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Abstract: An innovative form of 2D/0D g-C3N4/CeO2 nanostructure was synthesized using a simple
precursor decomposition process. The 2D g-C3N4 directs the growth of 0D CeO2 quantum dots,
while also promoting good dispersion of CeO2QDs. This 2D/0D nanostructure shows a capacitance
of 202.5 F/g and notable rate capability and stability, outperforming the g-C3N4 electrode, reflecting
the state-of-the-art g-C3N4 binary electrodes. The binary combination of materials also enables an
asymmetric device (g-C3N4/CeO2QDs//AC) to deliver the highest energy density (9.25 Wh/kg) and
power density (900 W/kg). The superior rate capacity and stability endorsed the quantum structural
merits of CeO2QDs and layered g-C3N4, which offer more accessible sites for ion transport. These
results suggest that the g-C3N4/CeO2QDs nanostructure is a promising electrode material for energy
storage devices.

Keywords: supercapacitor; storage device; quantum dots; nanostructure; electrode materials

1. Introduction

Supercapacitors, also referred to as electrochemical capacitors, are energy storage
devices that have gained significant attention for their high power compactness, quick
charging/discharging rate, and long life span [1]. These exceptional features make super-
capacitors ideal for various applications, such as regenerative braking systems in electric
vehicles, backup power supplies, and portable electronics. To date, substantial work has
been completed towards finding new materials for supercapacitor electrodes with en-
hanced performance. Among these materials, graphene and carbon nitride have garnered
particular interest due to their high electrical conductivity and substantial surface area.
Energy storage devices, including supercapacitors, show a vital role in addressing the
current challenges in renewable energy systems [2]. The advance of high-performing and
cost-effective electrode materials is vital for improving the performance and viability of
these systems.

g-C3N4 is a two-dimensional material that boasts a distinctive combination of nitrogen-
doped carbon and graphitic layers [3]. Unlike graphene, g-C3N4 has a high nitrogen con-
tent, which imparts exceptional electrochemical properties to the material. g-C3N4 has
received increased attention as a possible alternative to purely carbon-based electrode
materials for EDLCs due to its low cost, remarkable chemical and mechanical stability,
and high nitrogen content. The nitrogen atoms in g-C3N4’s ring structure have a lone
pair of electrons, which enhances the material’s polarity and improves its wetting and
the mobility of charge carriers [3]. Studies have revealed that bulk g-C3N4 has a rel-
atively low specific capacitance, measuring 71 F/g and 81 F/g when tested at current
densities of 0.5 A/g and 0.2 A/g, respectively [4]. The limited specific surface area and
conductivity of g-C3N4 are considered to be the main factors behind its underperforming
capacitance. However, studies have shown that incorporating pseudocapacitive phases
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into the structure of bulk g-C3N4 can dramatically improve its electrochemical proper-
ties. This improvement is achieved through a synergistic effect between faradic and
non-faradic processes of electron transport, allowing for more efficient charge transport
within the material. Pseudocapacitive phases refer to materials that exhibit capacitance
due to a combination of physical and chemical mechanisms, as opposed to purely electrical
double-layer capacitance [5]. The addition of other materials to the bulk g-C3N4 matrix
can result in a higher specific surface area and improved conductivity, thereby enhancing
the material’s capacitance and overall performance. This process of combining different
materials with different properties is commonly referred to as “composite design” and
has been applied to various energy storage materials to enhance their performance. By
leveraging the benefits of both the pseudocapacitive phases and g-C3N4, it is possible to
achieve a synergistic improvement in the electrochemical properties of the materials, e.g.,
NiCo2O4/O-g-C3N4 [6]; NiCo2C2O4/g-C3N4 [7]; Co-g-C3N4 nanostructure [8]; BP/g-C3N4
nanostructure [9]; Cu-g-C3N4 [10]; CuO/g-C3N4 [11]; NiAl/g-C3N4 [12]; g-C3N4/AgI [13];
g-C3N4/CuI [14]; g-C3N4/CoNixSy [15]; g-C3N4/Sm(OH)3 [16]; NiFe-LDH/g-C3N4 [17];
MnCo2O4/g-C3N4 [18]; NiFe2O4/g-C3N4 [19], MnO2/g-C3N4 [20]. These studies demon-
strate the significance of g-C3N4-type binary materials for supercapacitor electrodes and
their potential as binary composites. The combination of g-C3N4 with semiconductor
oxides can result in materials with improved performance compared to either material
alone, making them an attractive option for supercapacitor applications.

The use of transition metal oxides (TMOs) as supercapacitor electrodes has experienced
substantial growth in recent years, largely due to the readily available and inexpensive
raw materials used in their production. Additionally, TMOs possess high electrochemical
performance, making them a popular choice for use in supercapacitor applications. Some
of the commonly used TMOs in supercapacitor electrodes include Co3O4 [21], WO3 [22],
NiO [23], MnO2 [24], and CeO2 [25], and other materials such as double layer hydrox-
ides [26] and MOF-based electrodes [27], etc. The widespread usage of these materials is
due to their high capacitance, stability, and good redox behavior, which contribute to the
total electroactivity of the supercapacitor. The properties of these TMOs make them an
attractive option for use in various applications, including energy storage and harvesting,
as well as in consumer electronics, automobiles, and other fields. Cerium oxide (CeO2), a
material also known as cerium dioxide, has garnered significant attention as a potential
supercapacitor electrode. CeO2 exhibits high capacitance and excellent chemical stability,
as well as good redox properties, making it a promising material for supercapacitor applica-
tions. Similar to other lanthanide metals, CeO2 can undergo oxidation to form stable Ce3+

by dropping one-two electrons of 5d-6s orbits, and can further undergo oxidation to form
steady Ce4+ by dropping an additional electron of 4f, which results in lattice expansion and
the formation of oxygen vacancies. These properties make CeO2 an attractive material for
the formation of nanostructures, further enhancing its potential for use in supercapacitor
electrodes. An example of this can be seen in a study described by He et al. [28], which
showed that the integration of ZnO/CeO2 nanostructures through a one-step hydrother-
mal process resulted in a capacitance of 581.4 F/g, which is a 12-fold increase from the
capacitance of pure CeO2.

Overall, the above references provide a strong scientific foundation for the utilization
of g-C3N4-based binary materials for supercapacitor electrodes and their potential as binary
composites. The scientific novelty of this work lies in the utilization of g-C3N4 and CeO2
as building blocks for constructing supercapacitor electrodes. The proposed study on
the preparation and characterization of g-C3N4/CeO2 nanostructures as supercapacitor
electrodes adds to the current knowledge in this field and provides new visions into the
potential of these materials for supercapacitor uses. The g-C3N4/CeO2 nanocomposites
exhibit improved electrochemical performance compared to g-C3N4 and CeO2, suggesting
their potential for use in high-performance supercapacitor devices. This study presents
innovative information about the creation and synthesis of g-C3N4/CeO2 nanocompos-
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ites for usage in supercapacitors, and it is anticipated to inspire further exploration and
investigation in this area.

2. Results and Discussion

Figure 1 depicts the XRD profiles of the CN, CeQDs, and CeQDs/CN-1, CeQDs/CN-
2, and CeQDs/CN-3 nanostructures. The bands at 12.3◦ and 27.48◦, corresponding to
(100) and (200), respectively, confirm the crystalline nature of the g-C3N4 material and its
triazine-based C3N4 structure, which are consistent with the JCPDS-87-1526 numbers of
CN [29]. The XRD pattern of CeQDs exhibits broad peaks at 2θ, reliable with the (111),
(200), (220), and (311) planes of its FCC structure, as listed in JCPDS number-004-0593 [30].
The XRD pattern of the CeQDs/CN nanostructures shows the presence of both CN and
CeQDs peaks, with the main peak at 27.5◦ and a broader peak around 24.5◦ due to the
altered layered features during the pyrolytic impregnation of CeQDs. These observations
suggest that both components are preserved during thermal pyrolysis, with slight shifts in
position due to mutual interactions. The presence of CeQDs peaks in the XRD pattern of
the CeQDs/CN nanostructures confirms the formation of the complex between CN and
CeQDs. Hence, the XRD pattern confirms the successful synthesis of the nanostructures.
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Figure 2a–d presents the FESEM images of CN and CeQDs/CN-3 nanostructures. The
CN sample displays a layer-like surface morphology, while the CeQDs/CN nanostructure
features randomly placed CeQDs on the CN sheets surface, serving as a template during
the pyrolysis process and leading to interfacial contacts. However, CeQDs cannot be
directly observed in the FESEM images due to their quantum size and limitations of
SEM instrumentation, as confirmed by the EDX and mapping results of the CeQDs/CN
nanostructure (Figure 2e,f). The EDX and mapping results indicate that the CeQDs are
embedded in the CN sheets, forming a nanostructure.
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The CeQDs/CN nanostructure was further analyzed using HRTEM to examine its mor-
phological features and CeQD impregnation. The results, as shown in high-magnification
Figure 3a–c, indicate that CeQDs are randomly dispersed within the CN sheets with a size
of approximately 2–5 nm. The SAED pattern (Figure 3d) displays a combination of both
rings and dots, suggesting the presence of mixed phases of both materials. These results
highlight the successful integration of CeQDs into the CN sheets and the coexistence of
CeQDs and CN in the nanostructure.
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Figure 3. (a–c) HRTEM images and (d) SAED pattern of CN/CeQDs-3 nanostructure.

XPS conducted to endorse the formation of the CeQDs/CN nanostructure and deter-
mine its chemical composition. Figure 4a displays the XPS full survey and spectra of C1s,
N1s, Ce3d, and O1s, with binding energy values that align with previous research [30]. The
C1s spectrum in Figure 4b displays peaks at 284.39 eV and 287.09 eV, which suggest the
presence of carbon contaminants or adventitious carbon and sp2 hybridized carbon atoms,
respectively [31]. The N1s spectrum in Figure 4c shows a main peak at 398.07 eV, which is
attributed to sp2 hybridized aromatic C=N-C [32].
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Figure 4. XPS results; (a) survey scan, (b) C1s, (c) N1s, (d) Ce3d and (e) O1s of CN/CeQDs-3
nanostructure.

The Ce3d core-level spectrum in Figure 4d indicates the presence of seven coordination
numbers of Ce4+ and reduced oxygen defects in a Ce4+-type fluorite arrangement. The
coexistence of Ce3+/Ce4+ is confirmed through the deconvolution of the Ce 3d core-level
spectrum. According to the literature, the 3d3/2 and 3d5/2 spin-orbit states are divided into
two groups [33]. Peaks at 881.89, 888.29, 898.02, 902.39, 906.98, and 916.01 eV are allocated
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to Ce4+ states, while peaks at 884.77 and 900.6 eV belong to Ce3+ positions. The presence
of Ce3+ positions is also indicated by the existence of O2 vacancies peaks in the O1s band,
suggesting that the ceria surface is not fully oxidized and there may be an alteration in
its electron structure [34]. The O1s core-level spectrum in Figure 4e reveals the presence
of -O2 vacancies in Ce3+ and Ce4+ through peaks at 530.68, and 528.98 eV, respectively,
supporting the coupling of CeQDs nanosized particles on CN sheets and the formation of
the CeQDs-CN nanostructure [35].

The CV and GCD methods were employed to determine the electrochemical behavior
of the created electrodes. The electrochemical performance of CN and CeQDs/CN-3
electrodes was first evaluated using CV in a three-electrode setup in a 1 mol/L KOH. The
CV results were verified at various scan rates (1–20 mV/s) within a voltage range of 0–0.6 V
vs. Hg/HgO (see Figure 5a,b). The voltammograms show clear redox peaks during the
anodic and cathodic sweeps and their impact on the faradic pseudocapacitance. With
cumulative sweep rate from 1 to 20 mV/s, the redox peak separation ∆Eredox increased
from 1 to 7 mV due to electrode overpotential. Despite the high sweep rate of 20 mV/s, the
redox peaks are still well resolved, indicating good rate capability for the CeQDs/CN-3
electrode material. The CeQDs/CN-3 electrode has greater CV area than the CN electrode
due to the redox properties of CeQDs and CN. To compare the supercapacitive performance
of CeQDs/CN-3, the CV curves of bare Ni-foam, CN, and CeQDs/CN-3 electrodes are
compared at a potential of 0.6 V and 10 mV/s scan rate (Figure 5c). The current retort of the
nickel foam is small, while the CeQDs/CN-3 electrode shows a larger CV curve area than
the CN, implying higher electrochemical activity and considerable specific capacitance
for the CeQDs/CN-3 electrode material. The larger CV curve area is due to more redox
sites and increased exposure of these active sites. The incline of log ip vs. log ν (Figure 5d)
displays that the estimated b values for the anodic peaks of CN and CeQDs/CN-3 electrode
materials are 0.64 and 0.67, respectively, indicating a combined pseudocapacitive response
from capacitive and insertion (faradic) processes. It is worth noting that the CeQDs/CN-3
electrode displays a more dominant faradic contribution due to the presence of Ce sites in its
framework. The capacitive contributions of CeQDs/CN-3 at sweep rates of 1, 2, 5, 10, and
20 mV/s are 81.1%, 85.85%, 90.56%, 93.13%, and 95.04%, respectively, showing an increase
in capacitive effect with respect to the sweep rate (see Figure 5e). The increase in capacitive
contribution is due to increased ion transport motion and shorter diffusion pathways.
Figure 5f shows the diffusive and capacitive contributions of the CV profile at 5 mV/s,
revealing that the diffusive contribution is primarily associated with the CeQDs/CN-3
electrode, due to the quantum effect of Ce ions and improved ion transport facilitated by
interfacial contacts, leading to improved electrochemical performance.

Figure 6a,b show the GCD curves for CN and CeQDs/CN-3 electrodes at different
current densities between 0.75–5 A/g. Figure 6c compares the GCD curves for bare Ni foam,
CN, and CeQDs/CN-3 electrodes recorded at 0.75 A/g. The CeQDs/CN-3 electrode has a
longer discharge time than the CN electrode, indicating a higher capacitance. The potential
profiles of both electrodes display nonlinear GCD patterns resembling redox properties,
demonstrating a battery-like behavior with quasi-reversible faradic reactions. Due to these
reactions, the charge-to-voltage ratio changes over time. The longer discharge time of the
CeQDs/CN-3 electrode is attributed to the redox properties of CeQDs ions, which aligns
with the CV curves. The porous structure of the CeQDs/CN-3 electrode allows for faster
ion transfer to the interior, enhancing its electrochemical performance with a quick I-V
response. The specific capacitance (Cs) of the CeQDs/CN-3 electrode material at various
constant discharge currents can be calculated using Equation (S1) based on the discharge
curves.
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Figure 5. Three-electrode performance: CV curves of (a) CN, (b) CN/CeQDs-3, (c) comparison of CV
curves of bare nickel foam, CN, and CN/CeQDs-3 at 10 mV/s, (d) analysis of b value of the cathodic
and anodic peaks of CN/CeQDs-3 at different scan rates, (e) capacitive and diffusion contribution of
CN/CeQDs-3, and (f) capacitive and diffusive contribution of CN/CeQDs-3 electrode at 5 mV/s.
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spectra of CN and CN/CeQDs-3 nanostructure.

Figure 6d displays the specific capacitance for both CN and CeQDs/CN-3 electrodes
at different current densities. The CeQDs/CN-3 electrode has specific capacitance values
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of 202.5, 186.9, 164.52, 129.6, and 97.9 F/g at 0.75, 1.5, 3.0, 4.0, and 5 A/g, respectively.
On the other hand, the CN electrode has specific capacitance values of 96.9, 84.96, 59.76,
37.12, and 22.7 F/g at 0.75, 1.5, 3.0, 4.0, and 5 A/g. The CeQDs/CN-3 electrode has an
estimated specific capacitance that is approximately 2.08 times that of the CN electrode,
due to the synergistic interaction between CeQDs and CN. This interaction enhances the
rate capability, promoting quicker electron transportation and more capable ion diffusion
into the composite material’s redox spots. The comparison confirms that the CeQDs/CN-3
electrode will yield higher current values. Supplementary Materials Table S1 compares the
g-C3N4-based electrode reports in existing published studies, showing that the CeQDs/CN-
3 electrodes exhibit notable electrochemical performance.

With regard to the longevity of electrodes being a critical aspect in electrochemical
devices, the cycling steadiness of the electrodes was assessed. Figure 6e showcases the
capacitance retention and Coulombic efficiency (CE) of the CeQDs/CN-3 electrode after
10,000 cycles. This electrode proves to have excellent long-term stability with a capacitance
holding of 95.4% after 10,000 sets at 5 A/g. The electrochemical reversibility is demonstrated
by the GCD profiles shown in the inset, which exhibit good stability. The CeQDs/CN-3
electrode exhibits a CE of 99.38% in the first cycle and retains a CE of 99.89% even after
10,000 cycles.

Figure 6f shows the Nyquist plots (Z′ vs. −Z′′) of the CN and CeQDs/CN-3 electrodes,
show a combination of a depressed semicircle in the high-frequency region and a steep
line in the low-frequency range. The reduced half-circle designates the Rct resulting from
faradic reactions, and the steep line signifies the capacitive behavior of the electrode (ideally,
it would be a vertical line for an ideal capacitor). The Rs includes intrinsic resistance of the
electrode material, bulk resistance of the electrolyte, and contact resistance at interfaces, can
be determined from the real axis intercept in the high-frequency region. The Rct values of
the CN and CeQDs/CN-3 electrodes were calculated to be 13.81 Ω and 12.7 Ω, respectively,
which demonstrate high charge transfer rates.

Hybrid Coin Cell-Type Asymmetric Supercapacitor Device (HCASD)

Based on the outstanding electrochemical activity of the CeQDs/CN-3 electrode, a
CeQDs/CN-3//AC HCASD with an alkaline PVA/KOH gel electrolyte was fabricated
and evaluated. Figure 7a displays the CV profiles of the positive and negative electrodes,
recorded at a sweep rate of 20 mV/s in a three-electrode configuration. The CeQDs/CN-3
was scanned in 0–0.6 V, while the AC electrode was scanned in −0.6 to 0 V. Figure 7b
displays the CV profiles of the CeQDs/CN-3//AC HCASD at different applied potentials
(0.4–1.2 V), indicating that 0–1.2 V is the optimal potential window for the HCASD. Figure 7c
presents the CV profiles obtained at an enhanced working voltage of 1.2 V at 2–500 mV/s.
The increase in CV curve area with scan rate shows that the asymmetric device has good
electrochemical behavior. Furthermore, the GCD of the HCASD (Figure 7d) at 1.5–8 A/g
demonstrate a high rate capability.

Figure 8a displays the graph of capacitance vs. current density for the HCASD, with
estimated specific capacitances of 46.25, 26.57, 13.12, 9.6, and 5.7 F/g at 1.5, 3, 5, 6, and 8 A/g,
correspondingly. The specific capacitance decreases linearly with an increase in current
density, with a rate of 8.11%. Figure 8b shows the EIS spectrum of the HCASD along with a
fitted curve, with estimated Rs and Rct values of 2.35 Ω and 5.674 Ω, respectively. Figure 8c
depicts the results of the stability and durability test of the HCASD over 10,000 cycles at
8 A/g. The test revealed that the CeQDs/CN-3//AC HCASD maintained 86.8% of its initial
capacitance, indicating exceptional stability. The Ragone plot (Figure 8d) of the HCASD,
which was obtained from the GCD curves using Equations (S2) and (S3), demonstrates an
Ed of 9.25 Wh/kg at a Pd of 900 W/kg. The electrochemical characteristics of the fabricated
HCASD noticeable the values reported in the literature [36,37]. Joseph et al. [36] showed
through their study that a symmetrical device exhibits an exceptional Ed of 46 Wh/kg at Pd
of 2691 W/kg. This remarkable performance is attributed to the binary materials’ interface,
which facilitates a greater accessibility for ion transport. Wei et al. [37] demonstrated in
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their research that a symmetrical device can deliver an Ed of 10.4 Wh/kg, with a Pd of
187.3 W/kg by effectively combining the benefits of ZnS and g-C3N4 materials. These
results highlight the promising potential of symmetrical devices in delivering high energy
and power density for various applications. Figure 8e presents a 3D plot of energy vs.
power density vs. time of discharge. The substantial energy-power densities and their
long-standing stability are essential parameters for device applications. To validate the
notable charge storage characteristics of the developed asymmetric supercapacitor device,
two HCASDs were linked in sequence to illumination a red LED (Figure 8f), and it was able
to function for 140 s. This test demonstrates the potential applications of the CeQDs/CN-
3//AC supercapacitor for wearable electronics. The 2D/0D nanostructure created shows
exceptional performance as a supercapacitor electrode, boasting a high capacitance and
a remarkable rate capability and stability, surpassing other CN-based electrodes and the
current advanced CN binary electrodes. The binary combination of materials results in
an asymmetric device that delivers high energy and power densities, even after multiple
cycles. This is due to the quantum structural features of CeO2QDs and layered CN, which
provide more accessible sites for ion transport.
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3. Experimental Section
Preparation of g-C3N4/CeO2 Nanostructure

The synthesis of g-C3N4/CeO2 nanostructures was accomplished using a simple
thermal decomposition method. Two grams of urea was decomposed at 450 ◦C to yield a
yellow product denoted CN, as seen in Figure 9. CeO2 was synthesized by grinding 2 g
of cerium (III) nitrate hexahydrate and subjecting it to a thermal treatment at 450 ◦C for
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12 h, followed by washing with ethanol and water and drying. The resulting product was
denoted CeQDs. The CeO2/g-C3N4 nanostructures were produced by grinding a mixture
of urea and ceria precursors in the weight ratios of 1: 0.8, 1: 0.9, and 1: 1, and following the
same procedure as for CeO2 synthesis. The final product was washed, dried overnight at
100 ◦C, and designated CeQDs/CN-1, CeQDs/CN-2, and CeQDs/CN-3. Further details
on material characterization, electrochemical 3 electrode testing, and asymmetric device
fabrication can be found in the Supplementary File.
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4. Conclusions

In conclusion, the synthesis of this novel 2D/0D CeQDs/CN nanostructure and its
evaluation as an electrode for supercapacitors is of great scientific and technological signif-
icance. It delivers new perceptions into the electrochemical performance of CeQDs/CN
nanostructures and opens up new opportunities for further research in this field. CN offers
a great platform for growing CeO2 quantum dots (CeQDs), which are attractive materials
for supercapacitor uses due to their large surface area, high reactivity, and high capacitance.
This work is scientifically novel as it presents a simple synthesis approach for synthesizing
CeQDs/CN nanostructures, which can guide the controlled growth of CeQDs. The 2D/0D
nanostructure ensures good dispersion of CeQDs, thereby enhancing the electrode’s capaci-
tance. Moreover, the results show that the CeQDs/CN nanostructure exhibits excellent rate
capability and cycling stability, outperforming CN and CeQD counterparts and the current
advanced reported CN binary electrode.
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