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Abstract: Borinic acids [R2B(OH)] and their chelate derivatives are a subclass of organoborane com-
pounds used in cross-coupling reactions, catalysis, medicinal chemistry, polymer or optoelectronics
materials. In this paper, we review the recent advances in the synthesis of diarylborinic acids and their
four-coordinated analogs. The main strategies to build up borinic acids rely either on the addition of
organometallic reagents to boranes (B(OR)3, BX3, aminoborane, arylboronic esters) or the reaction
of triarylboranes with a ligand (diol, amino alcohol, etc.). After general practical considerations of
borinic acids, an overview of the main synthetic methods, their scope and limitations is provided. We
also discuss some mechanistic aspects.
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1. Introduction

Organoboron compounds are considered as a mainstay in modern organic chemistry
for the construction of carbon–carbon (Suzuki–Miyaura cross-coupling, Petasis reaction, etc.)
or carbon–heteroatom bonds (Chan–Lam–Evans coupling, oxidation, etc.), but also in nu-
merous transversal fields including catalysis, materials science, biology, imaging, etc. [1,2].
Among boron derivatives, borinic acids [R2B(OH)] are far less studied than their parent
boronic acids [RB(OH)2], although they display interesting properties and reactivities.
Borinic acids contain two C–B bonds and one B–O bond, resulting in an enhanced Lewis
acidity in comparison to boronic acids. From a structural point of view, it has been shown
that borinic acids can exist as a monomer, dimer (anhydride R2BOBR2), or cyclic trimer
([R2BOH]3), in solution or the solid state, depending on the substitution pattern of the R
group [3–5].

As well as some applications of borinic acids in cross-coupling reactions [6,7], or as
bioactive compounds [8–10], they have mainly been used for their propensity to coordinate
alcohols, diols, amino alcohols, etc. [11]. For instance, borinic acids catalyze regioselective
functionalization of diols, carbohydrates or epoxide ring opening reactions [12,13]. Four-
coordinated compounds derived from borinic acids have also been intensively studied in
optoelectronics including OLEDs [14].

Borinic acids and their derivatives (borinic esters [R2B(OR’)] or four-coordinated
borinic acids) are prepared by three main methods that we sorted depending on the
number of C–B bonds formed or cleaved, and the starting borylating reagents. The first
one relies on the formation of two carbon–boron bonds using borylating agents 1 such
as trialkoxyboranes, borontrihalides, etc. (Figure 1). The second approach starts from
arylboron reagents 2, and requests the formation of one carbon–boron bond to access borinic
acids 4. Finally, the last method involves the cleavage of a C–B bond of triarylboranes 3,
either by hydrolysis to produce 4, or by reaction with a bidentate ligand (amino alcohol,
diamine, etc.) to give the corresponding four-coordinated borinic derivatives 5.
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alternative way of purifying borinic acids is to form a chelate complex with amino alco-
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tate and can be filtered off to remove the soluble impurities (boronic acid derivatives, etc.) 
(Scheme 1). As a result of the coordination of the nitrogen lone pair to the boron atom, 
which prevents oxidation and protodeboronation, aminoborinates 7 can be easily stored 
at room temperature without any precaution. Interestingly, the free borinic acids 6 can be 
released by a simple treatment under smooth acidic conditions. 
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2.1. By Nucleophilic Addition of ArLi and ArMgX to Boron Reagents 

The nucleophilic addition of two equivalents of an organolithium or organomagne-
sium reagent onto an electrophilic boron species (such as trialkoxyboranes, trihalogenobo-
ranes or aminoboranes) is a straightforward method to synthesize symmetric diaryl-
borinic acids. This strategy allows for the preparation of both acyclic and cyclic borinic 
acids, using cheap and readily accessible borylating agents. One major drawback of this 
strategy is the potential formation of undesired side products such as boronic acids and 
triarylboranes, resulting in difficult purifications. 

2.1.1. Use of Trialkoxyboranes 
Organoboron compounds, including boronic acids, borinic acids and borane deriva-
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reagents. Although the synthesis of boronic acid derivatives usually performs well, with 
high yield and purity using an excess of trialkoxyboranes, the scenario becomes more 
complex with borinic acids (Scheme 2). In this case two equivalents of an organometallic 
reagent RM (M = Li, MgX) are needed: the first one reacts with the trialkoxyborane to 
provide the boronic ester after metal alkoxide elimination [16], while the second addition 
gives rise to desired borinic ester. However, borinic esters are more electrophilic than their 
parent boronic esters. Thus, depending on the reaction conditions (stoichiometry, temper-
ature or rate of addition of the organometallic), formation of triarylboranes and tetraaryl-
borates can then arise from a third and fourth addition, respectively. 

Figure 1. General methods for the synthesis of borinic acids 4 and their derivatives 5.

Due to their high Lewis acidity, borinic acids are more prone to oxidation (by oxygen
from the air) and protodeboronation (under acidic conditions) than their parent boronic
acids. Accordingly, purification over silica gel generally results in a low isolated yield. An
alternative way of purifying borinic acids is to form a chelate complex with amino alcohols,
typically, ethanolamine [15]. The resulting stable aminoborinates 7 usually precipitate
and can be filtered off to remove the soluble impurities (boronic acid derivatives, etc.)
(Scheme 1). As a result of the coordination of the nitrogen lone pair to the boron atom,
which prevents oxidation and protodeboronation, aminoborinates 7 can be easily stored
at room temperature without any precaution. Interestingly, the free borinic acids 6 can be
released by a simple treatment under smooth acidic conditions.
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2. Formation of Two Carbon–Boron Bonds
2.1. By Nucleophilic Addition of ArLi and ArMgX to Boron Reagents

The nucleophilic addition of two equivalents of an organolithium or organomagne-
sium reagent onto an electrophilic boron species (such as trialkoxyboranes, trihalogenobo-
ranes or aminoboranes) is a straightforward method to synthesize symmetric diarylborinic
acids. This strategy allows for the preparation of both acyclic and cyclic borinic acids, using
cheap and readily accessible borylating agents. One major drawback of this strategy is the
potential formation of undesired side products such as boronic acids and triarylboranes,
resulting in difficult purifications.

2.1.1. Use of Trialkoxyboranes

Organoboron compounds, including boronic acids, borinic acids and borane deriva-
tives can be prepared by the addition of an organometallic species onto trialkoxyborane
reagents. Although the synthesis of boronic acid derivatives usually performs well, with
high yield and purity using an excess of trialkoxyboranes, the scenario becomes more
complex with borinic acids (Scheme 2). In this case two equivalents of an organometallic
reagent RM (M = Li, MgX) are needed: the first one reacts with the trialkoxyborane to
provide the boronic ester after metal alkoxide elimination [16], while the second addition
gives rise to desired borinic ester. However, borinic esters are more electrophilic than
their parent boronic esters. Thus, depending on the reaction conditions (stoichiometry,
temperature or rate of addition of the organometallic), formation of triarylboranes and
tetraarylborates can then arise from a third and fourth addition, respectively.
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Scheme 2. Addition of organometallic species onto trialkoxyboranes.

The uncontrolled polyaddition can be sometimes avoided, or at least limited by careful
optimization of the reaction conditions. Along with the reaction temperature and the
organometallic species, the nature of the borylating agent plays a crucial role. It appears
that lower yields are usually obtained with trimethyl borate (B(OMe)3) [17] compared
to B(On-Bu)3 [7] and B(Oi-Pr)3 [18]. This drop in isolated yield can be attributed to the
formation of a substantial amount of boronic acid [19], but also to the quality of the
borylating agent. Indeed, B(OMe)3 is highly moisture sensitive, and even the commercial
source can contain a small amount of MeOH, which significantly affects the overall yield,
by hydrolyzing the organometallic reagent. Other trialkoxyboranes such as B(Ot-Bu)3 [20],
PinBOi-Pr [21,22], and butylboroxine [23], have been sporadically studied for the synthesis
of borinic acid derivatives.

A recent study by Zou et al. also showed the importance of the workup condi-
tions (Scheme 3) [15]. As just mentioned, they observed the selective formation of the
p-tolylborinic ester 9 when using tributyl borate B(On-Bu)3, instead of B(OMe)3 or
B(Oi-Pr)3. In their previous procedures, aqueous hydrochloric acid was used to hydrolyze
the intermediate borinic ester 9 and solubilize the magnesium salts (MgX2, MgXOH).
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Interestingly, they found that simply adding water instead of 1 M HCl (aq) resulted
in the precipitation of Mg(OH)2 that could be easily removed by filtration. Subsequent
reaction of the borinic ester with ethanolamine afforded 10 with an excellent 88% yield.
This method clearly simplifies the procedure with Grignard reagents and could be used
with other amino alcohols, or amino acids.

Regarding the substituent on the aromatic ring, these methods allow the synthesis
of a variety of ortho-, meta- and para-substituted borinic acids 12 or their amino alcohol
derivatives 13 as exemplified in Scheme 4.

In general, good yields are obtained whatever the substitution pattern on the aromatic
ring. Furthermore, electron-withdrawing (i.e., 12a [24], antibacterial agent 13f [25], 13h [15])
and -donating (12b [6,26], 12d) [7] substituents are tolerated, as well as napththyl groups
(i.e., 12g, a 1,2-diol complexing agent for absolute configuration prediction) [27]. However,
the reaction is less efficient for para vinyl-substituted borinic acid 13e [28], probably because
of the potential reaction of the styrenyl moiety with the Grignard reagent. This is a
main drawback of this strategy because only functional groups compatible with Grignard
reagents (or organolithium) and acidic workup are allowed, which considerably narrows
the scope of the reaction. However, the recent method reported by Zou et al. using
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water instead of HCl for the hydrolysis, enables the synthesis of diketal 13c in a good 65%
yield [15].
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Non-symmetrical borinic acids are of particular interest for applications in medicinal
chemistry or materials science. For instance, in the course of their study on borinic-
acid-containing polymers as chemical sensors, Wan et al. used a one-pot synthesis of
monomers 16a–c by the sequential addition of Grignard reagent on trimethoxyborane
(Scheme 5) [29,30]. The reaction of the Grignard of 14 with B(OMe)3 produced boronic ester
15, which was in situ reacted with the other Grignard (i.e., 18) derived from p-bromostyrene.
By careful control of the temperature and the stoichiometry, polymerizable borinic acids
16a–c were selectively obtained in good yields after purification on column chromatography.
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Such a strategy has also been exploited with aryllithium species for the synthesis
of diborinic acid derivatives 23 that display strong inhibitory activity on store-operated
calcium entry[10]. Starting from commercially available arylbromides 21, lithiation at a low
temperature, then borylation with B(Oi-Pr)3, afforded intermediates 22, ready to react with
preformed bis-phenyllithium 20 (Scheme 6). Hydrolysis, then esterification with ethanol
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amine afforded a range of bis-borinic acid derivatives 23 tethered by a biphenyl or an
ether linker.
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Cyclic analogues of borinic acids are an important subclass of B-containing heterocy-
cles. They have been used for several applications such as catalysts for regioselective activa-
tion of polyols or epoxide opening [31], building blocks in double Suzuki coupling [32,33],
sensors [34] or fluorescent emitters [35]. A straightforward method to access these hetero-
cycles relies on the reaction of an electrophilic boron reagent with a diaryllithium species,
which can either be generated by halide–lithium exchange or by directed ortho-metalation.
As described in Scheme 7, the halide–lithium exchange strategy has been successfully
applied to the synthesis of various six-membered B-heterocycles such as azaborine 25a
(used for catalysis) [36,37], methylene-bridged diarylborinic acid 25b [32], or fluorescent
borinic acid 25c [34], a ratiometric sensor for H2O2. All these compounds were isolated in
moderate to good yields whatever the source of borate reagent (B(On-Bu)3 or B(Oi-Pr)3).
Borepinol derivatives 25d–e that embedded a seven-membered ring were also prepared by
this strategy, albeit with more modest yields. For example, compound 25d [8] was isolated
in a low 3% yield, which was attributed by the authors to the tedious purification and
extensive decomposition of 25d over silica gel. In contrast, the aromaticity of borepinol 25e
confers to the molecule stability towards air and moisture, and could be isolated with a
33% yield [35]. Interestingly, this compound proved to be an efficient probe to selectively
bind dopamine over norepinephrine.

A related approach was described for the synthesis of 9,10-diboraanthracene 28
(a fluoride ion sensor) from triarylborane 26 (Scheme 8) [38]. Dilithiation of 26 with t-
BuLi, followed by addition of trimethyl borate led to borinic ester intermediate 27. In this
specific example, compound 27 was not hydrolyzed but was directly reacted with mesityl
magnesium bromide to afford 28 with a 47% yield over three steps.
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Scheme 8. Synthesis of intermediate borinic ester 27.

An alternative synthesis of dibenzoxaborininols was developed by Fu et al. who pro-
posed a double ortho-metalation of diarylethers 29 (or thioethers) with n-butyllithium/TMEDA,
followed by trapping with trimethyl borate (Scheme 9) [39]. The method has been exempli-
fied with more than twenty substrates, including symmetrical 30a and non-symmetrical
borinic acids (30b–e) bearing alkyl (i.e., Me, Et, t-Bu) and methoxy substituents. It is worth
mentioning that in the case of 30b, the regioselectivity is dictated by the lithiation step,
which occurs between the MeO and ArO group thanks to an additional coordination of
the organolithium reagent. In the naphthalene series (i.e., 30e), however, a competitive
deprotonation at the C1 and C3 positions takes place, with the latter always observed as
the major regioisomer. It is interesting to note that these cyclic borinic acids were suc-
cessfully transformed into dibenzofuran derivatives under palladium catalysis. The same
strategy was applied to diaryl thioether, although the corresponding thia-boraanthracene
30f was isolated with only a 20% yield, reflecting the lower ability of sulfur to direct
ortho-metalation [36].
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Scheme 9. Synthesis of cyclic borinic acids by ortho-metalation. (a) Traces of the C1 regioisomer were
observed. (b) B(On-Bu)3 was used.

In 2020, Uchiyama et al. described an original nucleophilic diboration of alkynes
to build up boron-doped PAHs 32 (Scheme 10) [40]. Bromo-naphthalenes 31 were con-
verted into the aryl lithium species with n-BuLi at low temperature, then reacted with
bis(pinacolato)diboron at room temperature. After workup, cyclic borinic acids 32 were
obtained in modest to excellent yields, depending on the alkyne, the aromatic substitution
and the nature of the diboron reagent.
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Scheme 10. Synthesis of boron-doped PAHs 32 by nucleophilic diborylation of alkynes 31.

The reaction proceeds by formation of a sp2-sp3 diboron intermediate 33, which un-
dergoes intramolecular nucleophilic attack of the formal boryl anion onto the suitably posi-
tioned triple bond (Scheme 11). Consecutive intramolecular addition of the newly formed
carbanion (i.e., 34) on the boronic ester led to the cyclized product 32 after hydrolysis.
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Scheme 11. Proposed mechanism for the diborylation of alkynes.

2.1.2. Use of Borontrihalides

In comparison to trialkoxyboranes, the corresponding boron trihalide reagents are
significantly more reactive due to the enhanced Lewis acidity at the boron centre. These
reagents are thus particularly adapted for the synthesis of diarylborinic acids bearing
hindered ortho-substituents or electron-withdrawing groups. As highlighted in Scheme 12,
borinic acid 36a substituted by electron-deficient CF3 groups was prepared from 35a by
addition of the corresponding organolithium species onto BCl3, followed by hydrolysis [41].
A detailed study of this reaction showed that a chlorine/fluorine exchange (from the CF3
substituent) occurred during the reaction to afford a mixture of Ar2BCl and Ar2BF [42].
Hydrolysis afforded borinic acid 36a in a 59% isolated yield even though both fluoro- or
chloro-diarylboranes were formed. The analogous dimesityl borinic acid 36b was obtained
with a 58% yield by the addition of the Grignard reagent of 35b on boron trifluoride
dimethyl etherate [43].
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Scheme 12. Synthesis of diarylborinic acids using BCl3 and BF3·OMe2.

Access to the azaborine framework 39, bearing a free amine, has been described by
using BCl3 as the borylating agent [44]. The authors showed that direct conversion of
37 in azaborine 39, by treatment with n-BuLi, then BCl3, resulted in a low yield (21%)
(not shown). A more efficient stepwise method was then developed, consisting of prior
protection of the aniline 37 by a TMS group followed by a lithiation/borylation/hydrolysis
sequence. Overall, the isolated yield of azaborine 39 was significantly increased to 70%
(Scheme 13).
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Spiro-borafluorene complexes (i.e., 43) have been studied for their particular structural
features, perpendicular alignment between the ligand and the boracycle, which influence
their physicochemical properties. As depicted in Scheme 14, the borafluorene unit can
be prepared from biphenyl bromide 40, by a double lithiation followed by subsequent
trapping with BCl3. Methanolysis of chloroborane 41 gave 42 and HCl as a byproduct,
which was removed under vacuum. Treatment of 42 with 8-hydroxyquinoline then gave
compound 43 with a 70% yield [45]. It is worth mentioning that direct reaction of the
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intermediate dilithium species with B(OMe)3 affords the diborylated compound (not
shown) instead of the boracycle.
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Scheme 14. Synthesis of borafluorene derivative 43.

Fukushima et al. showed that chloroborafluorene 41 can be transformed into the triflu-
oromethane sulfonyloxy analog 44 by treatment with TMSOTf (74% yield) (Scheme 15) [46].
This highly reactive intermediate was then engaged in a 1,2-carboboration of alkynes to
produce borepines 45a–c in excellent yields. DFT calculations indicate that borafluorene
and diphenylacetylene first form a complex by coordination of the alkyne to the lone
orbital of the boron. This complex then evolves into the formation of the borepine 45, by a
four-membered transition state, resulting in the alkyne insertion in the B-C bond.
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During the course of their study on novel bifunctional organoboranes, Jäkle et al.
designed diboradiferrocene 48 bearing a bis-borinic acid backbone (Scheme 16). In their
initial studies, they observed that direct transmetalation of 1,2-bis(stannyl)ferrocene 46
with boron halides resulted in a rearrangement that produced 1,1′-bis(diboryl)ferrocene
(not shown). This issue was circumvented by first reacting 46 with HgCl2 (i.e., 47), then
with BCl3 [47]. The dichloroborane intermediate was next subjected to methanolysis with
TMSOMe, to avoid the formation of HCl and prevent decomposition. Hydrolysis eventually
led to bis(borinic acid) 48 with a 16% yield [48].
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2.1.3. Use of Aminoboranes

Despite many applications of B(OR)3 and BX3 as borylating agents, their main draw-
back relates to the difficulty of controlling the number of aryl residues transferred to the
boron centre (see Scheme 2). In the early sixties, Coates et al. described the use of diary-
laminodichloroboranes (Cl2B-NAr2) for the selective preparation of diarylborinic acids
(Scheme 17a) [49]. These borylating agents display two important features: (1) they are
monomeric in solution when the aryl is a sterically hindered group (Ar = Ph, o-Tol or Mes),
and (2) the presence of the amino group on the boron reduces its Lewis acidity by donation
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of the nitrogen lone pair to the boron vacancy. These properties give a borylation agent in
which the boron atom is electrophilic enough to react with two equivalents of Grignard
reagents, but prevent the third addition. Thus, with only a slight excess of arylmagnesium
bromide 49, diarylborinic acids 51 were obtained in yields ranging from 45% to 88%. In
2017, Clark et al. illustrated the synthesis of cyclic borinic acids 52a–c by a similar strategy.
While reaction of the dilithium intermediate with B(OR)3 reagents resulted in low yields,
the authors found that the use of dichloro(diisopropylamino)borane led to improved yields
of azaborines 53a–c (Scheme 17b) [22].
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Our group proposed diisopropylaminoborane 57 (DIPOB) as the borylating agent
for the synthesis of symmetric and unsymmetrical borinic acid derivatives under non-
cryogenic conditions. The reaction selectively gives diarylborinic acids even when a slight
excess of arylbromide 54 (2.2 equivalents) is employed (Scheme 18) [50,51]. No boron
impurities were observed, and the products were obtained by precipitation without the
need of flash chromatography. Although DIPOB is easy to synthesize from low cost starting
materials, this air and water sensitive reagent needs to be prepared by the thermolysis of
diisopropylamine–borane complex 58 (DIPAB) and stored under an inert atmosphere. As a
convenient alternative, we showed that DIPOB can be easily in situ generated from water-
and air-stable DIPAB, by treatment with a catalytic amount of a Grignard reagent [52].
Overall, both methods gave borinates 56 in good to excellent yields after precipitation of
the borinic acids with a suitable amino alcohol.
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Regarding the dehydrogenation of DIPAB, we hypothesized that, in the initial step, the
Grignard reagent deprotonates DIPAB 58 to give aminoborohydride 59. The latter is basic
enough to undergo deprotonation of DIPAB 58, generating DIPOB 57, aminoborohydride 59
and hydrogen as the sole side product (Figure 2).
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2.2. By Organometallic Catalysis with Boron Reagents

The syntheses of diarylborinic acids described so far rely on organolithium or organo-
magnesium reagents that considerably narrow down the functional groups’ compatibility.
Chatani et al. recently reported the palladium-catalyzed synthesis of cyclic borinic acids
from diarylbromides or triflates 60 and DIPOB 57 [33]. The main advantage of this catalytic
strategy is undoubtedly the large tolerance towards sensitive functional groups providing
access to symmetrical and non-symmetrical cyclic borinic acids bearing ester, nitrile, etc.
(Scheme 19). Furthermore, borinic acids that embedded oxygen (61a–c), nitrogen (61d),
sulfur (61e) or alkenyl (61f) tethers were prepared in good yields when compared to the
known methods.
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Scheme 19. Synthesis of cyclic borinic acids catalyzed by palladium with DIPOB 57.

The reaction proceeds through a sequential diborylation process (Figure 3), similarly
to organolithium reagents. It is known that the reaction of arylhalides with DIPOB under
palladium catalysis leads exclusively to arylaminoborane 62, due to steric congestion of
the diisopropyl amine [53]. However, in this particular case, an intramolecular reaction
probably facilitates the second borylation, leading to 63, and then 61 after hydrolysis.
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Later on, the approach was extended to the synthesis of acyclic borinic acid derivatives
by the same group [54]. As mentioned above, the use of DIPOB only resulted in the
formation of boronic acids under palladium catalysis. Thus, after the screening of various
substituted aminoboranes, and investigating their aggregation state (monomer versus
dimer form), they found that the less bulky diethylaminoborane reagent 64 affords a good
compromise in terms of reactivity at 100 ◦C (Scheme 20). Under optimized conditions,
symmetrical and non-symmetrical borinic quinolates 66 were obtained in modest yields.
Interestingly, the reaction is compatible with an ester moiety (i.e., 66c), although the isolated
yield is pretty low.
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Scheme 20. Borinic acid synthesis by palladium-catalyzed diarylation of diethylaminoborane.

2.3. By Electrophilic Aromatic Substitution with Boron Reagents

Borylation by electrophilic aromatic substitution is an alternative route to prepare
organoboron compounds, which has been applied in few examples for the synthesis of
borinic acids. The regioselectivity of the SEAr is often controlled by a combination of steric
and electronic properties of the substituents on the aromatic moiety. When arylstannanes or
arylsilanes substrates are used, the boron electrophile reacts at the ipso position, resulting
in an exchange of the Sn/Si by a boron atom.

In an early report in 1984, Thorpe et al. showed that diboranes react with arylstannanes 67,
to provide symmetrical borinic acids 68, in modest yields, after hydrolysis (Scheme 21) [55].
Usually, a mixture of boronic and borinic acid was observed, depending on the substitution
pattern and the BH3/substrate ratio.
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Scheme 21. Synthesis of borinic acids by tin–boron transmetalation.

A two-step intermolecular process was recently described by Wagner et al. for the
synthesis of polycyclic bis-borinic acid 72, a compound developed for its optoelectronic
properties. The first transmetalation takes place by reacting bis-silane 69 with BBr3 at
120 ◦C, to produce bis-dibromoborane 70 (Scheme 22) [56,57]. The latter undergoes a
second transmetalation reaction with 69, leading to the desired bis-bromoborane 71 with
a 52% yield. The corresponding borinic acid 72 was then obtained with an 80% yield by
hydrolysis in wet acetone.
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Scheme 22. Synthesis of bis-borinic acid 72 by Si/B transmetalation.

A similar strategy was used by the group of Wang to prepare spiro-BODIPYs
75a–b, starting from tethered diarylsilanes 73a–b (Scheme 23) [58,59]. Treatment of 73a–b with
BBr3 afforded the cyclic diarylbromoboranes 74a–b by two consecutive inter-, then intramolec-
ular transmetalation steps. Subsequent reaction with in situ generated dipyrromethene led
to the spiranic compounds 75a–b in good yields. Of course, the corresponding borinic
acids could also be synthesized by the hydrolysis of compounds 74a–b as exemplified in
Scheme 13.
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Scheme 23. Synthesis of 75a–b by Si/B transmetalation.

Despite transmetalation of arylsilanes and stannanes, the directed electrophilic C–H
borylation is an effective way of controlling the regioselective functionalization of arenes,
heteroarenes or alkenes under metal-free conditions. In this regard, Suga et al. reported the
C−H borylation of bis-thiophene derivatives 76 using BCl3 (Scheme 24) [60]. The authors
showed that the tandem demethylation and subsequent Friedel–Craft-type borylation was
effective in the presence of BCl3, triethylamine, and n-BuN4I. Thus, by carrying out the
reaction at 135 ◦C (i.e., 77a) or rt (i.e., 77b) in PhCl, the intermediate chloroborane is formed,
and directly treated with mesityl Grignard reagent to give 77a–b with excellent yields.
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Scheme 24. Synthesis of mesityl-substituted borinic ester 77a–b by electrophilic borylation. (a) Reaction
performed at 135 ◦C. (b) Reaction performed at room temperature.

The proposed mechanism starts by complexation of the boron atom to the methoxy
group to produce 78a (Scheme 25). The demethylation process is then favored by the iodide
ion, affording dichloroborane 79a. Subsequent intramolecular borylation gave 80a, which
was reacted with MesMgBr to obtain 77.
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Electrophilic borylative cyclization of triarylamines is a straightforward strategy to
prepare BN-doped polycyclic aromatic hydrocarbons (Scheme 26). Hatakeyama et al.
showed that the reaction of 12 equivalents of BI3 with polysubstituted 1,3,5-triarylamine
81a resulted in a quadruple borylation process [61]. The target borinic acid 82a was isolated
with a 35% yield, albeit with 3% of triborylated derivative and a large amount of side
products. Other boron trihalide reagents (BCl3 or BBr3) did not react in this particular
example. Colman and his group recently described the synthesis of triborinic acid 82b in
the presence of 18 equivalents of BBr3 at 200 ◦C [62]. Even though these conditions are
pretty harsh, triborinic acid 82b was isolated with a good 68% yield.
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Ingleson and coworkers developed a synthesis of 1-boraphenalenes relying on the
electrophilic borylation of alkynes 83, substituted with appropriate aromatic rings
(Scheme 27) [63,64]. Initially, borylation with BBr3 resulted in the formation of the re-
arranged product 84 after hydrolysis, along with byproducts derived from the addition
of HBr to the triple bond (HBr is formed after the SEAr reaction). By adding 2,4,6-tri-t-
butylpyridine to the reaction, extended boron-doped polycyclic aromatic hydrocarbons
(PAHs) 84 were synthesized in good yields.
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Scheme 27. Synthesis of extended boron-doped PAH 84 by electrophilic borylation.

The unexpected formation of polycyclic borinic acids 84 was rationalized by evoking
first an electrophilic borylation of the alkyne 83 to form 85 (Scheme 28). The subsequent
intramolecular Friedel–Craft reaction onto vinylic carbocation (85 to 86), tautomerization
(86 to 87), and then C–C bond cleavage results in carbocation 88 that undergoes 1,2-migration
of bromide (i.e., 89). Intramolecular electrophilic borylation (i.e., 90) and hydrolysis provide
cyclic borinic acid 84.

Molecules 2023, 28, x FOR PEER REVIEW 16 of 42 
 

 

 
Scheme 28. Proposed mechanism for the borylative cyclisation of 83. 

In addition to the use of trihalogenoboranes in electrophilic C–H arene borylation, it 
has recently been reported that NHC-borenium is also effective in this transformation 
[65,66]. Three-coordinate NHC-borenium cations are strongly electrophilic boron com-
pounds that can be generated from the air- and moisture-stable NHC-boranes and a 
strong acid. Würthner et al. recently developed a synthesis of cyclic borinic acids relying 
on this chemistry study (Scheme 29); the NHC-borenium species is first generated from 
1,3-diisopropylimidazol-2-ylidene borane 91 and HNTf2 [67–70]. The subsequent addition 
of 92, led to the cyclic NHC-borane intermediate 93. The reaction pathway follows a se-
quential regioselective hydroboration of alkenes and C–H borylation of the aromatic scaf-
fold. After dehydrogenation of 93 under oxidative conditions and aqueous workup, bo-
rinic and bis-borinic acids 94a-d were isolated in modest yields ranging from 15% to 49%. 

 
Scheme 29. Synthesis of cyclic borinic acids 94 via electrophilic borylation with NHC-borenium. 

To summarize, an overview of the different borylating agents and general methods 
to synthesize borinic acid derivatives through the formation of two C-B bonds is given in 
Scheme 30. Overall, these approaches have been used to prepare a wide range of acyclic, 
cyclic, symmetric and non-symmetric borinic acids, and their corresponding chelates. The 
field of applications of these compounds mainly lies in catalysis, cross-coupling, medici-
nal chemistry, sensors, polymers and luminescent devices. 

Scheme 28. Proposed mechanism for the borylative cyclisation of 83.

In addition to the use of trihalogenoboranes in electrophilic C–H arene borylation, it has
recently been reported that NHC-borenium is also effective in this transformation [65,66].
Three-coordinate NHC-borenium cations are strongly electrophilic boron compounds
that can be generated from the air- and moisture-stable NHC-boranes and a strong acid.
Würthner et al. recently developed a synthesis of cyclic borinic acids relying on this
chemistry study (Scheme 29); the NHC-borenium species is first generated from
1,3-diisopropylimidazol-2-ylidene borane 91 and HNTf2 [67–70]. The subsequent addi-
tion of 92, led to the cyclic NHC-borane intermediate 93. The reaction pathway follows
a sequential regioselective hydroboration of alkenes and C–H borylation of the aromatic
scaffold. After dehydrogenation of 93 under oxidative conditions and aqueous workup,
borinic and bis-borinic acids 94a–d were isolated in modest yields ranging from 15% to 49%.
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Scheme 29. Synthesis of cyclic borinic acids 94 via electrophilic borylation with NHC-borenium.

To summarize, an overview of the different borylating agents and general methods
to synthesize borinic acid derivatives through the formation of two C-B bonds is given in
Scheme 30. Overall, these approaches have been used to prepare a wide range of acyclic,
cyclic, symmetric and non-symmetric borinic acids, and their corresponding chelates. The
field of applications of these compounds mainly lies in catalysis, cross-coupling, medicinal
chemistry, sensors, polymers and luminescent devices.

Molecules 2023, 28, x FOR PEER REVIEW 17 of 42 
 

 

B
OH

B
O NR2

or

Ar1 Ar2

Ar1 Ar2

XX
X-Li exchange, Mg or 
o-metallation 
then 1a, 1b, or 1c

or Pd(cat.), 1c (X = H)
X = Br, I, H

Ar1 Ar2

YY

Ar2

Y = SiR3, SnR3

HH

Ar1

Ar1
1b (X = H, Br)

RO
B

OR

OR

1a
R = Alk.

X
B

X

X

1b
X = H, I, Br, Cl

N
R R

B
X X

1c
X = Cl, H

NHC
B
H

H H

1d

1b (X = I, Br)

or 1d, H+

Formation of two C-B bonds

General methods summary

Borylating
agents

Ar1 = Ar2

Organometallic
pathway

Transmetalation
pathway

Electrophilic
borylation

 
Scheme 30. Overview of the synthetic methods relying on the formation of two C-B bonds. 

3. Formation of One Carbon–Boron Bond 
3.1. By Nucleophilic Addition of ArLi and ArMgX to Aryl Boron Reagents 

The addition of organolithium or Grignard reagents to arylboranes is closely related 
to the previous methods using trialkylborates or trihalogenoboranes. The main advantage 
of this approach is the possibility to introduce two different aryl substituents at the boron, 
allowing for the synthesis of non-symmetrical borinic acids. 

As shown in the examples in Scheme 31, the nucleophile can be either aryllithium 
95a or arylmagnesium halide 95b, which reacts with boronic esters 96 bearing pinacol, 
neopentyl glycol or alcohol (OMe, OEt) ligands. 

 
Scheme 31. Synthesis of acyclic non-symmetrical borinic acids by organometallic addition on bo-
ronic esters. 

Scheme 30. Overview of the synthetic methods relying on the formation of two C-B bonds.

3. Formation of One Carbon–Boron Bond
3.1. By Nucleophilic Addition of ArLi and ArMgX to Aryl Boron Reagents

The addition of organolithium or Grignard reagents to arylboranes is closely related
to the previous methods using trialkylborates or trihalogenoboranes. The main advantage
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of this approach is the possibility to introduce two different aryl substituents at the boron,
allowing for the synthesis of non-symmetrical borinic acids.

As shown in the examples in Scheme 31, the nucleophile can be either aryllithium
95a or arylmagnesium halide 95b, which reacts with boronic esters 96 bearing pinacol,
neopentyl glycol or alcohol (OMe, OEt) ligands.
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Scheme 31. Synthesis of acyclic non-symmetrical borinic acids by organometallic addition on
boronic esters.

For example, the reaction tolerates aromatic rings substituted with methyl, aryl or amino
groups (97a–c) on the organometallic reagent 95 or the boronic acid partner 96 [17,71,72].
The addition of aryllithium onto heteroaromatic boronic esters also performs well, as
shown with pyridine-substituted boron quinolate 98d obtained with a good yield [73,74].
Even more interesting is the possibility of incorporating an iodine atom such as in borinic
acid 97e [75]. In brief, monolithiation of 1,4-diiodobenzene, followed by the addition onto
the corresponding boronic ester, led to 97e that can be further functionalized by Still
coupling thanks to the remaining iodine substituent. This method was also used to prepare
borinic acid 97f derived from coumarin, a new probe to monitor H2O2-mediated signaling
processes [76].

Dihalogenobenzenes have also been used in the one-pot synthesis of functionalized
non-symmetrical borinic acid derivatives (Scheme 32) [77]. In this approach, diiodo- or
dibromo arenes 99 are treated with one equivalent of n-BuLi, then the corresponding aryl-
lithium is added to the phenyl boronic ester 100 at −78 ◦C. A second halogen–lithium
exchange takes place by reacting the resultant “ate” complex 101 with t-BuLi at −110 ◦C.
The dianionic species (not shown) is then trapped with various electrophiles (DMF, iso-
cyanate, chlorosilane, disulfide) to provide unsymmetrical boron quinolate complexes 102
with good isolated yields.
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Scheme 32. Synthesis of non-symmetrical borinic acid derivatives 102 through lithium “ate” complexes.

The synthesis of 9,10-diboraanthracenes 104 has been described by the same group, but
this time starting from 2-bromophenyl boronate esters 103 (R = Me, Et, i-Pr) (Scheme 33) [78].
For instance, the reaction of 103 performed with an excess of t-BuLi (2 or 4 equivalents) at
low temperature provided borinic acids 104 in modest yields [79].
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Scheme 34 provides a mechanistic proposal for the formation of 104. In line with
the computational studies they performed, the authors showed that the Br/Li exchange
with t-BuLi to produce 105 is kinetically favored over nucleophilic attack at the boron
atom. The lithium adduct 105 then reacts with the remaining starting boronic ester 103
to form “ate” complex 106. A second Br/Li exchange (i.e., 107) followed by subsequent
cyclization (i.e., 108) afforded diborinic acids 104 after hydrolysis. Although an alternative
pathway involving the dimerization of 105 was proposed, it seems unlikely due to the low
concentration of the lithiated boronate species 105 under the developed protocol.
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An interesting synthetic application of these compounds was highlighted by Wagner
and coworkers who designed bis-BO-perylene derivatives from 9,10-diboraanthracenes
104b (Scheme 35) [80–82]. In short, bis-alkynylation of 104b by a Stille-type coupling
(i.e., 109) followed by gold-catalyzed twofold cyclisation of the borinic acid 109 onto
the triple bond, produced boron-based perylenes 110a–b in excellent 89% yields. These
compounds undergo reversible reduction, and could be used for organic electronics.
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Scheme 35. Synthesis of polycyclic borinic esters 110 by gold-catalyzed hydroalkoxylation of alkynes.

An intramolecular variation was proposed recently to prepare strained spiro boron
quinolates 113 (Scheme 36) [45]. Under the same conditions as Scheme 33, bromo boronic
ester 111 was converted into the lithium “ate” complex 112. After quenching with TMSCl,
borinic acids were isolated in good yields as the quinolate complexes 113a–b.
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Scheme 36. Synthesis of borinic acid derivatives 113a–b by intramolecular borylation.

Aryl halogenoboranes can also be used as precursors of non-symmetrical borinic acid
derivatives, as exemplified by Bolm and Helten during the course of their study on BO-
containing hybrid polymers [83,84]. A model substrate, para-substituted bis-dibromoborane
114, was reacted with lithium 2,4,6-triisopropylphenyl (TipLi) to give the corresponding
bis-diarylbromoborane (Scheme 37). The authors then tried to form the B-O bond in the
presence of silylated phenol PhOSiMe3. However, the Si/B exchange was very slow and
the conversion was not complete even after several weeks. The reaction with PhOH and
trimethylamine appeared to be much cleaner, leading to 115 with a 58% overall yield.
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Scheme 37. Synthesis of diborinic ester 115.

The addition of organolithium and Grignard reagents on 9-chloro-oxaboraphenanthrene
116 was investigated as a route to borinic ester derivatives (Scheme 38). Both nucleophiles
were convenient in this transformation; however, aryllithium led to a mixture of single
(i.e., 117) and double additions to form the lithium borate (not shown). In contrast, Grig-
nard reagents gave compounds 117a–e with excellent isolated yields, even for those bearing
sterically hindered group (117c) or electron-deficient substituents (117d–e) [85].
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An original synthesis of 1,4-azaborazine has been described starting from enamine 118
(Scheme 39), obtained in three steps from 2-bromo aniline [86]. Bromide–lithium exchange
followed by trapping with vinylchloroaminoborane 119 gave diene 120. Ring closure
metathesis with Grubbs’ 2nd generation catalyst and methanolysis quantitatively deliv-
ered borinic ester 122. This compound was used as a platform for the design of ligands
incorporating the 1,4-azaborine motif.
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3.2. By Electrophilic Aromatic Substitution with Aryl Boron Reagents

Early examples of borinic acid synthesis via intramolecular electrophilic borylation
were reported by Bickelhaupt and coworkers in 1972 (Scheme 40). The reaction was
carried out by pyrolysis at 220 ◦C of boroxine 123, in combination with lithium aluminum
hydride and tributoxyborane, to afford borinate 124 with a 49% yield after treatment
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with ethanolamine [87]. The authors proposed that the reaction may occur through the
formation of a primary aryl borane (ArBH2), or a butoxy derivative such as ArB(H)(On-Bu)
or ArB(On-Bu)2. Alternatively, the same product was obtained with a similar yield by
pyrolysis of the pyridine complex 125 [88].
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As described before, recent developments in the field of electrophilic borylation rely
on the use of more reactive boron species (BX3, ArBX2, etc.) to perform the reactions in
practical conditions of temperature. In this regard, Suga et al. reported the C−H borylation
of thiophene derivatives using PhBCl2 (Scheme 41) [60]. Although the reaction works
well on the corresponding hydroxyl analog of 126, the starting material was difficult to
obtain and unstable. By contrast methoxythiophene derivatives 126 are easy to prepare
and handle, and their synthesis is versatile. The authors showed that the treatment of
thiophene 126 with PhBCl2 alone did not result in the cyclized product. However, the
tandem demethylation and subsequent Friedel–Craft-type borylation was effective in the
presence of triethylamine and a stoichiometric (or catalytic) amount of n-BuN4I. Thus,
by carrying the reaction at 135 ◦C in PhCl, a series of dithieno-1,2-boxaborines 127a–d
was obtained in excellent yields whatever the nature of the second aromatic ring. The
mechanism is related to the one already described in Scheme 25.
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Scheme 41. Synthesis of BO heterocycles 127 by electrophilic borylation with PhBCl2.

In the course of their study on 1,2-carboboration of ynamides with aryl dichlorobo-
ranes, Studer et al. described the one-pot synthesis of boraphenalene 131 (Scheme 42) [89].
Regioselective borylation of ynamide 128 with napththyl dichloroborane 129 in chloroform
furnished intermediate 130. Subsequent treatment with AlCl3 and dichloropyridine pro-
vided boraphenalene 131 with a 71% yield by intramolecular boron Friedel–Crafts arylation.
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Scheme 42. Synthesis of borinic acid 131 by sequential arylboration/electrophilic borylation.

As seen in the previous section, the transmetalation of arylstannanes is a powerful way
of controlling the regioselectivity of the borylation of BX3. Within the framework of borinic
acid synthesis, the method was extended to the reaction with ArBBr2 (Scheme 43) [90–92].
Several electron-deficient borinic acids 134a–b or boron quinolate complexes 135a–c were
obtained in modest to good yields. The reaction seems compatible with a range of functional
group such as nitro, boronic ester, vinyl, etc.
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Scheme 43. Synthesis of borinic acid derivatives 134–135 by transmetalation with ArBBr2.

3.3. Other Methods

As seen previously, one of the main methods to prepare borinic acid derivatives
relies on the use of organometallic reagents (ArLi or ArMgX), which strongly limits the
functional group tolerance. Recently, Lee and coworkers reported a metal-free one-pot
synthesis of tetracoordinated borinic acids (Scheme 44) [93]. The optimal conditions
require nine equivalents of boronic acids 136, in the presence of a bidentate ligand 137
and K3PO4 (3 equiv.) in refluxing 1,4-dioxane. The reaction performs well with substrates
incorporating electron-withdrawing (138a) or -donating (138b) groups on the aromatic
ring. Remarkably, styryl boronic acid led to the corresponding boron quinolate 138c with
a good 79% yield. The scope of the reaction was also extended to several N,O, N,N and
O,O bidentate ligands as exemplified with compound 138d bearing a β-diketonate ligand.
Preliminary mechanistic studies suggest that the reaction proceeds thought a boronic
anhydride intermediate, with the formation of an “ate” complex and concomitant organic
group transfer.
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Scheme 44. Ligand-promoted synthesis of boron(III) complexes 138.

A related transformation was recently developed by reacting stable potassium aryltri-
fluoroborates 139 with acylated 8-aminoquinolines 140, in the presence of p-tosyl chloride,
manganese and sodium carbonate (Scheme 45) [94]. Since the aim of the study was to use
these compounds as photoredox catalysts, the reaction was depicted on seven substrates.
Nevertheless, yields ranging from 76% to 95% were obtained, with a good tolerance for
p-methoxy (141b) and p-fluoro (141c) substituents.
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Scheme 45. Synthesis of aminoquinolate diarylboron complexes from ArBF3K.

Within the framework of the synthesis of boron-doped anthracenes and pentacenes,
Wagner and his coworkers disclosed the dimerization of aromatic 1,2-borohydrides 142
prepared by the reduction of the corresponding BPin adduct with LiAlH4. Hydride ab-
straction by Me3SiCl in dimethyl sulfide resulted in the cyclocondensed product 143
(Scheme 46) [95–97]. Subsequent hydrolysis afforded diborinic acid 144 with a good 82%
yield over two steps.
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Scheme 46. Synthesis of diborinic acid 144 from arylborohydride 142.

2-Amino phenylboronic acids were used in an interesting intermolecular annulation
with electron-deficient alkynes (Scheme 47) [98]. The reaction was conducted in CH2Cl2
in a sealed tube, either at 80 ◦C or 110 ◦C under microwave irradiation. It appeared that
a high temperature was crucial to achieve the cyclisation and reach good conversions,
without evidence of product degradation. Thus, excellent yields were generally obtained
with dimethyl- or diethyl-substituted acetylene dicarboxylates (146a–b), as well as with
electron rich (146c, 146e) or poor (146d) phenylboronic acids. The authors demonstrated
that borinic acids 146 could be converted into indoles, under palladium catalysis.
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Dong et al. described an original synthesis of boron-containing heterocycles by boron 
insertion of MesBBr2 151 into a series of 2,3-dihydrobenzofurans 150 (Scheme 50) [100]. 
The reaction is catalyzed by a Ni(II) complex and requires a stoichiometric amount of Zn. 
Mechanistic investigations, supported by DFT studies, suggest that Zn plays a crucial role 
in the ring opening to form intermediate 152. Subsequent rebound is catalyzed by Ni(II), 
with Zn serving as a reductant. Boron heterocycles 153 that embedded a 5-, 6- or 7-mem-
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Scheme 47. Synthesis of benzofused azaborinols 146.

The proposed mechanism implies a two-step process with first a conjugate addition of
the aniline onto the triple bond, followed by trapping of the vinyl anion by the boron atom
(Scheme 48).
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Scheme 48. Proposed mechanism for the formation of 146.

The reactivity of boronic acid 147 derived from aniline was illustrated by the synthesis
of the red fluorophore 149, a xanthene analog (Scheme 49) [99]. In this particular example,
3-(N,N’-dimethylamino)phenylboronic acid 147 was treated with formaldehyde in acetic
acid at 85 ◦C to form borinate 148. The latter was precipitated with sodium chloride under
acidic conditions, leading to borinic acid 149 with a very low yield due to purification issues.
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It seems that once both aromatic rings have reacted with formaldehyde, the intermediate
undergoes cyclization with the concomitant elimination of boric acid, and oxidation.
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Scheme 49. Synthesis of borinate-containing xanthene analog 149.

Dong et al. described an original synthesis of boron-containing heterocycles by boron
insertion of MesBBr2 151 into a series of 2,3-dihydrobenzofurans 150 (Scheme 50) [100].
The reaction is catalyzed by a Ni(II) complex and requires a stoichiometric amount of Zn.
Mechanistic investigations, supported by DFT studies, suggest that Zn plays a crucial
role in the ring opening to form intermediate 152. Subsequent rebound is catalyzed by
Ni(II), with Zn serving as a reductant. Boron heterocycles 153 that embedded a 5-, 6- or
7-membered ring were smoothly obtained in good to excellent yields.
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The main synthetic methods involving the formation of one C-B bond are summarized
in Scheme 51. The organometallic pathway has been extensively studied, and offers
versatility in terms of molecular diversity (acyclic, cyclic, symmetrical and non-symmetrical)
but suffer from a lack of functional compatibility. Other methods are more tolerant toward
functionality, but they usually require specific substrates (incorporating a directing group or
cyclic ethers, etc.), toxic reagents (tin derivatives), or an excess of organoboron derivatives
(ligand exchange).
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4. Cleavage of One C-B Bond
4.1. Synthesis of Four-Coordinated Borinic Acids from Triaryl Boranes

Four-coordinated diarylborinic acids bearing π-conjugate bidendate ligands have been
widely studied for their luminescent properties and applications in optoelectronics (OLED,
organic field-effect transistors, imaging materials, etc.) [14]. One of the main and straight-
forward methods to access such structures relies on the reaction of triarylboranes with a
suitable bidentate ligand. Since the reaction proceeds through a protodeboronation process,
the presence of an acidic proton on one of the heteroatoms of the ligand is mandatory.
Because of this particular mechanism, most of the examples describe the use of triarylb-
oranes bearing three identical aryl groups in order to prevent any mixture of different
diarylborinates. As shown in Scheme 52, a large variety of ligands on the organoborinates
have been employed and can be sorted into three main categories: N,O-ligands [101–136],
N,N-ligands [110,137–168] and O,O-ligands [169–176]. Most of these examples describe the
synthesis of diphenylborinates from commercially available triphenylborane.

A typical example is illustrated in Scheme 53 with the synthesis of the highly fluo-
rescent dyes 157 reported by Ulrich et al. [116]. The borate complex 157 was obtained by
reacting 2,5-bis(benzooxazol-20-yl)hydroquinone 156 with six equivalents of triphenylbo-
rane in toluene at 60 ◦C. After recrystallization, pure compound 157 was isolated with a
93% yield.

Four-coordinated diarylborinic acids bearing functionalized aromatic moieties or
heteroaromatics [103], have also been reported from triarylboranes (Scheme 54). For
instance, non-commercially available triarylboranes can be easily prepared by reacting
an organolithium species with tribromoborane [101–103]. Subsequent treatment of the
triarylborane 159 with 8-hydroquinoline in THF afforded 160a–c in good yields over two
steps. Interestingly, compounds 160a–b are stable enough to be used in post-functionalization
processes such as palladium-catalyzed Sonogashira coupling (i.e., 160a) [102], or ruthenium-
catalyzed ring closure metathesis (i.e., 160b) leading to dibenzoborepines [101].
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In 2018, Sarpong et al. developed an elegant synthesis of a new class of oxazaborinines,
combining Lewis acid activation (R3B) with Pd-catalyzed rearrangement [177]. The reac-
tion of triphenyl- or triethylborane 161, with enaminones 162 under palladium catalysis
afforded oxazaborinines 163a–c in excellent yields, via in situ generation of the N,O-ligands
(Scheme 55).
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Scheme 55. Synthesis of oxazaborinines 163 by Pd-catalyzed rearrangement.

As outlined in Scheme 56, the reaction proceeds through the formation of iminium
164, by coordination of the enaminone with borane 161. Next, a C-N bond activation occurs
in the presence of palladium and Brønsted acid catalyst to generate boron enolate 165 and
palladium π-allyl complex 166. Eventually, allylic alkylation of the latter gave rise to the
allyl-substituted oxazaborinine 163.
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Scheme 56. Proposed mechanism for the formation of oxazaborinines 163.

Stanley et al. reported the direct synthesis of oxaboranes 170, through a Ni-catalyzed
three-component cyclocondensation (Scheme 57) [178]. The versatility of the reaction was
illustrated with more than 30 examples, using (hetero)aromatic aldehydes 167, symmet-
rical or non-symmetrical alkynes 168, and triphenylborane 169. A variety of oxaboranes
170 was isolated in moderate to excellent yields (47–99%), with high regioselectivities
(i.e., 170d, regioisomeric ratio 10.5/1). The reaction proceeds through the formation of an
oxanickelacyclopentene by oxidative cyclization with the aldehyde and alkyne, followed
by subsequent transmetalation with triphenylborane 169. These oxaboranes 170 proved to
be valuable intermediates for further applications in organic synthesis.
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Scheme 57. Ni-catalyzed synthesis of oxaboranes 170.

In 2020, Melen et al. described an original access to dienolate-coordinated borinic
acids by carboboration of iodonium ylides (Scheme 58) [179]. They showed that mixing
triarylboranes 171 with an equimolar amount of acyclic symmetrical or unsymmetrical
iodonium ylides in toluene afforded compounds 173a–d in good yields. DFT calculation
revealed that the mechanism proceeds through coordination of the borane to the carbonyls
of 172, followed by boron to carbon aryl migration, and phenyliodine elimination. Overall,
the reaction resulted in the 1,3-carboboration of iodonium 172.
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4.2. Synthesis of Four-Coordinated Borinic Acids from Tetraarylborate Salts

The synthesis of bicyclic oxazaborinines 176 has been described starting from cyclic
β-enaminones 175, bearing a secondary amino group, and benzenediazonium tetraphenylb-
orates 174 (Scheme 59) [180,181]. The corresponding oxazaborinines 176 were obtained in
modest to good yields, depending on the nature of the 4-substituted benzenediazonium
and the size of the cyclic enaminones 175. Some related examples were also described
starting from β-enaminoamides [182] and β-enaminonitriles [183].
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Scheme 59. Synthesis of oxazaborinines 176 from benzenediazonium tetraphenylborates 174.

In the proposed mechanism, the initial addition of the enamine 175 onto the diazonium
salt 174 leads to the intermediate 177, which undergoes a protodeboronation process giving
rise to triarylborane (Scheme 60) [134]. The latter then reacts with the enaminone 178 to
form the oxazaborinine 176.
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Scheme 60. Proposed mechanism for the formation of 176.

An alternative method for the preparation of oxazaborolidinones 181 has been de-
veloped by Candeais et al. from tetraarylborates 180, prepared by the addition of the
corresponding Grignard reagents of 179 onto sodium tetrafluoroborate (Scheme 61) [184].
Condensation of the ammonium salts with L-valine in refluxing toluene produced oxaz-
aborolidinones 181. Although the yields are modest, the reaction tolerates EDG and EWG
on the aromatic ring. Some of these compounds showed moderate antitumor activity
against colorectal adenocarcinoma cells and human brain astrocytoma cells.
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Tetraarylborate salts have also been used in the efficient synthesis of fluorescent
N,N′-chelate organoboron aminoquinolates [185]. It was shown that iodine is able to
catalyze the reaction of tetraarylborates 182 with a variety of aminoquinolates 183 in
refluxing toluene (Scheme 62). The reaction was exemplified on 20 substrates, with good
to excellent yields obtained when R2 is an electron-withdrawing group (i.e., CF3, C2F5,
184a–d). Furthermore, the substitution on the aminoquinolate (i.e., 184b) and the aryl
group (i.e., 184c–d) is also well tolerated.
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Scheme 62. Synthesis of N,N′-chelate organoboron aminoquinolates 184 catalyzed by iodine.

After a series of control experiments, the authors proposed the mechanism depicted
in Scheme 63, involving a radical pathway. First, the iodine radical formed by homolytic
cleavage, oxidizes Ar4BNa 182 to produce the intermediate Ar4B• radical. The latter then
reacts with the aminoquinoline 183 to give the desired product 184, ArH and an aryl radical.
A final reduction (SET) from 182 to Ar• leads to ArNa and regenerates the Ar4B• radical.

Molecules 2023, 28, x FOR PEER REVIEW 32 of 42 
 

 

 
Scheme 62. Synthesis of N,N′-chelate organoboron aminoquinolates 184 catalyzed by iodine. 

After a series of control experiments, the authors proposed the mechanism depicted 
in Scheme 63, involving a radical pathway. First, the iodine radical formed by homolytic 
cleavage, oxidizes Ar4BNa 182 to produce the intermediate Ar4B• radical. The latter then 
reacts with the aminoquinoline 183 to give the desired product 184, ArH and an aryl rad-
ical. A final reduction (SET) from 182 to Ar• leads to ArNa and regenerates the Ar4B• rad-
ical. 

 
Scheme 63. Proposed mechanism for the iodine-catalyzed synthesis of organoborons 184. 

4.3. Synthesis of Borinic Acids by Hydrolysis or Oxidation of Triaryl Boranes 
The hydrolysis and oxidation of triarylboranes has been described in few examples 

and is limited to specific substrates. For instance, the synthesis of perfluorinated borinic 
acid 188 was reported following two complementary methods (Scheme 64) [186]. Triaryl-
borane 187 was either synthesized by the addition of ArFLi or ArFMgBr onto PhBCl2 or 
PhBF3K, respectively. Selective hydrolysis of 187 with one equivalent of water furnished 
the corresponding borinic acid 188 with 27% and 46% yields depending on the strategy. 

 
Scheme 64. Synthesis of perfluorinated borinic acid 188. 

Scheme 63. Proposed mechanism for the iodine-catalyzed synthesis of organoborons 184.

4.3. Synthesis of Borinic Acids by Hydrolysis or Oxidation of Triaryl Boranes

The hydrolysis and oxidation of triarylboranes has been described in few examples
and is limited to specific substrates. For instance, the synthesis of perfluorinated borinic
acid 188 was reported following two complementary methods (Scheme 64) [186]. Triarylb-
orane 187 was either synthesized by the addition of ArFLi or ArFMgBr onto PhBCl2 or
PhBF3K, respectively. Selective hydrolysis of 187 with one equivalent of water furnished
the corresponding borinic acid 188 with 27% and 46% yields depending on the strategy.
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Other examples are related to the study of the reactivity of sterically hindered triarylb-
oranes towards water (Scheme 65). During their study on frustrated Lewis pairs, Gras
and coworkers reported that the crystallization of 190 in heptane led to the formation of
borinic acid 191 with a 48% yield, as a result of the partial protodeboronation of 190 [187]. A
related reactivity was also observed by Gabbaï et al. with the air-stable bis(dimesitylborane)
193 [188]. Its treatment with TASF (tris(dimethylamino)sulfonium difluorotrimethylsilicate)
followed by an aqueous solution of Al(NO3)3 gave the air- and moisture-stable borinic
acid 194 with a 70% yield. It was presumed that the formation of 194 occurred by hy-
drolysis of the C–B bond promoted by a fluoride ion. A selective C–B bond hydrolysis
of 9-borafluorene 196 has also been described by Wehmschulte [189]. They found that
prolonged treatment (1 week) of pyridine complex 196 in the presence of concentrated
aqueous HCl and air led to sterically hindered diarylborinic acid 197 with a 17% yield after
crystallization.
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5. Conclusions

This review summarized the main approaches to access borinic acids, and their chelate
derivatives. These methods have been successfully applied to the synthesis of symmetrical
and non-symmetrical borinic acids, including boron-containing heterocycles. Many of
these organoboron compounds have found applications in organic light emitting diodes
(OLEDs), medicinal chemistry, catalysis, material sciences, etc. However, there are still some
synthetic challenges that need to be addressed. In particular, most of the syntheses rely on
the addition of organometallic species (ArLi, ArMgX) onto electrophilic boron reagents.
Although several advances have been made to selectively prepare borinic acids (without
the formation of boronic acids and/or triarylboranes), these methods still suffer from a lack
of functional group compatibility with the organometallics. Metal-catalyzed strategies have
recently emerged to answer this issue but are limited to specific substrates (i.e., cyclic borinic
acids), or result in low isolated yields in the case of acyclic borinic acids. The selective
synthesis of non-symmetrical borinic acids, especially in the acyclic series, is another major
challenge. Except for some isolated examples, there are no functional-group-tolerant and
general methods to tackle this issue. The development of such approaches should have
a significant impact in the field, allowing the access to new organoboron structures with
unexplored properties. Table 1 summarizes the main boron reagents and methods used for
the synthesis of borinic acid derivatives, with their advantages and limitations.

Table 1. Advantages and limitations of the main boron reagents and methods.

Methods

Boron
Reagent
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