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Abstract: Non-magnetic metal nanoparticles have been previously applied for the growth of single-
walled carbon nanotubes (SWNTs). However, the activation mechanisms of non-magnetic metal
catalysts and chirality distribution of synthesized SWNTs remain unclear. In this work, the activation
mechanisms of non-magnetic metal palladium (Pd) particles supported by the magnesia carrier and
thermodynamic stabilities of nucleated SWNTs with different (n, m) are evaluated by theoretical
simulations. The electronic metal–support interaction between Pd and magnesia upshifts the d-band
center of Pd, which promotes the chemisorption and dissociation of carbon precursor molecules
on the Pd surface, making the activation of magnesia-supported non-magnetic Pd catalysts for
SWNT growth possible. To verify the theoretical results, a porous magnesia supported Pd catalyst is
developed for the bulk synthesis of SWNTs by chemical vapor deposition. The chirality distribution
of Pd-grown SWNTs is understood by operating both Pd–SWNT interfacial formation energy and
SWNT growth kinetics. This work not only helps to gain new insights into the activation of catalysts
for growing SWNTs, but also extends the use of non-magnetic metal catalysts for bulk synthesis
of SWNTs.

Keywords: single-walled carbon nanotube; Pd catalyst; density functional theory; interfacial forma-
tion energy; chirality distribution; bulk growth

1. Introduction

Single-walled carbon nanotubes (SWNTs) are expected to be one of the key building
blocks in the future generation of electronics and optoelectronics [1–4]. As the electrical
and optical properties of SWNTs are sensitive to the SWNT chirality structure, which is
denoted by chiral indices (n, m), achieving SWNTs with a narrow chirality distribution
is highly desirable before incorporating SWNTs into the nanoelectronic devices [5–7]. In
the past two decades, significant progress has been made in carbon nanotube synthesis
methods including chemical vapor deposition (CVD) [8–10], microwave radiation [11,12],
and arc discharge techniques [13], etc. Remarkably, the selective growth of SWNTs with
specific structures and high purity has been realized independently by different research
groups [14–16]. During the CVD growth process, the catalyst–SWNT interfacial interaction
correlates with nanotube nucleation and carbon atom incorporation [17–20], governing the
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chirality distribution of the final products. To regulate the SWNT chirality distribution, a
prevalent and facile method is to tune the catalyst composition. Consequently, great efforts
have been made in designing different metal catalysts for selectively growing SWNTs with
a narrow chirality distribution [21,22].

Besides ferromagnetic metals (including Fe, Co, and Ni) with large carbon solubility,
many unconventional metal nanoparticles have also been applied for the CVD growth
of SWNTs [23,24]. To remove the hurdle for investigating the intrinsic magnetic prop-
erties of SWNTs, SWNT growth from non-magnetic catalysts is indispensable. In 2006,
Takagi et al. [23] demonstrated that several metal nanoparticles, including Au, Ag, Cu,
Pd, and Pt, could be activated for SWNT growth after proper heat treatment in air. Later,
Yuan et al. [24] reported the synthesis of horizontally aligned SWNTs on stable temperature-
cut quartz substrates from various metal particles. Both works suggest that almost any
metal particle with a suitable diameter could be adopted for synthesizing SWNTs. Recently,
Ding et al. [25] established an SWNT formation model based on the contact angle-dependent
interfacial energy of the SWNT–catalyst edge. Only when the interfacial formation en-
ergy drop counteracts the van der Waals cap–catalyst adhesion, the SWNT cap can lift
off, driving the SWNT nucleation. Within the framework of heterogeneous catalysis [26],
a catalytically active metal particle must fulfill the following three key parameters: de-
composing the carbon precursor molecules, forming a graphitic cap on the surface, and
stabilizing the SWNT end to maintain its hollow structure.

The catalytic performances of metals in growing SWNTs are predicted to be related to
the d orbital energy [27], and a “Goldilocks zone” is established based on the energetics of a
heterogeneous catalyst reaction [26]. Nørskov et al. [28] reported that adsorbed molecules
preferentially interact with the d-states near the Fermi level of the transition metal and the
carbon–metal bond strength is proportional to (1 − fd), where fd is the filling degree of the d
band. When fd is smaller than 0.5, i.e., the d band is less than half-filled, carbon molecules are
strongly absorbed on early transition metal surfaces and the formed strong metal–carbon
bonds make the release of SWNTs extremely difficult [26]. However, the non-magnetic
metal, especially the one out of the “Goldilocks zone”, is theoretically unsuitable for SWNT
growth and the activation mechanisms of non-magnetic metal catalysts remain unclear.
The non-magnetic metal Pd is located out of the “Goldilocks zone” [29], and the report on
the growth of carbon nanotubes from the Pd catalyst is scarce [23,24], which makes the
correlation establishment between Pd element and SWNT chirality distribution difficult.
Recently, our group proposed to activate some noble metal catalysts by exerting metal–
support interaction [30,31], which could transfer electrons from basic magnesia (MgO)
support to metal clusters, shifting the originally inactive metal into the “Goldilocks zone”.

To understand the activation mechanisms of non-magnetic metals, we will choose
the MgO-supported non-magnetic Pd (Pd@MgO) catalyst as the object of this work for
investigating its catalytic mechanisms by using the d-band center model. The lower the
interfacial formation energy is, the more stable the nucleated SWNT is. Experimentally, a
porous MgO-supported atomically dispersed Pd catalyst is designed for bulk synthesis of
SWNTs by carbon monoxide (CO) CVD. The chirality distribution of obtained SWNTs will
be analyzed and compared with the theoretical results.

2. DFT Calculations on SWNT–Pd Interfacial Formation Energy
2.1. Computational Methods

Density functional theory (DFT) with the Vienna ab-initio simulation package (VASP)
was applied to perform the geometric and energetic calculations [32–35]. The projector
augmented wave (PAW) method was adopted to describe the interactions between ion
cores and valence electrons [36,37]. The Perdew–Burke–Ernzerhof functional was used for
the exchange correlation [38]. A value of 300 eV was fixed as the plane wave cutoff energy.
The integration of the Brillouin zone was conducted using a 1 × 1 × 1 Monkhorst–Pack
grid [39]. The convergence criteria for energy and force were set to 1.0 × 10−5 eV/atom
and 0.05 eV/Å, respectively. Spin polarization was considered in our current study.
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2.2. Model Construction

MgO(200) and Pd(100) surfaces were prepared by cutting MgO and Pd bulk along
(200) and (100) directions. To construct a Pd@MgO catalyst, a (6 × 6) MgO(200) supercell
with a three-layer slab and a (6 × 6) Pd(100) supercell with a thin slab (two layers) were
selected in order to have a large enough specific surface to adsorb SWNTs. The optimized
lattice of Pd@MgO was 17.19 × 17.19 Å and the mismatch was less than 5%. In this model,
Pd is slightly stretched, which is beneficial to SWNT adsorption. During the optimization,
the atoms in the last two layers were fixed to maintain the bulk structure, and the other
atoms were allowed to fully relax. A vacuum layer of 15 Å was used along the c direction
normal to the surface to avoid periodic interactions.

2.3. Interfacial Formation Energies of SWNTs on Pd@MgO Catalysts

To investigate the thermodynamic stability of the nucleated SWNTs, the interfacial
formation energies of SWNTs with different (n, m) on a Pd@MgO catalyst are calculated
according to the following equation [40,41]:

Ef = EFE − Eb = (0.5 × (2 × ENT2 − ENT1)) − (ENT + EPd@MgO − ENT@Pd@MgO)

where EFE and Eb are the formation energy of the free SWNT end and the SWNT–catalyst
binding energy, respectively. EFE is obtained by the equation of 0.5 × (2 × ENT2 − ENT1),
in which ENT1 is the energy of a longer SWNT, and ENT2 is the energy of a shorter SWNT
obtained by cutting the longer SWNT into two identical segments. Because two open ends
will be formed by cutting a long SWNT, a factor of 0.5 is used in the equation. Eb can be
evaluated by the equation ENT + EPd@MgO − ENT@Pd@MgO, where ENT and EPd@MgO are
respectively the energies of separated SWNT and Pd@MgO, while ENT@Pd@MgO is the total
energy of SWNT attached to Pd@MgO. From the thermodynamic point of view, the smaller
the Ef value is, the more easily the SWNT is formed on the catalyst.

3. Results and Discussion
3.1. Calculation Results

DFT calculations were carried out to understand the origin and underlying mechanism
of SWNT growth on the late transition metal Pd regulated by the MgO substrate. In this
work, we select the Pd layer model instead of the Pd nanoparticles for the following reasons.
On the one hand, for the lattice well-matching systems, only a smaller supercell with fewer
atoms is necessary to construct the periodic layer model. While for the nanoparticle system,
a large substrate should be involved to avoid the interaction between the simulation models
and images. Thus, the layer model saves lots of computational time. Furthermore, the
periodic layer model is more stable and difficult to deform during the optimization process,
not only maintaining the stability of the system, but also further resulting in a faster
convergence than the cluster model. On the other hand, to reflect the interface effect of
Pd and MgO, the double layer maybe a good choice. Since a single layer of Pd is easily
deformed, while three layers of Pd will weaken the interface effect. Therefore, in order to
balance the computational time and the reliability of simulation results, the double layer of
metallic Pd on MgO is chosen as the model in our current study. Figure 1a,b describes the
charge density difference of compound Pd@MgO and the partial density of states for Pd d
electrons in Pd(100) and Pd@MgO. Figure 1a shows the interface of Pd accumulated the
electrons from MgO and thus Pd surface is negatively charged with a value of −3.03|e|.
This charge transfer process further induces the d-band center of Pd in Pd@MgO upshifting
and closer to the Fermi level (from −1.32 to −1.27 eV, Figure 1b). The upshifting of the d-
band center not only promotes the chemisorption and dissociation of carbon sources [42,43],
but also leads to a stronger metal–carbon interaction compared to Pd(100). Therefore, metal
Pd induced by MgO could be shifted into the “Goldilocks zone” [30] for SWNT nucleation
and growth. Furthermore, it can be seen from Figure 1b that the total spin-up and spin-
down density of state (DOS) of Pd atoms are completely symmetrical, in consistence with
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the fact that Pd is a non-magnetic metal catalyst. Figure 1c presents the estimated interfacial
formation energies and optimized structures of various (n, m) SWNTs on Pd@MgO. All the
investigated SWNTs have similar diameters (0.6–0.9 nm) but different chiral angles. Clearly,
zigzag (10, 0), (9, 0) and armchair (6, 6) tubes, respectively, exhibit interfacial formation
energies of 0.85, 1.53, and 1.06 eV, which are significantly lower than those of other SWNTs.
The low interfacial formation energy of achiral SWNTs could be attributed to their high
symmetry [19], which matches that of the underlying Pd plane. Chiral SWNTs, such as
(7, 5) and (6, 5) tubes, also have low interfacial formation energies with the values of 2.68
and 2.78 eV, indicating that their nucleation on the Pd@MgO is also energetically favored.
Besides, the Bader charge (Figure 1d) and charge density difference analysis (Figure 1e,f) on
the configurations suggest that the charge transfers between catalyst particles and SWNTs
are responsible for the strong SWNT–catalyst interactions. It is very interesting that only the
(7, 5) nanotube forms a five-membered ring at the interface. Although it induces a minimum
of electron transfer between Pd and MgO, the electron transfer between nanotubes and the
interface is also comparable to the other tubes, accounting for the high thermodynamic
stability. In addition, from a dynamic point of view, it is easy to incorporate a carbon
atom into the five-membered ring and form a six-membered ring, which is conducive to
continuous SWNT growth. Overall, although the strong adhesion between the SWNT
and the catalyst is necessary for nucleating thermodynamically stable SWNTs [40], the
kinetic factors cannot be ignored when understanding the chiral selection of SWNTs on the
Pd@MgO catalyst, which will be discussed later in detail.
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Figure 1. (a) The charge density difference for Pd@MgO. (b) The density of states (DOSs) of total and
Pd d electron in Pd@MgO and Pd(100), as well as the d-band center. (c) The interfacial formation
energy as the function of SWNT diameter. (d) The Bader charge on SWNT, MgO, and Pd. (e,f) The
charge density difference between (7, 5), (6, 6) SWNT, and Pd@MgO surface, which suggests a perfect
structure match and charge transfer. Isovalue = 0.005 a.u. The charge accumulation and depletion are
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colored respectively in yellow and cyan. Gray balls: C atoms; red balls: O atoms; green balls: Mg
atoms; dark green balls: Pd atoms; white balls: H atoms. The small purple circles highlight the
formed five-membered ring in (7, 5) SWNT adsorbed on Pd@MgO. The purple ellipses highlight the
different charge densities induced by the five-membered ring and six-membered ring.

3.2. Experimental Results

In order to verify the DFT calculation results, a porous MgO-supported Pd catalyst
was prepared by colloid impregnation and high-temperature annealing. Although previous
reports suggested that Pd nanoparticles on flat surfaces could be applied for growing
SWNTs [23,24], in our work, Pd nanoparticles directly impregnated onto porous MgO are
not active for synthesizing SWNTs. As catalyst calcination has proven to be important in
regulating the performances of heterogeneous catalysts [44,45], the impregnated Pd@MgO
was subjected to heat treatment at 1100 ◦C for 4 h, which not only eliminates undesired
impurities, but also helps achieve uniform distribution of metal oxides. Figure 2 shows
representative aberration-corrected high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM) images of the Pd@MgO catalyst. Pd can only be
observed in the form of isolated Pd atoms on the MgO surface.
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Figure 2. HAADF-STEM images of Pd@MgO catalyst (a,b).

Figure 3a presents the X-ray diffraction (XRD) patterns of Pd@MgO catalysts over
the 2θ range from 20 to 90◦. Owing to the good dispersion of Pd, the diffraction peaks of
PdO are not observed. Thus, the diffraction peaks at 2θ = 37.1, 43.1, 62.4, 74.8, and 78.6◦

can be respectively assigned to the (111), (200), (220), (311), and (222) lattice diffractions of
MgO (PDF: 45-0946). The binding energies of Pd 3d in X-ray photoelectron spectroscopy
(XPS) (Figure 3b) show two peaks centered at 336.4 eV and 350.5 eV, which could be
correlated with the 3d5/2 and 3d3/2 of well-dispersed Pd [46]. In the catalyst, Pd atoms
tend to be coordinated with oxygen atoms forming the Pd-O bond. Hydrogen temperature
programmed reduction (H2-TPR) was adopted to evaluate the reducibility of the Pd@MgO
catalyst (Figure 3c), and a full reduction of the catalyst can only be realized at a temperature
higher than 800 ◦C, indicative of the high stability of the dispersed Pd atoms.
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Compared to supported nanoparticles, atomically dispersed metal catalysts have
demonstrated superior catalytic performances in a number of heterogeneous reactions,
such as selective oxidation/hydrogenation [46,47], reverse water-gas shift reaction [48],
and CVD synthesis of SWNTs [30]. The atomically dispersed Pd catalyst was subjected
to SWNT growth using CO as the carbon source at 900 ◦C, which is a bit higher than the
catalyst reduction and activation temperature (Figure 3c). The morphology and structure of
carbon nanotubes were analyzed by scanning electron microscopy (SEM) and transmission
electron microscopy (TEM) (Figure 4). Only single-walled products were detected during
the characterizations. Similar to previously reported Ru clusters [30], the reduced Pd
atoms could migrate to form Pd nanoparticles during the CVD growth process (Figure 4b),
which subsequently serve as the catalyst for SWNT growth. It is noted that the atomically
dispersed Pd could demonstrate higher activity than Pd nanoparticles, and participate in
carbon source molecule absorption and dissociation, necessary steps for SWNT nucleation.
Besides, as revealed by Figure 1c, charge transfer from MgO support to Pd nanoparticles,
which has previously been verified to shift inactive catalysts into the “Goldilocks zone” [30],
also plays a crucial role in activating the Pd nanocatalysts.
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The detailed Pd activation mechanisms could be clarified on the basis of the d-band
center model, which is useful in understanding the catalytic activity of transition metals. As
mentioned by Robertson et al. [26], a suitable catalyst for growing SWNTs should not only
adsorb and dissociate the carbon precursor molecules, but also have moderate metal-carbon
bonds, which allows the release and diffusion of active carbon atoms towards the open end
of the nucleated SWNT. As metal Pd exhibits an electronic configuration of [Kr]d10, it is
generally regarded as a poor catalyst for SWNT growth because of its low carbon solubility
and weak interaction with CO, i.e., the carbon precursor used in the work. In the d-band
theory, the CO chemisorption and dissociation are described by the coupling of the CO
2π* and 5σ states to the metal d states [42]. The strength of the bond is determined by the
filling of the antibonding states, indicated by the energy of the antibonding states relative
to the Fermi level. The higher in energy the d states are, the higher the antibonding states
in energy are and the stronger the bond [43]. In short, one key parameter determining the
CO–metal bond strength turns out to be the energy of the metal d-band center. Figure 1b
clearly demonstrates that the energy of the Pd d-band center increases from −1.32 eV of free
Pd clusters to −1.27 eV of Pd@MgO, thus promoting CO chemisorption and dissociation.
As a result, the interaction with MgO support upshifts Pd d-band center energy, moving
the Pd@MgO into the “Goldilocks zone” for SWNT synthesis.

The advantages of CO over other hydrocarbon molecules in terms of growing SWNTs
have been addressed previously [49–51]. Because of its high carburization potential, CO
promotes the growth of SWNTs with a perpendicular nucleation mode. Figure 5a depicts
Raman spectra acquired from as-prepared carbon nanotubes. In agreement with TEM
characterization results, the relatively large intensity ratios of G/D (19.2 (532 nm), 16.7
(633 nm)) and the appearance of radial breathing modes (RBMs) suggest that the products
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are mainly high-quality SWNTs [52,53]. The frequencies of RBMs from two excitation
laser wavelengths are mainly in the range of 160~300 cm−1, corresponding to SWNTs with
diameters ranging from 0.7 to 1.6 nm. To evaluate the purity and content of the SWNT
product, thermogravimetric analysis (TGA) was conducted on the sample synthesized at
900 ◦C (Supplementary Materials Figure S1). Grounded on the TGA profile, the yield of
SWNTs is estimated to be lower than 4.0%. Moreover, the TGA curve shows a primary
oxidation temperature of 606 ◦C, which is higher than the previously reported SWNTs
with similar diameter distribution [54,55], confirming the superiority of the Pd@MgO
catalysts. Thanks to the high quality of synthesized SWNTs on the Pd@MgO catalysts, the
purified product is able to be dispersed in sodium deoxycholate solution for absorption
spectroscopy characterizations (Figure 5b). Different SWNT species were clearly observed
in the wavelength range of the first semiconducting exciton bands (S11). To overcome
the overlap of absorption peaks from different (n, m) SWNTs in the absorption spectrum,
photoluminescence (PL) spectroscopy mapping was applied to determine the abundance
of Pd-grown SWNTs with different (n, m) (Figure 5c), based on which, the SWNT chirality
map was deduced (Figure 5d) [56]. Near-armchair SWNT species, including (7, 5), (7, 6),
(6, 5), and (8, 6) are the major species in the products. Besides, (2n, n) species, and those
with chiral angles close to (2n, n) SWNTs, such as (8, 3), (8, 4) and (9, 4) nanotubes, also
occupy a relatively large portion. In contrast, the portion of near zigzag SWNTs, such as
(10, 2) and (11, 3), is relatively low.
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In order to understand the SWNT chirality distribution, let us recall the DFT calculation
results. From the interfacial formation energies, the SWNTs with low energy values, such as
zigzag and armchair ones, are thermodynamically stable and are prone to nucleate on the
Pd catalyst. However, the achiral SWNTs usually have tight contact with the underlying
metal catalyst, which makes the addition of new carbon atoms to SWNT rims and SWNT
growth extremely difficult [18]. Besides, the energy barriers for initiating a new carbon ring
on zigzag SWNTs are usually very high [57]. Consequently, zigzag SWNTs generally suffer
a very low growth rate and cannot grow long. Although the energy barrier for initiation



Molecules 2023, 28, 2453 8 of 11

of a new ring on armchair SWNTs is not high, incorporation of an adjacent pentagon–
heptagon pair could change the chirality of an (n, n) SWNT to (n, n − 1), (n + 1, n) or
(n + 1, n − 1) [58]. For instance, a (6, 6) cap could transform into (6, 5), (7, 6) or (7, 5)
SWNT caps with the introduction of an adjacent pentagon–heptagon pair. Meanwhile,
such near-armchair SWNTs exhibit relatively low nucleation formation energies (Figure 1c),
accounting for their preferred growth and large abundance in the final product. Meanwhile,
as shown in Figure 1e, there is a five-membered ring at the (7, 5) nanotube-Pd particle
interface, which facilitates the easy incorporation of carbon atoms for hexagon formation
and nanotube elongation.

Compared with SWNTs with large chiral angles, the (2n, n) SWNT, such as (8, 4),
demonstrates a relatively high interfacial formation energy on Pd. However, the (2n, n)
SWNTs have the most available kinks at the solid catalyst–SWNT interface [16,18], and
thus exhibit high growth rates and possibly long lengths, responsible for their enrichment
in the Pd-grown SWNTs. Similarly, the number of kinks at catalyst–SWNT interfaces for
(9, 4) and (8, 3) is also large, and their fast growth rates are supposed to be correlated with
their significant amount. In short, both nucleation thermodynamics and growth kinetics
are responsible for the enrichment of near-armchair species and SWNTs with chiral angles
close to 19.1◦.

4. Materials and Methods
4.1. Preparation of Pd@MgO Catalyst

The Pd@MgO catalyst was prepared by combining the impregnation of porous MgO
in Pd colloid with high-temperature calcination. The porous MgO support was obtained by
annealing magnesia carbonate hydroxide at 450 ◦C in air. The Pd colloid was prepared by
a microwave chemical reduction method. Briefly, 100 µL HCl (2 M) was added dropwise
to transform 0.0018 g PdCl2 into H2PdCl4, which was dissolved in 9.6 mL glycol solution
containing 0.0574 g poly(N-vinyl-2-pyrrolidone) (PVP, Mw = 40,000). Finally, 0.4 mL of a
glycol solution of ammonia (0.2 M) was added and the solution was subjected to microwave
irradiation (700 W) for 40 s.

Impregnation of porous MgO (1.0 g) in the prepared Pd colloid was carried out in
30 mL of distilled water under vigorous stirring. After drying in air at 120 ◦C, the catalyst
was grounded into fine powders and calcined in a muffle furnace at 1100 ◦C for 4 h. The
prepared catalyst is denoted as Pd@MgO.

4.2. CVD Growth of Carbon Nanotubes

An ambient pressure CVD reactor with a horizontal quartz tube (inner diameter:
40 mm) [54,59] was applied for carbon nanotube growth. After loading about 100 mg
Pd@MgO catalyst into the center of the reactor, an Ar flow of 300 standard cubic centimeter
per minute (sccm) was introduced to flush the reaction tube. When reaching a desired
temperature of 900 ◦C, 300 sccm CO was switched in to replace Ar and the reaction lasted
for 30 min. Finally, the furnace was cooled down to ambient temperature naturally in Ar
atmosphere.

4.3. Characterizations of Catalyst and Carbon Nanotubes

5 mg Pd@MgO catalyst powders were firstly weighed on a glass slide with a groove
of 0.5 mm. After that, the catalyst powders were flattened by a glass plate and trans-
ferred in a test chamber for XRD analysis (Bremen Germany, Bruker, D8 advance Cu Kα

(λ = 0.15406 nm) radiation) with the scanning angle ranging from 20◦ to 90◦. XPS (Waltham,
MA, USA, Thermo Fisher, ESCALAB 250 Xi) was carried out to examine the Pd chemical
state of the catalyst. H2-TPR was accomplished on a temperature-programmed chemisorp-
tion unit (Norcross, GA, USA, Micromeritic, AutoChem II 2920). The atomic structure
of the Pd@MgO catalyst was characterized by HAADF-STEM (USA, Thermo Scientific,
FEI-Titan Cube Themis G2 300).
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Synthesized carbon nanotubes were characterized by a confocal Raman spectroscope
(Wotton-under-Edge, UK, Renishaw, inVia confocal) with excitation wavelengths of 532 nm
and 633 nm. SEM (Ibaraki, Japan, Hitachi, Regulus8100) was used to characterize the
morphology of carbon nanotubes. Thermogravimetric analyzer (Selb, Germany, Netzsch,
TG209F3) was applied to evaluate the yield and purity of carbon nanotube samples. To
purify the SWNTs, the as-grown product was placed into 3 M HCl and washed thoroughly
with deionized water to neutral pH. After drying, the purified nanotubes were added to a
D2O solution containing 2 wt% sodium deoxycholate and sonicated with an 80 W output
power for 2 h. The suspension was centrifuged at 100,000× g for 40 min to remove residual
metallic particles and bundled SWNTs. The upper supernatant was characterized by
UV-vis-NIR spectroscopy (Santa Clara, CA, USA, Agilent, cary5000) and PL spectroscopy
(Irvine, CA, USA, HORIBA Jobin Yvon, Fluorolog-3). The purified carbon nanotubes were
sonicated in acetone and dropped onto a carbon film supported by a copper grid for TEM
(Tokyo, Japan, JEOL, 2100F) characterizations.

5. Conclusions

To conclude, DFT calculations demonstrate that the charge transfer from MgO to
non-magnetic Pd clusters upshifts the Pd d-band center from −1.32 to −1.27 eV, intriguing
the activation of the Pd@MgO catalyst for possibly growing SWNTs. Besides, the interface
formation energies of different (n, m) SWNTs on Pd@MgO are investigated. The interface
formation energy of (7, 5) SWNT is 2.68 eV, which is lower than that of other chiral SWNTs
such as (8, 4), (7, 6), (6, 5) (4.47, 3.92, 2.78 eV, respectively), facilitating the carbon atoms to
incorporate into the five-membered ring at SWNT-Pd interfaces and form (7, 5) SWNTs.
Experimentally, bulk synthesis of SWNTs is realized on a well-designed Pd@MgO catalyst.
Systematic characterizations reveal that near-armchair and (2n, n) SWNTs are the major
species in the products, which can be explained based on the DFT calculation results and
SWNT growth kinetics. This work not only sheds light on understanding the nucleation
stability of different (n, m) SWNTs on the specific catalyst, but also paves an avenue for
bulk synthesis of SWNTs from the non-magnetic catalyst.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28062453/s1, Figure S1: TGA profile of SWNTs grown
at 900 ◦C on Pd@MgO catalysts.
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