divalent and trivalent

metal ions, and An– is the interlayer charge-balancing anion. A great amount of work has
demonstrated the multi-purpose nature of LDH including as a biocompatible, low-toxic
transporter for gene and drug delivery in mammalian cells [35]. More recently, LDH also
demonstrated its capability as a transporter of genetic materials and biologically active
compounds into intact plant cells [18,25,26,36].
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The uptake of LDH by plant cells has been reported as both by free penetration as well
as by clathrin-mediated-endocytosis (CME), in which the LDH nanosheets are engulfed
by clathrin-coated vesicles before they are released and dispersed within cytosols [36].
As the translocation of extracellular materials into plant cell walls is limited by the pore
diameters, size becomes a key factor for the successful internalization of LDH nanoparticles
in plant cells. RNAs encapsulated by LDH nanoparticles were shown to be best suited
to deliver long dsRNAs targeting essential genes in viruses and fungi that affected host
plants [18,25,26]. In a study carried out by Yong and colleagues [25], LDH nanoparticles
with average diameters of 30 and 50 nm displayed the most rapid internalization within
pollen cell walls, which in turn influenced gene silencing effects in the target Cucumber
Mosaic Virus (CMV). LDH also has the advantage of protecting fragile naked dsRNAs from
degradation and thus ensuring prolonged silencing effects post-spray [18].

Methods of delivery for long dsRNAs encapsulated by LDH nanosheets were shown to
influence RNAi efficiency against a target. For example, spraying of dsRNAs-LDH resulted
in the highest reduction of fungal disease severity compared to leaf petiole adsorption
and root dipping [26]. High-pressure spraying and petiole adsorption were effective
in controlling Fusarium crown and root rot, as the non-processed dsRNAs are present
in xylem vessels and the apoplastic space, thus avoiding plant DICER-LIKE processing.
Eventually, the dsRNAs will be consumed intact by the fungi and cleaved by fungal DICER
proteins into siRNA, which leads to a better capacity for systemic RNAi against the target
fungal genes [37]. The same concept applies when eliciting RNAi effects against insects to
allow apoplastic delivery of RNAs. However, unlike fungi and insects, triggering RNAi
effects against viruses and endogenous plant genes would require RNAi to occur inside the
plant cell and allow symplastic RNA delivery, which can be achieved via high-pressure
spraying [37].

Although LDH uptake was reported in several plant parts including leaves [18,26]
and pollen grains [25], further studies after dsRNA treatment, such as short RNA- sequence
profiling (sRNA-seq) in various plant parts [38], should be carried out to understand uptake
and systemic protection mechanisms conferred by LDH in plant cells.
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2.2. Carbon Dots (CDs)

Much interest in carbon dots (CDs, Figure 3a) in plants has evolved around the unique
optical properties, which have led to several translocations and uptake studies of CDs in
plant cells [39–41]. There are reports describing surface modifications of CDs which could
impact the uptake and distribution in plant cells. The surface of CDs can be modified,
for example, by functionalizing CDs with polyacrylic acid (PAA) and polyethyleneimine
(PEI, Figure 3b) to yield positively charged (CD-PEI) and negatively charged (CD-PAA)
CDs [39]. Surface modification on CDs changed their size, allowing tailor-made CDs to
transverse across the plant cell wall that has a size exclusion limit of between 3 and 10 nm
in diameter [42].
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CDs are also versatile as a delivery vehicle of genetic materials into plant cells. A
recent study reported that amine-functionalized CD (CD-PEI) is suitable as a nanocarrier
for siRNA to silence transgenes and endogenous plant genes [27]. Using application
methods such as high-pressure spraying or needle-less syringe infiltration, the methods
resulted in symplastic RNA delivery that silences transgenes and endogenous plant gene
expression [37]. Moreover, CDs were shown to be capable of successfully protecting siRNA
from nucleases, with minimal degradation reported after a one-hour incubation with
RNase-III [27]. Nuclease protection is attributed to the binding between positively charged
amine-functionalized CDs bound and negatively charged polyphosphate groups of nucleic
acids [43]. The efficiency of CD-PEI-siRNA in silencing target genes in plant cells depends
on several factors, particularly the size of CDs. A limited amount of silencing activity was
observed for the largest CD-PEI-siRNA (having an average hydrodynamic diameter of
8.7 nm) while a much higher silencing activity was reported for the intermediate-sized
CD-PEI-siRNA (having an average hydrodynamic diameter of close to 3.9 nm). However,
the smallest-sized CD-PEI-siRNA (having an average hydrodynamic diameter near 1.1 nm)
also displayed limited silencing activity. These observations showed that, in addition to
the size exclusion limit of the cell wall, the efficiency of silencing activity depends on other
barriers in the cellular system, such as endosomal escape [27,44], endocytosis and release of
siRNA [27]. Finding a plausible explanation for the influence of these barriers on silencing
efficiency needs further research.

2.3. Carbon Nanotubes

Carbon nanotubes (CNTs, Figure 4) are cylindrical hollow nanomolecules that are
hydrophobic in nature. Because of the hydrophobic property, unmodified CNTs are less
biocompatible, and it is unlikely that they can be integrated into biological systems unless
they undergo functionalization or surface modification [45]. The first use of CNT as
a plant gene delivery vehicle was reported in a study with Nicotiana tabacum cells in
which oxidized-single wall carbon nanotubes (SWNTs) were conjugated with fluorescein
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isothiocyanate and single-stranded DNA, with the aim to penetrate cell membranes and
intact plant cell walls without using a gene gun [46]. Although the study demonstrated
the potential of CNT conjugates to deliver DNA and small dye molecules into walled
cells, the internalization mechanism of SWNTs in intact plant cells has not been studied in
great detail. Besides SWNTs, other studies have explored the capability of multi-walled
carbon nanotubes (MWNTs) to penetrate plant cells. For example, a study by Serag
and colleagues [47] elucidated the multiwalled carbon nanotube (MWNT) internalization
mechanism into plant protoplasts using TEM and confocal imaging techniques. The
findings suggested that MWNT uptake by plant protoplasts is facilitated by an endosomal
escape mode while their translocation into key cellular structures is size-dependent.
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Subsequent studies have elucidated the ability of CNT as a carrier of other biomolecu-
lar cargoes into intact plant cells, for example, cellulase [47], plasmid DNAs [29,48–50] and
siRNAs [29]. These biomolecules bound non-covalently on CNTs based on pi-pi stacking,
enabling the biomolecules to be efficiently internalized into walled plant cells. Interestingly
for naked RNAs that are easily cleaved by nucleases, their adsorption to CNTs delayed
intracellular RNA degradation and prolonged their silencing effects [29]. Similar to CDs,
CNTs were shown to be suitable as an siRNA carrier of transgenes and endogenous plant
genes that allow RNAi effects to occur inside the plant cells via symplastic RNA delivery.
The use of non-charged CNT surface was shown to alleviate cellular toxicity problems
that are commonly observed when delivering negatively charged RNAs on positively
charged vehicles; however, full desorption effects of CNT were not explored after 3 h
post-infiltration [29]. For future studies, a long-term evaluation on toxicity and desorption
or decomposition of CNT in plants is desirable to fully demonstrate the safe use of CNT as
a carrier for dsRNAs in agriculture.

2.4. Chitosan

Chitosan (Figure 5) is a deacetylated form of biopolymer chitin and is composed
of random copolymers (β1→4) 2-amino-2-deoxy-D-glucopyranose (GlcN) and (β1→4)-
2- acetamido-2-deoxy-D-glucopyranose (GlcNAc) repeating units [32]. Chitosan is well
known for its versatility as it can be easily modified chemically to add desired function-
alities. For example, by adding a mild acidic solution to chitosan, the biopolymer would
carry positive charges on its amino groups since -NH2 is protonated and forms -NH3

+.
The positive charges elicit electrostatic interactions with negatively charged phosphate
backbones of nucleic acids when mixed in solution, and genetic materials are encapsulated
in stable nanostructures (nanoparticles) for efficient gene delivery [51].
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While there is a larger body of research on the use of chitosan carriers in animal cells,
which have shown good protection against nucleases [52–54], a few studies have demon-
strated the potential of chitosan nanoparticles as a carrier to transport genetic material
into walled plant cells [32,50]. Recent work investigating the physicochemical character-
ization of the dsRNA-chitosan complex reported a greater binding affinity between the
negatively charged phosphate groups from the RNA and positively charged methyl groups
of chitosan at a ratio (N/P = 1). The dsRNA-chitosan complex also displayed low toxicity
profiles when evaluated against lettuce and human red blood cells, and therefore could
be a future candidate for crop protection and improvement strategies [32]. Another study
on chitosan-SWNT hybrid nanoparticle demonstrated that the nanoparticle can enhance
the loading and trafficking efficiency of the plasmid DNA into plant chloroplasts [50]. The
deacylated chitosan was designed to be covalently bonded onto the carboxylated-SWNTs
to afford more stable chitosan functionalization in a plant system [50].

2.5. Peptides

The topical application of peptides as the nucleic acid carrier has been one of the
major focuses for delivery in plants. Peptides are short chains of amino acids that carry
positive charges on the cationic groups. The positive charges interact electrostatically
with negatively charged nucleic acids to encapsulate the genetic materials for an efficient
delivery [17,55,56]. Peptides also possess cell-penetrating properties that enable the translo-
cation of genetic materials across plant cell walls [57]. For example, branched amphiphilic
peptide nanoparticles (BAPC) were studied in several formulations (ranging from 25 to
100 nm), to confirm dsRNA uptake by pea aphids through oral feeding [58]. Inclusion of
BAPC-dsRNA in the aphid diet was found to suppress BiP and ARMET gene expression
in Tribolium castaneum and Acyrthosiphon pisum, consequently impairing protein folding
and resulting in premature death of these plant pests. More importantly, ingestion of
BPAC-dsRNA showed a lethality rate of 6 to 9 days earlier compared to feeding with
dsRNAs alone, suggesting BPAC complexation enhanced oral delivery of dsRNAs and
resulted in improved RNAi effects.

In plant cells, functionalizing cell-penetrating peptides (CPP, Figure 6), for example,
Bp100 (having an amino acid sequence: KKLFKKILKYL), with positively charged peptides
helped the CPP to effectively condense and translocate genetic materials across cell walls.
For example, conjugation of CPPs with poly-lysines (KH)9 allows the CPPs to have a
greater functional presence at the surface of the genetic material-CPP complexes [17].
The design strategy has facilitated better penetration of dsRNAs across cell walls and
plasma membranes.
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2.6. Gold Nanoparticles

Gold (Au) refers to the solid inorganic aurum metal nanoparticle that has been used
in various molecular delivery applications [30,43]. Au nanoparticles have received wide
attention for biomedicinal applications primarily due to their biocompatibility. Not only
that, the synthetic approach to producing gold nanoparticles allows one to produce nano-
sized particles in addition to the ease of surface functionalization or modification [59]. For
example, several chemical functional groups, such as COOH, S and NHS, were reported to
be able to easily form coordinate bonding, thus allowing for polyionic gold nanoparticle
surface modification and thereafter having the potential for complexation with polymeric
nucleic acids such as siRNA [30,60]. A similar approach was conducted by Elhaj Baddar
and colleagues [61] using an inorganic material, calcium phosphate. To the best of our
knowledge, the only example of the use of Au nanoparticles to deliver siRNA was reported
by Zhang et al. [31] where the group functionalized Au with polyethyleneimine (PEI) to
produce 6 to 27 nm Au-PEI nanoparticles. Zhang and colleagues demonstrated that the
constructs were able to deliver 21 bp siRNA and silence the mGFP5 transgene in Nicotinum
benthamiana while being non-toxic to the host plant.

2.7. Other Potential Carriers—Silica and Liposomes

Silica nanoparticles (SNP, Figure 7) have promising physicochemical and thermal
stability and are known for their high loading capacity due to porosity [62]. Uptake of SNP
by mammalian cells is well documented in biomedical fields with the nanoparticle uptake
efficiency being found to be dependent on surface charges [63] and particle sizes [64]. In
addition, several works have reported the capability of mesoporous silica nanoparticles
to deliver DNA into intact plant cells as a tool for transient gene expression [65–68] or to
transport phytochemicals into plants [69]. However, to our knowledge, no work has been
carried out to explore the use of silica to deliver RNAs in plant cells.
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Liposomes (Figure 8) are surfactants that are made of various types of phospholipids
and can serve as a vesicle to penetrate plant cell walls. Previously, liposomes have been
demonstrated to be effective at delivering nutrients using a 100 nm PEGylated liposome into
tomato leaves [70]. The plant cell body was stained with fluorescein, which is the loaded
dye used to visualize the foliar uptake of the nanoparticles using confocal microscopy [70].
Several works have explored the use of liposomes for transgenic expression of dsRNAs
in plants and as an artificial diet or for feeding experiments in insects, fungi, bacteria and
viruses [71]. Liposomes and exosome-like liposomes were also utilized as nanoparticle
carriers in CRISPR/CaS [72], but to the best of our knowledge, there is no published report
on the use of liposomes for transporting RNAi cargos into plant cells.
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3. Potential Risks, Safety Concerns and Limitations

An important aspect of topical RNAi application is the need for risk assessments
and management of the dsRNA-based products. Several key aspects for consideration for
risk assessments have been described in reports such as the US EPA’s “White paper on
RNAi technology as a pesticide: Problem formulation for human health and ecological
risk assessment” [73] and the Organization for Economic Co-operation and Development
working paper “Considerations for the Environmental Risk Assessment of the Application
of Sprayed or Externally Applied dsRNA-Based Pesticides” [74]. The risks of topical RNAi
are unique, differing from those of conventional genetic modification, since dsRNAs can be
applied as an active ingredient in biopesticides, thus presenting risks similar to traditional
pesticides. Skin and respiratory irritation or damage and potential environmental contam-
ination are some risk assessment and management aspects that need to be considered if
these nanotechnologies are to be commercialized. However, the particular concerns relating
to RNAi silencing activities are potential off-target silencing effects on target and non-target
organisms that could be elicited with sufficient sequence similarity between dsRNA and
off-target transcripts [75,76]. Addressing the concern of possible off-target effects is espe-
cially important to ensure public buy-in as the technology reaches the market. Therefore,
designs of RNAi target sequences should be highly specific and have no homology and
negligible sequence similarity with off-target transcripts, to minimize off-target hits.

Bioinformatics tools and models have been particularly useful in designing RNAi
targets and predicting potential off-target predictions. Reliable searching, predictions and
designs of RNAi triggering sequences were made possible with the availability of genomic
data libraries of numerous species such as the Drosophila RNAi Screening Center (avail-
able at http://www.flyrnai.org; accessed on 29 November 2022) [77] and Genome RNAi
(http://www.genomernai.org; accessed on 29 November 2022) [78], web-based design
tools including dsCheck (http://dscheck.rnai.jp; accessed on 29 November 2022) [79] and
OfftargetFinder (https://www.specifly.org; accessed on 21 December 2022) [80], as well
as algorithm models such as siRNA-Finder (https://github.com/snowformatics/siFi21;
accessed on 29 December 2022) [81], pssRNAit SVM (https://www.zhaolab.org/pssRNAit;

http://www.flyrnai.org
http://www.genomernai.org
http://dscheck.rnai.jp
https://www.specifly.org
https://github.com/snowformatics/siFi21
https://www.zhaolab.org/pssRNAit
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accessed on 26 December 2022) [82] and PFRED (https://github.com/pfred; accessed on 21
December 2022) [83]. Nonetheless, bioinformatics prediction should be supplemented with
empirical data from feeding assays on selected test species taxa to verify off-target effects
and support risk assessments [84]. The selection of test species may be based on three
indicators, which are the sensitivity of the taxa, the representativeness of the test species
for a valued taxon, and the availability and reliability of the test species and test protocols
with respect to detecting adverse effects on the relevant risk assessment criteria [76].

There also remain uncertainties over the possible fates of dsRNAs once they are
translocated into the target cells. For example, considering clathrin-dependent endocyto-
sis is a highly conserved mechanism across eukaryotic species [85], there is a possibility
that dsRNA can be internalized into the cells and potentially lead to innate immune re-
sponse activation by long dsRNAs [71,86]. Furthermore, the risks of RNAi sprays become
more complex as dsRNA-nanoparticle formulation prolongs the stability of the dsRNAs in
the environment, soil and irrigation systems. The use of nanoparticles, such as chitosan,
may also have unforeseen effects, for example, the suppression of myosin expression in
C. elegans was reported when chitosan was used as either polyplex nanoparticles or
alone [54]. Thus, a rigorous safety assessment is needed to evaluate the potential adverse
effects of nanoparticles post-spraying.

The commercial potential for RNAi technologies could be hampered by uncertainties
in biosafety regulatory pathways for the technology. While many other countries are yet
to clarify their regulatory positions for RNAi sprays, several countries have made the
first move in reviewing and defining their regulatory processes. In the USA, the risks of
RNAi-based biopesticides are evaluated using chemical pesticide templates while Canada,
which adopts a product-based biosafety regulation, oversees topically applied RNAi (e.g.,
via spraying) based on trait novelty. Australia also has taken a favorable standpoint
towards regulating non-transgenic RNAi and approved the proposal to exempt topically
applied dsRNAs from GMO regulations (refer to schedule 1A techniques that are not
gene technology), while New Zealand ruled that dsRNA-treated eukaryotic organisms
do not meet the definition of a GMO (APP203395) [75,87]. Such decisions have facilitated
approvals for field trials of dsRNA sprays, namely “BioDirect” technology that controls bee-
parasitic Varroa mites (submitted by Bayer/Monsanto) [88], and a biocontrol formulation
against Colorado potato beetle, Leptinotarsa decemlineata (submitted by Syngenta) [89]. Both
field trials are being conducted in the USA.

It is also important to note that one of the commercialization barriers to topical
RNAi applications are the high expense of large-scale dsRNA production, especially if the
synthesis is carried out using in vitro transcription kits. Private startup firms, for example,
GreenLight Biosciences (Medford, MA, USA) and RNAgri (previously known as APSE Inc.,
St Louis, MO, USA), have developed and patented proprietary dsRNA-mass production
methods to lower the cost [11]. Alternatively, microbial fermentation technology can also
be used to produce dsRNAs at an economic cost [90]. As these technologies can be used
to produce cheap dsRNAs, it is anticipated that the commercial interest in the topical
RNAi technology is gaining more traction. The positive trend is evident in our patent
landscape analysis that demonstrated the evolving commercial interest in topical RNAi
application, with a promising trend in patent publications and patent grants, both covering
new methods, formulations and usage of topical dsRNAs in crops (Table 3) [11]. With the
evolving patent landscape and encouraging results from the field evaluations of RNAi
spray, it is anticipated that the development of carriers for RNA delivery will flourish in
the years to come.

https://github.com/pfred
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Table 3. Patent Families on Methods of Delivery and Compositions to Introduce Exogenous dsRNAs into Plant Cells.

Application
Number Priority Date Legal Status Assignee Invention Details

US15/579,120 03.06.2015 Granted in
US (2020)

Monsanto
Technology LLC

Composition: Polynucleotide, particulate and osmolyte
Delivery: Abrading a surface of a plant with a particulate, followed by

applying an RNA onto the plant surface

US15/579,125 02.06.2015
Granted in
US (2021),
EP (2021)

Monsanto
Technology LLC

Composition: Polynucleotide, at least one lipase enzyme, one or more
osmolytes, surfactants, abrasives or any combination

Delivery: Applying lipase enzyme, osmolytes, and surfactants, followed
by an RNA onto the plant surface

US16/062,008 14.12.2015
Granted in
US (2021)
EP (2021)

Monsanto
Technology LLC

Composition: Polynucleotide targeting gene of flea beetle and cross-linked
cationic polysaccharide

Delivery: Applying onto a seed, plant surface or foliar spray

US61/748,095 01.01.2013

Granted in
AU (2019),
CN (2019),
US (2018)

AB Seeds Ltd./Monsanto
Technology LLC

Delivery: Soaking ungerminated seed with a solution comprising a
concentration of between 0.005 and 1.5 pg/pL of the dsRNA

molecule, followed by drying the seed

US16/583,863 26.09.2018 Granted in
US (2021)

Greenlight
Biosciences Inc

Composition: dsRNA targeting Leptinotarsa decemlineata Inhibitor of
Apoptosis (IAP) gene

Delivery: Spray, fog, seed treatment, drench, drip irrigation, in furrow,
insect diet, or bait

US15/752,274 13.08.2015 Pending Forrest
Innovations Ltd.

Composition: Polynucleotide and at least one cell wall degrading enzyme, a
nucleic acid condensing agent, a transfection reagent, a surfactant, and

a cuticle penetrating agent

US14/381,045 06.03.2014
Granted in

JP (2020)
US (2020)

RIKEN Composition: Polynucleotide and a carrier peptide containing a
cell-penetrating sequence and a penetrating polycationic sequence

Applicationnumber Priority Date Legal Status Assignee Invention Details
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4. Conclusions and Future Direction

The topical application of dsRNA as active molecules presents a highly versatile crop
management strategy that does not require plant transformation methods. Since naked
dsRNAs are susceptible to degradation upon exposure to the environment, dsRNAs can be
encapsulated or layered with biocompatible nanoparticles to prolong the RNA stability and
increase silencing efficiency when applied in field-like conditions. However, the design and
selection of RNA carriers will depend on several factors such as the RNA size (e.g., siRNAs
and long dsRNAs), the target (e.g., fungi, insects, endogenous plant genes and viruses) and
the method of delivery (e.g., trunk injection, spraying, petiole adsorption, etc.).

This work reviewed a selection of nanocarrier delivery systems and their use, such as
LDH, CD, CNT, gold nanoparticles, chitosan nanoparticles, silica nanoparticles, liposomes
and CPP. The use of these nanocarriers allows dsRNAs to be more stable and efficient
when applied in open fields. In perspective, the nanocarriers must first be surface-modified
with polar components to allow for carrier-RNA polar interactions. Further studies are
also needed to understand the possible toxicity effects of dsRNA-nanocarrier complexes
and how various barriers in the cellular system influence the uptake, silencing effects and
systemic protection mechanisms in plants.

Despite the promising potential of topical RNAi technology, there are limitations,
potential risks and safety concerns in relation to the technology that need to be addressed.
Potential off-target effects, uncertainties in the fate of dsRNAs and regulation of the technol-
ogy, as well as the high production cost of the dsRNAs, may limit the commercial potential
of the technology. More importantly, good governance of topical RNAi technology de-
mands a greater corporate responsibility that requires continuous dialogues with relevant
stakeholders and that devotes more attention towards addressing ethical issues and societal
costs of the technology. To ensure the longevity of topical RNAi application, the authors
believe that understanding society’s position on the technology with respect to the aspects
of willingness-to-pay, technological adoption trade-offs and public trust are key areas that
need urgent attention.
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