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Abstract: This study aims to evaluate the toxicity of ZnS nanoparticles (ZnS NP50 = 50 µg/L and
ZnS NP100 = 100 µg/L) and diethyl (3-cyano-1-hydroxy-2-methyl-1-phenylpropyl)phosphonate
or P (P50 = 50 µg/L and P100 = 100 µg/L) in the clams Ruditapes decussatus using chemical and
biochemical approaches. The results demonstrated that clams accumulate ZnS NPs and other metallic
elements following exposure. Moreover, ZnS NPs and P separately lead to ROS overproduction,
while a mixture of both contaminants has no effect. In addition, data showed that exposure to
P100 resulted in increased levels of oxidative stress enzyme activities catalase (CAT) in the gills and
digestive glands. A similar trend was also observed in the digestive glands of clams treated with
ZnS100. In contrast, CAT activity was decreased in the gills at the same concentration. Exposure
to ZnS100 and P100 separately leads to a decrease in acetylcholinesterase (AChE) levels in both
gills and digestive glands. Thus, AChE and CAT after co-exposure to an environmental mixture of
nanoparticles (ZnS100) and phosphonate (P100) did not show any differences between treated and
non-treated clams. The outcome of this work certifies the use of biomarkers and chemical assay when
estimating the effects of phosphonate and nanoparticles as part of an ecotoxicological assessment
program. An exceptional focus was given to the interaction between ZnS NPs and P. The antioxidant
activity of P has been demonstrated to have an additive effect on metal accumulation and antagonistic
agents against oxidative stress in clams treated with ZnS NPs.

Keywords: ZnS NPs; hydroxyphosphonates; biomarkers; oxidative stress; Ruditapes decussatus

1. Introduction

Contaminants are unavoidably released into aquatic ecosystems and eventually reach
sediment and water as a result of anthropogenic actions [1,2].

Nanoparticles and phosphonates are among the most widely used products in the
world [3] and are detected at different concentrations in different compartments of marine
ecosystems [4]. These contaminants have harmful effects on aquatic organisms through
interference with a range of biological and biochemical pathways [1,2]. Most species
can accumulate nanoparticles and phosphonates from contaminated sources, leading to
contamination of the entire ecosystem [4] and consequently humans through the food
chain [5].

Zinc sulfide nanoparticles (ZnS NPs) have been used for a large number of applica-
tions [6]. Because of photochemical processes and dissociation, these types of particles can
release toxic metal ions into the aquatic environment [7]. In addition, ZnS NPs have been
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shown to exhibit some changes in the physicochemical parameters of bodies of water, such
as dissolved oxygen level and pH, in turn regulating water quality and hence affecting
aquatic fauna [8]. The problem of its toxicity in aquatic species depends on their size,
charge, and duration of exposure according to Aye et al. [9], but no data are yet available in
marine waters.

Among phosphonates, diethyl (3-cyano-1-hydroxy-2-methyl-1-phenyl propyl) phos-
phonate (P) is a novel type of hydroxy phosphonate used as a pharmaceutical compound,
having received considerable attention for its biological activity as an antibiotic [10] and en-
zyme inhibitor [11] and for its anticancer and antioxidant activity [12]. Moreover, the toxic
effects of this new compound have not yet been investigated. However, the toxic effects of
exposure to these two xenobiotics remain distant from clear, and most studies have been
performed on each contaminant separately. The need to recognize the eco-toxicological
impacts of these xenobiotics on aquatic organisms has become essential, and links between
the effects of NPs and phosphonates should be investigated.

Recently, biomarkers and chemical approaches have been used to evaluate the toxico-
logical effects of xenobiotics on bivalves as filter-feeding organisms. It is well documented
that bivalves have been utilized as indicators due to their tolerance against pollutants,
having a central ecological position [13], and representing the potential transport of NPs
through food chains [14]. In particular, the clam Ruditapes decussatus, abundant in the
Mediterranean Sea, represents a suitable model organism for determining the impacts of
NPs and phosphonates.

NPs and phosphonates can penetrate organisms and generate reactive oxygen species
(ROS), causing increases in antioxidant enzyme activities [15] and neurotoxic effects [16]. In ad-
dition, NPs and phosphonate could lead to LPO increases and protein and DNA damage [17],
as well as decreases in lysosomal membrane stabilities and phagocytic activity [18].

Due to widespread NPs and phosphonate occurrence in aquatic ecosystems and
their toxic effects on different organisms, it is necessary to understand the mechanism
of their toxicity after individual or combined exposure and to identify potential organ-
based biomarkers for assessing biological interactions. From this perspective, the present
research is focused on the mechanistic explanation of ZnS and P toxicities (separately
and in combination) in the marine bivalve R. decussatus, and it illustrates the potential
biomarkers for screening and monitoring the interaction and toxicity of these chemicals in
marine organisms. In addition, considering the important role of the gills as a first barrier
against the uptake of contaminants and of the digestive glands as key organs in energetic
metabolisms [19,20], toxicity and interaction were evaluated in these organs to obtain a
more specific ecotoxicological database.

2. Results
2.1. ZnS NPs Characterization

The morphology of pure ZnS nanoparticles was determined by transmission electron
microscopy. The TEM images in Figure 1a show that ZnS nanoparticles with a quasi-
spherical shape are formed. The size of the prepared ZnS particles is about 5 nm. Lattice
fringes can be clearly distinguished for a single ZnS nanocrystal (Figure 1b) as 0.31-nm
interplane spacing of the (111) plane of ZnS in the cubic blende structure. Analysis by
energy spectroscopy (EDAX) shows that the sample has only peaks of zinc and sulfur, thus
confirming the high-purity ZnS nanoparticles (Figure 1c). The presence of peaks (<1 eV) is
due to the copper grid used for the TEM/EDAX experiments.
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important increase in metal content in the whole soft tissue of clams treated with the mix-
ture (M100). 
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of R. decussatus clam exposed to ZnS, P, and their combination (Figure 2a). No significant 

Figure 1. TEM images (a,b), DRX (c), and EDAX spectra (d) of ZnS nanoparticles.

2.2. Metal Content in the Clams

Table 1 shows that Fe, Cd, Pb, and Zn concentrations decreased after exposure to
ZnS50 and P50 compounds separately in the whole soft tissue of R. decussatus. In contrast,
metal content increased significantly (p < 0.05) in clams exposed to ZnS100. In addition,
Cu concentrations increased significantly in clams with increased P concentrations, while
Cd, Fe, Pb, and Zn decreased in P50- and P100-treated clams. Our results also showed
an important increase in metal content in the whole soft tissue of clams treated with the
mixture (M100).

Table 1. Metal content in the whole soft tissues of control and treated clams (g/kg dw).

Cd Cu Fe Pb Zn

Control 0.069 0.025 0.750 0.28 2.098
ZnS50 0.001 0.2 0.22 0.02 0.690
ZnS100 0.130 0.098 1.25 0.155 3.968

P50 0.001 0.290 0.320 0.090 0.710
P100 0.001 0.250 0.470 0.090 1.090
M100 0.224 0.545 2.750 0 13.112

2.3. Hydrogen Peroxide Levels

The hydrogen peroxide levels were examined in both the digestive glands and gills
of R. decussatus clam exposed to ZnS, P, and their combination (Figure 2a). No significant
differences were observed in the digestive glands between control and treated clams. More-
over, ZnS50 and P50s showed no significant differences in H2O2 levels in gills compared
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to the control group. In the same organs, ZnS100 and P100 added separately showed
significant increases in H2O2 levels by 76% and 62%, respectively, compared to the control
group (p < 0.05). In contrast, no significant changes were observed in the gills and digestive
glands of clams treated with M100 (p < 0.05).
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Figure 2. Antioxidant and neurotoxic effects of ZnS NPs and P: (a) hydrogen peroxide (H2O2)
(b) CAT and (c) AChE in the gills and digestive glands of Ruditapes decussatus clams when exposed to
increasing concentrations of ZnS NPs and P over 10 days. Values are the mean ± SD. (*) indicates
significant differences (p < 0.05) and ($) indicates significant differences in digestive gland (p < 0.05).

2.4. Catalase Activity

No significant differences were observed in the gills and digestive glands of clams
exposed to ZnS50 and P50 (Figure 2b). Significant increases in CAT activity were observed
in the digestive glands of clams exposed to ZnS100 from 0.182 to 0.257 µmol/min/mg
protein, but a significant decrease in this activity occurred in their gills. CAT activity was
found to be stimulated after exposure to 100 µg/L per 3 g of compound from 0.168 to
0.2990 µmol/min/mg protein in gills and 0.182 to 0.288 in digestive glands (Figure 2b). In
contrast, no significant changes in CAT activities occurred in the gills and digestive glands
of clams exposed to the mixture of ZnS NPs and P compound (p < 0.05).

2.5. AChE Activity

No significant differences were observed after 10 days of exposure to ZnS50 and P50
in both gills and digestive glands (Figure 2c). In contrast, significant inhibition (p < 0.05)
was detected in gills by 28.2% and digestive glands by 13.77% of specimens exposed to
ZnS100. The exposure of clams to M100 did not change AChE activity in the gills and
digestive glands compared to the control group (Figure 2c).
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3. Discussion
3.1. Metal Content in Clams

The study of human impact on bivalves is of great significance from ecological, eco-
nomic, and public health points of view. The results of the present study add more data
about the toxicity caused by NPs and pharmaceutical compounds, particularly ZnS NPs,
and phosphonates. These findings represent the first data on the in vivo effects of ZnS
NPs and phosphate P added separately or in combination with metal variations and the
enzymatic status of clams. The results demonstrate that exposure to ZnS NP suspensions
induces significant changes in metal content in clams. R. decussatus accumulate Fe, Cu, and
Zn in the total tissue. In agreement with our results, Vale et al. [21] reported an increase in
metal concentrations in Danio rerio fish exposed to increased ZnO NP concentrations. These
data suggest that metal accumulations are related to chemical and biochemical processes
of detoxification of free radicals generated by NPs. It is also important to note that Cd,
Fe, and Cu levels increased with increasing ZnS NPs concentrations in clam tissues. This
outcome is probably due to the adsorption of these metals by ZnS NPs [21]. Eventually,
ZnS NPs increased the bioavailability of these metals initially present in seawater, and this
speciation allows the importation of metals into the cells [21].

Exposure of clams to phosphate P induced a decrease in most metal concentrations in
the clams’ tissues. These results could be attributed to the high affinity of this compound
against metals, as described by Aouani et al. [22], who suggested that the P=O moiety is
responsible for the metal’s ion chelating effect.

Nevertheless, the opposite effect was demonstrated in our study, showing that P
induced an additive effect on metal uptake in the presence of ZnS NPs. Comparable results
were reported by Gagné et al. [23] in several aquatic species contaminated with a mixture
of ZnO and pharmaceuticals. Alsop and Wood [24] observed an additive effect on Cu levels
in zebrafish contaminated with Cu and fluoxetine.

3.2. Oxidative Stress and Modulating Effects

Once passed through the membrane barrier, NPs and pharmaceuticals produce reac-
tive oxygen species (ROS), causing oxidative stress [21,25,26]. Our results revealed that
the highest concentration of ZnS NPs induces overproduction of hydrogen peroxide in the
gills. These results were confirmed by those in the literature [27]. Additionally, Asharani
et al. [28] and Hussain et al. [29] showed that Ag NPs contribute to high ROS production
by released ions [30]. This overproduction is related to the photocatalytic properties of
ZnS NPs [31]. These data suggest that ROS overproduction is related to the photocatalytic
aspect of ZnO NPs, and this disturbance could be the result of released Zn2+ in cells [32]. In
the present study, P100 increased H2O2 levels only in gills, whereas no excessive production
was observed with P50. This increase is related to the chemical nature of this phosphonate.
According to Liendro et al. [33], organophosphorus compounds led to ROS production in
Oryzias latipes. Similar effects were reported by Bebianno et al. [34] and Maranho et al. [35]
in R. philippinarum and R. decussatus after exposure to a mixture of organophosphorus com-
pounds. González et al. [36] and Cruz et al. [37] indicated that pharmaceutical products
accumulated in R. decussatus clams, contributing to free radical generation.

Unlike metal uptake, exposure to a mixture of ZnS NPs and P induces an antagonistic
effect against ROS production. This decrease is related to the ability of α-hydroxyphosphonate
to neutralize excess hydrogen peroxide levels, as reported by Naidu et al. [38]. The addition
of P opposes the toxic effects of nanoparticles by preventing ROS overproduction. Thus, both
phosphorous and nitrile groups present in P mobilize and remove H2O2 from the organ-
ism [22]. In addition, Rao et al. [12] confirmed that phosphorous density has a crucial role in
controlling oxygenated species affinity. It is also important to mention that metals react directly
with ROS. However, chemical analysis by ICP shows that these two xenobiotics stimulate the
non-enzymatic molecular defense system. Similarly, copper, zinc, and iron concentrations
increase as a result of exposure to catalyst H2O2 levels, as reported by Fenton [39]. Zinc and
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copper ions are also catalysts of this radical, according to Mohanty and Samanta [40]. Similarly,
iron is likely to induce a reduction in intracellular H2O2, according to [36].

Antioxidant enzymes, such as CAT, are involved in protecting organisms from the
harmful effects of H2O2 generated by xenobiotics [41]. Our results showed normal CAT
activity in the gills and digestive glands after exposure to ZnS50. Similar results were also
found in Crassostrea gigas oysters exposed to 50 µg/L of ZnO NPs [19] and Scrobicularia
plana exposed to 10 µg/L of CuO NPs [26]. In contrast, stimulation of enzymatic defense
mechanisms was demonstrated in Scrobicularia plana [20] and E. complanata exposed to
a higher concentration of ZnO NPs [23]. It has been shown that CAT activity is much
more important in the digestive glands than in other organs in bivalves exposed to a wide
variety of nanoparticles [42]. This finding confirms the large difference in response between
the gills and the digestive glands of specimens exposed to ZnS100. The same pattern of
development has been reported in E. complanata exposed to ZnO NPs (2 mg/L) [23]. In
addition, our results are in agreement with the studies of Ali et al. [43], who found that
CAT activity in the digestive glands of Lymnaea luteola exposed to ZnO NPs increases with
increasing concentration. CAT inhibition in clams treated with ZnS100 could be attributed
to hydrogen peroxide overproduction. Gomes et al. [44] showed that CAT inhibition in
Mytilus galloprovincialis is due to the interaction of Ag NPs with the thiol group of CAT.
Moreover, Mohanty and Samanta [40] showed that CAT inhibition is directly related to
the reaction between metal ions and the -SH group of this enzyme and indirectly with the
superoxide anion [45].

CAT activity is also known to be strongly influenced by pharmaceuticals [37]. In the
present study, the high concentration of P stimulated the antioxidant defense system in
a concentration-dependent manner. Aquatic invertebrates are among the most sensitive
aquatic species to pharmaceuticals. Martin-Díaz et al. [46] and Parolini et al. [47] showed
that the antioxidant defense system’s activation against high levels of H2O2 in the diges-
tive glands of M. galloprovinciallis and Dreissena polymorpha are dependently exposed to
concentrations of pharmaceuticals. Our results showed a gradual increase in CAT activity
in clams contaminated with two concentrations of P (P50 = 50 µg/L and P100 = µg/L).

CAT activity remains intact after exposure to the mixture (M100) of ZnS NPs and P.
This result is related to the phosphonate compound P acting as an antagonist against ZnS
NPs by a mechanism that has not yet been developed.

Aouani et al. [22] suggested that P possesses the ability to chelate DPPH radicals by
donating an electron. Since the phosphorus group has an affinity for oxygen, it is also
possible to have an affinity toward ROS, leading to a decrease in CAT activity. Our results
prove that this compound can chelate free radicals, and then it can constitute a defense
agent against the accumulation of NPs in the gills and digestive glands. The possible
interactions are still unclear, and the mode of action is not well elucidated. In contrast, a
study performed on R. decussatus showed that the exposure of this species to a mixture
of metal ions and pharmaceuticals led to an increase in CAT activity in the digestive
glands [48].

3.3. Neurotoxic Effects of ZnS NPs and P

AChE is the most commonly used biomarker of neurotoxicity in invertebrates [15], and
this enzyme is inhibited by several neurotoxic agents [49]. The results of our study showed
that ZnS NPs and P inhibit AChE activity in Ruditapes decussates at high concentrations
without leading to muscle tetanization since no mortalities were observed during the
experiment.

AChE inhibition is a concentration-dependent response since ZnS50 and P50 had no
significant changes in clams, and the inhibition is observed in specimens treated with high
concentrations (ZnS100 and P100). AChE activity was inhibited in Hedist diversicolor and
Nereis diversicolor annelids exposed to increasing concentrations of ZnO [20]. Similarly,
CuO NPs have been shown to contribute ta significant inhibition of AChE activity in
R. decussatus after 5 days of exposure [34].
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This inhibition of AChE is probably due to the adsorption of ZnS NPs to AChE
active sites. This observation was confirmed by the hypothesis of [50], who showed AChE
inactivation by Zn2+ ions. The denaturation of serine residues at the active site of AChE by
Zn2 + ions may also be the cause of AChE inhibition and the accumulation of acetylcholine
in the synaptic space [51]. The theory of a modification of the electrostatic field of AChE by
ions was also suggested by Radic et al. [52].

AChE inhibition is strongly correlated with a crucial increase in hydrogen peroxide
after exposure to ZnS NP100 in the gills and digestive glands and to P100 in the gills.
This result is in agreement with Schallreuter et al. [53], who explained that AChE activity
becomes inactive due to the high production of H2O2. In addition, dependence was
demonstrated by Antonio et al. [54], who discovered a positive correlation between the
increase in CAT activity and the inhibition of AChE activity in aquatic species. In addition,
Buffet et al. [26] showed that copper, zinc, and silver nano-oxides did not cause any changes
in AChE activity in Scrobicularia plana clams treated with 100 µg/L. This finding proves
that AChE activity is very variable between species. Pan et al. [9] also showed stimulation
of AChE activity in S. plana contaminated with 100 mg/L of AuNPs and that this increase
was associated with a compensatory response.

AChE is highly sensitive to pharmaceutical product variation [35]. Twenty percent or
more of a decrease in AChE activity following exposure to any contaminant is considered a
consequence of neurotoxicity caused by this pollutant [55]. Based on this theory, we can
conclude from our results that P at a relatively high concentration has a neurotoxic effect
on R. decussatus clams.

Similar neurotoxic effects have been observed in R. decussatus exposed to OMTOS
(2-(4-methoxyphenyl)-5,6-trimethylene-4H-1,3,2-oxathiaphosphorin-2-sulfide) [56]. The
inhibition of AChE activity was also demonstrated by Mattson et al. [57], who showed that
a pharmaceutical (neguvon, an antiparasitic) inhibited this activity in salmonids and fish.

Brewer et al. [58], Sandahl et al. [59], and Sturve et al. [60] also showed inhibition
of AChE by organophosphorus compounds. These authors suggested that the decrease
in AChE activity in Terapon jarbua fish is strongly correlated with the bioaccumulation
of organophosphorus products. In addition, Nunes et al. [61] found that, in the crus-
tacean Artemia parthenogenetica, exposure to pharmaceutical substances, such as diazepam,
inhibits AChE activity. Milan et al. [62] reported that inhibition of AChE activity is organo-
dependent in R. philippinarum clams exposed to pharmaceuticals (100 µg/L) with greater
inhibition in gills than in other organs, while the most recent studies showed that, for
the same species contaminated with 50 µg/L of pharmaceutical product (antibiotics and
antidepressants), AChE inhibition is more important in the digestive glands [63]. These
authors have linked the neurotoxic effects of these pharmaceuticals with their modes of
action. These products are known for their ability to inhibit AChE activity [64]. This rela-
tionship explains the inhibition of AChE by P, known for its antibacterial activity according
to Pokalwar et al. [65] and Reddy et al. [66].

Contrary to the neurotoxic effects of P in the gills, significant stimulation of AChE
activity in the digestive glands was observed after the administration of P100. This increase
in AChE activity can be explained by an overcompensation of the gene codes for this
enzyme and a reduction in the gene code for the acetylcholine vesicle transporter to
decrease neuronal hyperexcitation [67]. The increased concentrations of acetylcholine are
at the origin of continuous nerve transmission. The regulation of the expression of these
genes makes it possible to decrease the availability and/or increase the hydrolysis of the
neurotransmitter at the level of the synaptic space. In addition, this increase may be the
consequence of the production of new forms of AChE, which trap inhibitors of this enzyme
(AChE-R) and which hydrolyzes acetylcholine (AChE -S) [68].

Aguirre-Martinez et al. [69] showed an activation of the cholinergic system in clam
R. philippinarum exposed to several families of pharmaceutical products. These authors
have shown that exposure to an antibacterial drug (Novobiocin = 0.1 to 50 µg/L) and
another anti-inflammatory product (Ibuprofen = 5 to 50 µg/L) is likely to induce a pro-
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gressive increase in AChE activity in the digestive gland. Similarly, AChE stimulation
in clam was also detected following contamination with a low concentration of caffeine
(0.1 µg/L). Aguirre-Martinez et al. [69] pointed out that this stimulation is closely linked to
the level of contamination and is probably contaminant-dependent. This was confirmed by
Aguirre-Martinez et al. [69], which corroborated the hypothesis of a significant increase in
AChE as a transient effect of the drug, suggesting that clams attenuate neurotoxic effects by
increasing AChE activity in the digestive gland. Zhang and Greenberg, [70] and Oliveira
et al. [63] also indicated that the cholinergic system activation offers the advantage of being
a powerful indicator of neurotoxicity in clams exposed to a pharmaceutical product. The
authors suggest that this increase may be a coping mechanism but not a defense against
stress [71].

The mixture of ZnS NPs and P at similar concentrations showed an antagonist AChE
response. This outcome would suggest that P possesses the ability to activate the cholinergic
system in the presence of NPs.

4. Materials and Methods
4.1. ZnS NPs and Diethyl (3-cyano-1-hydroxy-2-methyl-1-phenyl propyl) phosphonate Synthesis

To synthesize the ZnS NPs, zinc acetate dihydrates [Zn (OAc) 2. 2 H2O) Aldrich,
AR grade] (1.15 g) and thiourea (0.47 g) were dissolved in 25 mL of 1,3-propanediol, and
the mixture was heated to 190 ◦C and kept at this temperature for 2 h under continuous
magnetic stirring. At the end of the reaction, the precipitate was centrifuged, washed
several times with ethanol, and then dried in a vacuum at 60 ◦C for 12 h to yield a white,
dry ZnS powder. The crystalline structure of the obtained powder was characterized by
X-ray diffraction (XRD) (an INEL diffractometer with a copper anticathode (λ = 1.54060 Å)).
High-resolution TEM (Philips Tecnai F-20 SACTEM operating at 200 Kv) images provided
further insight into the structural information of the ZnS NPs.

Diethyl (3-cyano-1-hydroxy-2-methyl-1-phenyl propyl)phosphonate (P) was synthe-
sized in 77% yield, according to the procedure reported by Aouani et al. [22], which
involves the reaction of 3-methyl-4-oxo-4-phenyl-butane nitrile with diethylphosphite at
room temperature for 5 h in the presence of magnesium oxide as solid support (Scheme 1).
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Scheme 1. Synthesis of phosphonate P.

Experimental procedure: Diethylphosphite (0.02 mol) was added to the ketonitrile
(0.01 mol), and the mixture was heated at 60 ◦C and stirred until the ketonitrile was dis-
solved. Then, magnesium oxide (0.02 mol) was added, and the mixture was stirred at 25 ◦C
for 5 h. The magnesium oxide was filtered and washed with dichloromethane (3 × 10 mL).
The filtrate was extracted with water (2 × 30 mL). The organic phase was dried over
Na2SO4 and concentrated under a vacuum. The obtained residue was chromatographed
on a silica gel column using a mixture of ether and hexane (8:2) as an eluent.

The physical and spectral data for compound P were: brown solid; mp 182-184 ◦C;
31P NMR (121.5 MHz, CDCl3): δ(ppm) = 21.6 (min), 22.0 (maj); maj/min: 61/39; 1H NMR
(300.1 MHz, CDCl3): δ (ppm) = 0.94–1.46 (m, 6H, CH3-CH2-O); 2.16 (d, 3H, 3JHH = 9.0 Hz,
CH3-CH, min); 2.20 (d, 3H, 3JHH = 9.0 Hz, CH3-CH, maj); 2.49–2.78 (m, 2H, CH-CH2-CN);
3.50–3.82 (m, 1H, CH-CH2-CN); 3.98–4.22 (m, 4H, CH3-CH2-O); 5.22 (br s, 1H, OH, min);
5.52 (br s, 1H, OH, maj); 7.12–7.62 (m, 5H, arom-H); 13C NMR (75.5 MHz, CDCl3): δ

(ppm) = 13.7 (d, 3JCP = 8.2 Hz, CH-CH2-CN); 16.2 (d, 3JCP = 6.0 Hz, CH3-CH2-O); 16.4
(d, 3JCP = 6.0 Hz, CH3-CH2-O); 19.8 (s, CH3-CH, min); 20.2 (s, CH3-CH, maj); 37.7 (d,
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2JCP = 7.0 Hz, CH-CH2-CN); 61.1 (d, 2JCP = 6.0 Hz, CH3-CH2-O); 61.4 (d, 2JCP = 6.0 Hz,
CH3-CH2-O); 75,8 (d, 1JCP = 160.5 Hz, P-C-OH, maj); 79.1 (d, 1JCP = 161.8 Hz, P-C-OH, min);
118.5 (s, CN, maj); 119.5 (s, CN, min); phenyl carbons: δ (ppm) = 125.5, 125.7, 125.9, 127.4,
127.7, 127.9, 128.1, 128.2, 128.3, 128.4, 128.6, 128.9, 132.9, 133.7; IR (neat): νP=O = 1256 cm−1,
νCN = 2246 cm−1, νOH = 3483 cm−1; EI-HRMS: calculated for C15H22NO4P: 311.1286 (M+),
found: 311.1282.

4.2. In Vivo Exposure

Clams (R. decussatus) of between 4.22 and 3.25 cm in shell length were collected in the
Bizerte lagoon, Northern Tunisia. Acclimation occurred in 2-L glass tanks for 1 week before
starting the exposure. The following experimental treatments were established in triplicate
tanks. Clams were divided into groups of 5 per tank and exposed at the same time to ZnS
NPs, P, or a combination of the 2 compounds (M100) for 10 days. Two concentrations of
50 and 100 µg L−1 were considered for ZnS NPs and diethyl (3-cyano-1-hydroxy-1-phenyl-
2-methyl propyl) phosphate or P. The exposure treatments were labeled as follows: ZnS50
and ZnS100 for dissolved 50 and 100 µg L−1 of ZnS, P50; and P100 for dissolved 50 and
100 µg L−1 of phosphonate and M100 for dissolved ZnS100 and P100 mixture.

A control series without ZnS NPs and P was run in parallel. Aeration at the bottom
of the tank was used to minimize agglomeration and subsequent sedimentation of the
contaminants, and the seawater was changed every 48 h. For the duration of the experiment
(10 days), the clams were fed, with the seawater changed every 48 h. Test animals were
checked daily. No mortality was observed, and all animals were seen to be feeding normally.

4.3. Metal Analysis

Heavy metals and electrolytes present in the clams were determined using an Optima
7300 DV optical emission spectrometer. After 10 days of exposure, the clams were dissected,
and the whole tissue was weighed. The whole tissue was then placed in the oven at 105 ◦C
for 30 min to be dried. The samples are mineralized separately by a mixture of HNO3 5%
(3 mL), H2O2 (3 mL), and H2O (1 mL). The digestion was continued in a microwave for
20 min at 720 W. The samples were diluted with 50 mL of ultrapure water [72]. The solution
was filtered to eliminate the organic particles that remained in the suspension and entrainer
interferences during measurement. Finally, the samples were analyzed by ICP-AES using
reference material of mussel tissue (NIST 2976) [73]. The detection limits for Cd, Zn, Fe,
Cu, and Pb were in the range of 0.006–25 mg/L. The results are expressed in g kg-1 wet
weight. Values reported were corrected for background levels determined in blank sterile
filtered seawater.

4.4. Biochemical Analysis

After 10 days of exposure, the digestive glands and gills of each individual were
dissected on ice. Protein extractions were performed and homogenized by a polytron
homogenizer in 10 mMTris/HCl with a pH of 7.2, containing 500 mM sucrose, 1 mM
EDTA and 1 mM PMSF; supernatants were collected by centrifugation at 9000× g (4 ◦C
for 30 min). Protein concentrations were quantified according to Bradford’s [74] method
based on a colorimetric reaction using bovine serum albumin (BSA). Hydrogen peroxide
(H2O2) levels were measured following the method of Wolff [75]: a volume of 0.1 mL of the
supernatant was added to 900 mL of FOX1 reagent (100 mxylenol orange, 100 mM sorbitol,
250 mM ammonium ferrous sulfate, and 25 mM H2SO4), vortexed, and incubated at room
temperature for 30 min. The sample was then centrifuged at low speed for 3 min, and
the absorbance of the supernatant was read at 560 nm. CAT activity was measured by the
decrease in absorbance at 240 nm due to H2O2 consumption according to the method of
Aebi [76]. The reaction volume and reaction time were 1 mL and 1 min, respectively. The
reaction solution contained 80 mM phosphate buffer with a pH of 6.5 and 50 mM H2O2 [77].
Specific CAT activities are reported as µmol/min/mg protein.
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AChE activity was determined using the method of Ellman et al. [78]. Measurements
of AChE activity were initiated by the addition of acetylthiocholine, and then absorbance
was read at 412 nm. Results were expressed in µmol/min/mg of the hydrolyzed substrate
relative to the total protein content.

4.5. Data Analysis

Metal content, H2O2 levels, and enzymatic activities were compared among samples
using Statistica software, version 8.0. After testing ANOVA assumptions, statistical sig-
nificance was evaluated through one-way ANOVA. Tukey’s HSD test allowed pairwise
comparisons between experimental conditions, and a significant difference was considered
at p < 0.05.

5. Conclusions

The toxicity of phosphonates, specifically diethyl (3-cyano-1-hydroxy-2-methyl-1-
phenyl propyl) phosphonate (P) and ZnS NPs, in marine clams is highlighted in the present
study. The study revealed that phosphonate had both additive and antagonistic toxic effects
when present with ZnS NPs. Consequently, exposure to these pollutants disrupted the
metal content and oxidant/antioxidant balance in the clams’ gills and digestive glands,
leading to an increase in CAT activity, H2O2 overproduction, and neurotoxic effects. The
results suggest that phosphonate could be utilized as a new product to control NP toxicity in
aquatic environments. To verify the findings of this initial study, additional tests examining
the toxicity of ZnS NPs and P at various concentrations are necessary.
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