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Abstract: The addition reaction of interelement compounds with heteroatom–heteroatom single
bonds to unsaturated bonds under photoirradiation is an important method for the efficient and atom-
economical construction of carbon–heteroatom bonds. However, in practice, the desired addition
reaction is sometimes unable to proceed as expected due to the low efficiency of the desired addition
reactions or the preferential polymerization of unsaturated compounds. In this study, by combining
an interelement compound with homologous heteroatom compounds as a catalyst, we succeeded in
suppressing the polymerization of the unsaturated compounds and in attaining a highly selective
carbon–heteroatom bond formation through the desired addition reaction. In this paper, we have
examined in detail whether such a “catalytic radical reaction” proceeds for unsaturated compounds
and found that the dithiolation of some unsaturated compounds (i.e., vinylic ethers, styrenes, and
isocyanides) could proceed with the assistance of (PhSe)2 under light. The developed methods in
this study are expected to have strong implications in the fields of radical chemistry, heteroatom
chemistry, synthetic organic chemistry, and catalyst chemistry as atom-economical methods for
carbon–heteroatom bond formation.

Keywords: dichalcogenide; radical addition; radical substitution; homologous heteroatom catalyst;
unsaturated compounds

1. Introduction

Associated with “catalytic radical reaction”, two main methods are known so far. The
first method is a radical chain reaction using a peroxide or azo compound as a radical
initiator, which can be regarded as a catalyst [1–4]. The second method is a radical reaction
that proceeds via an electron transfer process from a metal or functional dye used as a
catalyst upon irradiation with visible light [5–10].

In addition to these methods, if typical element radicals can catalyze another rad-
ical reaction, it is expected to be “the third” catalytic radical reaction. For this pur-
pose, in this work, we focused on the utilization of interelement compounds bearing a
heteroatom–heteroatom single bond. Homolysis of these bonds under photoirradiation
or in the presence of radical initiators can generate heteroatom-centered radicals [11–13].
Although their characteristic features were attractive and utilized for the construction of
functional molecular scaffolds in recent decades, their catalytic use, as described above, has
been very limited [14–22].

During the course of our investigation, we have previously demonstrated that pho-
toinduced radical addition reactions of interelement compounds to a series of unsaturated
compounds proceed efficiently by the combination of interelement compounds [23–27]. In
particular, we have succeeded in regioselectively introducing multiple hetero-functional
groups into various unsaturated compounds. For example, when group 16 interelement
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compounds such as organic disulfide or diselenide were used independently, the photoin-
duced radical addition to alkenes barely proceeded to afford the corresponding adducts in
trace yields (Scheme 1). In sharp contrast, the photoinduced radical addition to alkenes
proceeds regioselectively when the reaction is carried out by mixing disulfides and dise-
lenides. The results can be explained by referring to the kinetic data of each step in this
reaction: The highly reactive PhS• (kPhS•/kPhSe• = ca. 10~50) [28] selectively attacked
the terminal position of alkenes, and the thus formed carbon radicals were selectively
trapped by (PhSe)2, which has a higher carbon radical-trapping ability (k(PhSe)2/k(PhS)2 = ca.
160) [29,30].
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less, when this reaction was conducted in the presence of 30 mol% (PhSe)2 as the additive, 

Scheme 1. Regioselective thioselenation of alkenes using a (PhS)2/(PhSe)2-mixed system.

The concept of the “heteroatom mixed system” could be applied to a variety of unsatu-
rated compounds such as alkenes, alkynes, allenes, vinylcyclopropanes, and isocyanides, as
shown in Scheme 2 [29,31–34]. In the photoinduced thioselenation reactions, 1,1-addition
for isocyanide, 1,2-addition for alkyne and allene, 1,4-addition for conjugate diene, and
1,5-addition for vinylcyclopropane successfully proceeded with excellent regioselectivity.
Furthermore, the photoinduced addition to alkyne and isocyanide was also attained by
combining (PhS)2 and (PhTe)2, affording the corresponding thiotelluration products.
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Scheme 2. Regioselective introduction of chalcogen functional groups to unsaturated compounds.

It is known that the reaction of a conjugate diene with (PhS)2 causes polymerization of
the diene, resulting in a lower yield of the desired 1,4-dithiolation product. Nonetheless,
when this reaction was conducted in the presence of 30 mol% (PhSe)2 as the additive, the
polymerization of the dienes was completely suppressed, and the conjugate addition of
(PhS)2 to the dienes proceeded efficiently under photoirradiation for 10 h (Scheme 3) [35].
The thioselenation of conjugate diene was complete in about 2 h, and with continued
photoirradiation, the thioselenation products gradually transformed into the corresponding
dithiolation product because allyl selenide is unstable to near-ultraviolet light. These results
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strongly suggest the possibility of “the third” catalytic radical reaction. In some cases, we
have also investigated these types of replacements with “stoichiometric” reactions; however,
the substrate scope and the limitations of the “catalytic” system remain unexplored.
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Hence, in this study, in order to explore the possibility of “the third” catalytic radical
reaction, we investigated the multiple introductions of chalcogen-centered functional
groups into various unsaturated bonds under radical conditions and further examined
in detail whether the selenium and tellurium functional groups of the thioselenation
or thiotelluration products could be replaced by sulfur functional groups under radical
reaction conditions. We also discussed the possibility of constructing catalytic radical
reactions based on the results.

2. Results and Discussion

In the case of organyl selenide, allylic selenides are known to be unstable under
photoirradiated (or thermal) conditions because relatively stable allylic radicals can be
generated through the cleavage of the allylic C–Se bond. In general, the bond energy
of the C–H bond at the allylic position (e.g., CH2=CHCH2–H, 87 kcal/mol) [36] can be
estimated to be about 15 kcal/mol less than that of the C–H bond at the primary alkyl group
(e.g., CH3CH2–H, 101 kcal/mol) [37]. On the other hand, the bond energies of the C–S,
C–Se, and C–Te bonds are estimated to be 65.1, 56.0, and 47.8 kcal/mol, respectively [38].
Considering the replacement of C–Se bonds of the thioselenation adducts to C–S bonds
under photoirradiation, the following three steps are considered the key factors for a
smooth transformation: (1) the cleavage of C–Se bonds under light, (2) the generation of
the corresponding relatively stable carbon-centered radicals, and (3) the smooth trapping
of the carbon radicals by (PhS)2 or PhS–SePh (generated in situ from (PhS)2 and (PhSe)2).
The formed C–S bond has a larger bond energy, and the formed dithiolation adduct might
be stable under photoirradiation. However, if the C–Se bond has a large bond energy, it
might be difficult to cleave. To achieve the efficient replacement of the C–Se bond with
the C–S bond, it is necessary to target not the usual C–Se bond but a C–Se bond activated
by some functional groups. On the other hand, the bond energy of the C–Te bond can be
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estimated to be about 8 kcal/mol less than that of the C–Se bond. It may be possible to
replace the C–Te bond with a C–S bond under radical conditions.

Keeping the difference in the bond energy of C–S, C–Se, and C–Te bonds in mind, we
performed thioselenation of some alkenes by prolonging photoirradiation and investigated
whether the thioselenation products changed to the corresponding dithiolation products,
even if only slightly. The results showed that thioselenation proceeded well for alkenes
from 1a to 1h in Scheme 4, but no dithiolation adduct was produced as a byproduct. In
contrast, thioselenation of butyl vinyl ether 1i and styrene 1j resulted in the formation of
small amounts of the dithiolation byproducts.
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Scheme 4. A list of some alkenes for the attempted dithiolation by prolonging the photoirradiation
in the thioselenation.

Based on these preliminary experiments, we next focused on vinyl ethers such
as 2,3-dihydrofuran to examine bisthiolation assisted by (PhSe)2, and the results were
compared with those of standard terminal alkenes such as 1-hexene. When a mixture
of 1i (1.0 mmol) and (PhS)2 (1.0 mmol) was irradiated for 20 h in the presence of an
equimolar amount of (PhSe)2, thioselenation product 2 and dithiolation product 3 were
obtained in 50% and 10% yields, respectively (Equation (1)). Interestingly, when the
photoinduced reaction with 2,3-dihydrofuan 1k instead of 1i was conducted under the
same conditions, the dithiolation product 4 was obtained as the main product in a 41%
yield along with the thioselenation product 5 in a 3% yield, respectively (Equation (2)).
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The results shown in Equations (1) and (2) clearly indicated that the phenylseleno
group of the thioselenation products 2 or 5 could be replaced by a phenylthio group under
photoirradiation conditions. The results motivated us to investigate the (PhSe)2-catalyzed
dithiolation of 1k, and the results are summarized in Table 1. Upon irradiation with a
tungsten lamp through Pyrex (hv > 300 nm), the reaction of 1k (1.0 mmol) with (PhS)2
(0.5 equiv.) was conducted in the presence of (PhSe)2 (30 mol%) for 20 h, yielding 29% of
the dithiolation product 4 along with the thioselenation product 5 in a 4% yield (entry 1).
Adding 0.1 mL of CDCl3 or prolonging the reaction time to 100 h did not improve the yield



Molecules 2023, 28, 2450 5 of 12

of 4 (entries 2 and 3). In the latter reaction (entry 3), the yields of the products 4 and 5
decreased, suggesting that 4 and 5 are unstable under the photoirradiated conditions. Since
the replacement of the phenylseleno group of 5 with the phenylthio group was relatively
slow, the photoinduced reaction of 1k with an equimolar mixture of (PhS)2 and (PhSe)2
was conducted at 25 ◦C upon irradiation with a 100 W xenon lamp for 50 h. As a result, the
yield of 4 slightly improved (44% yield) (entry 5). In the absence of (PhSe)2, the desired
dithiolation product 4 was obtained with only a 6% yield (entry 6).

Table 1. (PhSe)2-assisted dithiolation of 2,3-dihydrofuran 1k under photoirradiation.
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Entry (PhS)2
(Equiv.)

(PhSe)3.3
(mol%)

Solvent
(mL) Time (h)

Yield (%) a

4
[trans/cis] 5

1 0.5 30 neat 20 29 [79:21] 4

2 0.5 30 CDCl3
(0.10) 20 20 [75:25] 2

3 0.5 30 neat 100 8 N. D.
4 1.0 100 neat 20 41 [93:7] 3

5 b 1.0 100 neat 50 44 [89:11] trace
6 1.0 - neat 20 6 [83:17] N. D.

a Yields were determined by 1H NMR spectroscopy. b 100 W xenon lamp was used, and the reaction was conducted
at 25 ◦C.

We next investigated the photoinduced dithiolation of styrene 1j in the presence of
(PhSe)2. To suppress the thermal polymerization of styrene 1j itself during the photoirradi-
ation, the reaction vessels (NMR tubes) were immersed in water during light exposure to
maintain the reaction temperature at 25 ◦C by measuring the water temperature with a ther-
mometer. As shown in Table 2, the reaction of styrene 1j (0.5 mmol) with (PhS)2 (1 mmol)
in the presence of (PhSe)2 (30 mol%) in CDCl3 (0.5 mL) upon irradiation with a 100 W Xe
lamp for 11 h led to the formation of dithiolation product 6a and thioselenation product
7a in 11% and 21% yields, respectively (entry 1). A high concentration of the substrates
under irradiation with a 500 W Xe lamp improved the yield of 6a to 30% (entry 2). When
stoichiometric amounts of (PhSe)2 were used, the yield of 6a increased to 35% without the
formation of the thioselenation product 7a (entry 3). Using up to 200 mol% (1.0 mmol) of
(PhSe)2 produced 6a in a similar yield and the thioselenation product 7a in a 23% yield
(entry 4).

It was notable that (PhSe)2-assisted dithiolation of 4-trifluoromethylstyrene 1l success-
fully proceeded to form the corresponding dithiolation product 6b in 38% yield with good
product selectivity (Equation (3)).
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Entry (PhSe)2
(mol%)

Light Source CDCl3 (mL) Time (h)
Yield (%) a

Recovery 1j
(%) a6a 7a

1 30 100 W Xe lamp 0.5 11 11 21 33
2 30 500 W Xe lamp 0.1 10 30 N. D. N. D.
3 100 500 W Xe lamp 0.1 10 35 N. D. 4
4 200 500 W Xe lamp 0.1 10 39 23 13

a Yields were determined by 1H NMR spectroscopy.

For vinylic ethers and styrenes, when the photoinduced reaction was examined using
disulfides alone, a polymerization reaction occurred in preference to the desired dithiolation
reaction. In contrast, it was found that the dithiolation reaction proceeded when diselenide
was added to the system. These results strongly suggest that it is possible to replace
the seleno group with a thio group for alkenes having active groups such as alkoxy and
phenyl groups.

In sharp contrast to the activated alkenes such as vinylic ethers and styrenes, nonacti-
vated alkenes barely underwent photoinduced dithiolation using a (PhS)2-(PhSe)2 binary
system. This is most probably due to the relatively strong bond energy of the C–Se bond.
The next possibility for preferential dithiolation of such simple alkenes is to utilize the C–Te
bond, which has a binding energy of 8 kcal/mol lower than the C–Se bond. Thus, we next
focused on the utilization of the thiotelluration reaction system for the catalytic dithiolation
of the unsaturated compounds. In fact, we previously reported two dithiolation reactions
using the thiotelluration reaction system. One is the regioselective dithiolation of allenes
in the presence of stoichiometric or catalytic amounts of ditelluride (Equation (4)) [28].
This dithiolation is considered to have proceeded successfully because allenes have an
accumulated double bond and are highly reactive unsaturated bonds. Another example is
the cycloadditive dithiolation of o-isocyanostyrene derivatives in the presence of stoichio-
metric amounts of ditelluride, in which the dithiolation reaction was successfully carried
out by incorporating radical cyclization (Equation (5)) [29]. However, a radical dithiola-
tion reaction to simple alkenes in the presence of ditelluride has not yet been successful.
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In our previous work, photoinduced thiotelluration proceeds in alkynes and in special
alkenes such as norbornene 1h [34]. Thus, we examined the photoinduced dithiolation of
norbornene 1h using a (PhS)2-(PhTe)2 system. In the presence of (PhTe)2 (30 mol%), the
thiolation of norbornene 1h proceeded to give the corresponding bisthiolated product 8
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and the thiotelluration product 9 in 2% and 30% yields, respectively (entry 1, Table 3). The
photoinduced reaction of 1h and (PhS)2 with stoichiometric amounts of (PhTe)2 improved
the yield of the thiotelluration product 9 (entry 3). Prolonging the irradiation time with
30 mol% of (PhTe)2 improved the yield of 8 (10%) (entry 4). It was suggested that it is not
impossible to replace the C–Te bond in 9 with the C–S bond, although optimization of the
reaction conditions is necessary.

Table 3. Attempted dithiolation of norbornene 1h assisted by (PhTe)2 under photoirradiation.
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Entry (PhS)2
(Equiv.)

(PhTe)2
(mol%) Time (h)

Yield (%) a

8 9 [endo/exo]

1 b 2.0 30 13 2 30 [23:77]
2 1.0 30 26 4 40 [20:80]
3 2.0 100 26 3 60 [25:75]
4 2.0 30 50 10 39 [37:63]

5 c 2.0 30 26 7 40 [21:79]
a Yields were determined by 1H NMR spectroscopy. b Norbornene 1h (0.25 mmol) and CDCl3 (0.25 mL) were
used. c Norbornene 1h (1.0 mmol) was used.

The experimental results shown in Tables 1–3 suggest that not only the weakness of the
carbon–chalcogen bond but also the stability of the carbon radicals generated in the system
by the homolytic cleavage of the carbon–chalcogen bond are important in promoting the
replacement of the seleno and telluro groups of the products by the thio group.

Considering the weakness of the carbon–heteroatom bond and the stability of the
generated radicals, we further investigated in detail the influence of the substituents
adjacent to the carbon radicals on the radical substitution reaction. In the case of alkenes,
the reaction proceeds by 1,2-addition, whereas the reaction of isocyanides bearing a C–N
unsaturated bond proceeds by 1,1-addition. Therefore, the heteroatom radical attacks
the isocyanide to form a radical on the carbon of the C=N bond, which is affected by
the heteroatom group and the C–N double bond. Using isocyanide as a substrate, we
investigated the photoinduced addition reaction and found that, interestingly, the catalytic
dithiolation reaction with (PhS)2 occurs in the presence of (PhSe)2.

As shown in Table 4, the reaction of cyclohexyl isocyanide 10a (0.25 mmol) with (PhS)2
(2.0 equiv.) in the presence of (PhSe)2 (30 mol%) under light afforded the 1,1-addition
product 11a in good yield (entry 1). High concentration of the starting materials led to the
corresponding dithiolation product 11a in up to 81% yield (entry 3). It is noteworthy that
the thioselenation adduct 12a was obtained in trace yields under the conditions of entries
1–3; therefore, the transformation of the in situ-generated 12a to the dithiolation adduct
11a might proceed very smoothly under these conditions. In the absence of (PhSe)2, the
yield of 11a dramatically decreased, indicating that the presence of catalytic amounts of
(PhSe)2 was essential for the efficient transformation of 10a to 11a (entry 4).
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Table 4. Optimization of the reaction conditions for (PhSe)2-catalyzed dithiolation of cyclohexyl
isocyanide 10a.
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Entry CDCl3 (mL) Time (h)
Yield (%) a
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10a (%) a11a 12a

1 0.50 50 45 trace 50
2 0.10 24 61 trace 31
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Scheme 5 shows the scope and limitations of the (PhSe)2-catalyzed dithiolation of
isocyanides. Various isocyanide derivatives could be tolerated by the catalytic dithiolation,
and the corresponding adducts 11a–11e were obtained in moderate to good yields with
excellent product selectivity.
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Scheme 5. Scope and limitations of the (PhSe)2-catalyzed dithiolation of isocyanides a. a Yields were
determined by 1H NMR spectroscopy (isolated yields). b Reaction time: 23 h. c The reaction was
conducted without the solvent.

As described above, in the addition to isocyanides, the C–Se bond generated by
thioselenation could be converted to a C–S bond more efficiently than in the addition of
alkenes. In other words, in the thioselenation of isocyanides, an addition product with
an imino group (PhS–C(=N–R)–SePh) is formed, and the addition of a thiyl radical to this
C=N bond and the subsequent elimination of the seleno radical can efficiently replace the
seleno group of the thioselenation product with a thio group; thus, catalytic dithiolation is
considered to proceed well.

3. Materials and Methods
3.1. General Information

Unless otherwise stated, all starting materials were purchased from commercial
sources and used without further purification. Isocyanide derivatives 10b–10e were pre-
pared according to the previously reported procedures [39]. All solvents were distilled and
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degassed with argon before use. 1H and 13C{1H} NMR spectra were recorded in CDCl3
using a Bruker BioSpin Ascend 400 spectrometer (Tokyo, Japan) at 400 and 100 MHz, respec-
tively, with Me4Si as the internal standard. High-resolution mass spectra were obtained
on the JEOL JMS-700 Mstation (Tokyo, Japan) in the analytical section of the Nanotech-
nology Platform Program of the Nara Institute of Science and Technology (NAIST). The
characterization data of compounds are shown as follows (1H and 13C{1H} NMR spectra
are included in the Supplementary Materials).

3.2. (PhSe)2-Assisted Dithiolation of 2,3-Dihydrofuran 1k under Photoirradiation

In a sealed Pyrex NMR tube under an argon atmosphere, 2,3-Dihydrofuran 1k
(1.0 mmol), (PhS)2 (1.0 mmol), and (PhSe)2 (1.0 mmol) were placed, and the mixture
was irradiated with a tungsten lamp (500 W) at a distance of 5 cm for 50 h at 40 ◦C. After the
reaction, the resulting mixture was transferred to a flask, the solvent was removed under
reduced pressure, and the residue was analyzed by NMR spectroscopy using 1,3,5-trioxane
as the internal standard. The production of 4 was determined and characterized from the
reported 1H and 13C{1H} NMR data (Table 1) [40].

3.3. (PhSe)2-Assisted Dithiolation of Styrene 1j under Photoirradiation

Styrene 1j (0.5 mmol), (PhS)2 (1.0 mmol), and (PhSe)2 (30 mol%) in degassed CDCl3
(0.1 mL) were placed in a sealed Pyrex NMR tube under an argon atmosphere, and the
mixture was irradiated with a xenon lamp (500 W) at a distance of 5 cm for 50 h at 25 ◦C.
To suppress the thermal polymerization of styrene 1j itself during the photoirradiation, the
reaction vessels (NMR tubes) were immersed in water during light exposure to maintain
the reaction temperature at 25 ◦C by measuring the water temperature with a thermometer.
After the reaction, the resulting mixture was transferred to a flask, the solvent was removed
under reduced pressure, and the residue was analyzed by NMR spectroscopy using 1,3,5-
trioxane as the internal standard. The production of 6a was determined and characterized
from the reported 1H and 13C{1H} NMR data (Table 2) [41].

3.4. (PhTe)2-Assisted Dithiolation of Norbornene 1h under Photoirradiation

Norbornene 1h 1j (0.5 mmol), (PhS)2 (2.0 mmol), and (PhTe)2 (30 mol%) in degassed
CDCl3 (0.05 mL) were placed in a sealed Pyrex NMR tube under an argon atmosphere,
and the mixture was irradiated with a tungsten lamp (500 W) at a distance of 5 cm for
50 h. After the reaction, the resulting mixture was transferred to a flask, the solvent was
removed under reduced pressure, and the residue was analyzed by NMR spectroscopy
using 1,3,5-trioxane as the internal standard. The production of 8 and 9 was determined
and characterized from the reported 1H and 13C{1H} NMR data (Table 3) [34].

3.5. General Procedure for the (PhSe)2-Catalyzed Dithiolation of Isocyanides

Isocyanide 10 (0.25 mmol), (PhS)2 (2.0 mmol), and (PhSe)2 (30 mol%) in degassed
CDCl3 (0.1 mL) were placed in a sealed Pyrex NMR tube under an argon atmosphere, and
the mixture was irradiated with a tungsten lamp (500 W) at a distance of 5 cm for 50 h at
40 ◦C. After the reaction, the resulting mixture was transferred to a flask, and the solvent
was removed under reduced pressure. Finally, the residue was purified by preparative thin-
layer chromatography (eluent: iso-hexane/Et2O) to obtain the corresponding dithiolation
product 11 (Scheme 5).

Diphenyl cyclohexylcarbonimidodithioate (11a) [CAS no. 924622-07-1] [31]. White
solid, 57.5 mg, 70%; 1H NMR (400 MHz, CDCl3) δ 7.51 (d, J = 6.8 Hz, 2H), 7.35-7.26 (m,
8H), 3.81-3.75 (m, 1H), 1.68-1.65 (m, 4H), 1.56-1.54 (m, 2H), 1.43-1.18 (m, 4H); 13C{1H} NMR
(100 MHz, CDCl3): δ 151.9, 135.1, 134.0, 131.6, 130.5, 129.0 (two carbons were overlapped),
128.4, 128.2, 62.6, 33.0, 25.8, 24.2.

Diphenyl (2-(cyclohex-1-en-1-yl)ethyl)carbonimidodithioate (11b) [CAS no. 924622-08-
2] [31]. Yellow oil, 63.3 mg, 66%; 1H NMR (400 MHz, CDCl3) δ 7.56-7.54 (m, 2H), 7.39-7.34
(m, 5H), 7.28-7.26 (m, 3H), 5.37-5.37 (m, 1H), 3.60 (t, J = 7.0 Hz, 2H), 2.18 (t, J = 7.1 Hz, 2H),
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1.98-1.97 (m, 2H), 1.88-1.88 (m, 2H), 1.62-1.51 (m, 4H); 13C{1H} NMR (100 MHz, CDCl3): δ
154.6, 135.8, 135.1, 134.5, 131.0, 130.1, 129.2, 129.1, 128.6, 128.5, 122.6, 53.3, 38.6, 28.5, 25.4,
23.1, 22.5.

Diphenyl (3-phenylpropyl)carbonimidodithioate (11c). Yellow oil, 38.4 mg, 44%; 1H
NMR (400 MHz, CDCl3) δ 7.58-7.56 (m, 2H), 7.43-7.35 (m, 5H), 7.31-7.30 (m, 3H), 7.27-7.24
(m, 2H), 7.18-7.14 (m, 1H), 7.10-7.08 (m, 2H), 3.48 (t, J = 6.6 Hz, 2H), 2.56 (t, J = 7.8 Hz, 2H),
1.87-1.80 (m, 2H); 13C{1H} NMR (100 MHz, CDCl3): δ 155.0, 142.3, 135.4, 134.8, 131.0, 129.8,
129.3, 129.1, 128.7, 128.6 (two carbons were overlapped), 128.3, 125.7, 53.2, 33.5, 32.3; HRMS
(CI) calcd for C22H22NS2 [M+H]+: 364.1194, found: 363.1194.

Diphenyl octylcarbonimidodithioate (11d). Colorless oil, 57.2 mg, 59%; 1H NMR
(400 MHz, CDCl3) δ 7.55-7.54 (m, 2H), 7.39-7.34 (m, 5H), 7.30-7.27 (m, 3H), 3.49 (t, J = 6.9 Hz,
2H), 1.56-1.51 (m, 2H), 1.34-1.25 (m, 10H), 0.90-0.87 (m, 3H); 13C{1H} NMR (100 MHz,
CDCl3): δ 154.3, 135.2, 134.4, 131.1, 130.1, 129.2, 129.1, 128.6, 128.5, 54.3, 31.9, 30.4, 29.3
(two carbons were overlapped), 27.3, 22.7, 14.2; HRMS (CI) calcd for C21H28NS2 [M+H]+:
358.1663, found: 358.1670.

Diphenyl benzylcarbonimidodithioate (11e) [CAS no. 924622-05-9] [31]. White solid,
25.4 mg, 28%; 1H NMR (400 MHz, CDCl3) δ 7.61 (dd, J = 7.8, 1.5 Hz, 2H), 7.43-7.37 (m,
5H), 7.33-7.30 (m, 3H), 7.27-7.23 (m, 2H), 7.20-7.15 (m, 3H), 4.72 (s, 2H); 13C{1H} NMR
(100 MHz, CDCl3): δ 157.0, 139.6, 135.6, 135.1, 130.7, 129.6, 129.4, 129.2, 128.8, 128.7, 128.2,
127.2, 126.5, 57.0.

4. Conclusions

In this study, we investigated the multiple introductions of chalcogen functional
groups into various unsaturated bonds under radical conditions and examined in detail
whether the selenium and tellurium functional groups of the thioselenation or thiotellura-
tion products can be replaced by a sulfur functional group under radical reaction conditions.
For simple alkenes without an active substituent, it was difficult to replace the C–Se or C–Te
bond of the thioselenation or thiotelluration products with a C–S bond, but for the activated
alkenes such as vinylic ethers and styrenes, it was found that it was possible to replace the
seleno group with a thio group. In addition, isocyanides were successfully bisthiolated by
photoirradiation in the presence of catalytic (PhSe)2 to afford the corresponding adducts in
moderate to high yields with excellent product selectivity. Although the establishment of a
“third” catalytic radical reaction, in which a typical element radical catalyzes the radical re-
actions of a homologous heteroatom compound, is still a challenge, the relative reactivities
of unsaturated compounds demonstrated in this study are a new milestone in considering
the substitution of the carbon–chalcogen bond by sulfur functional groups under radical
conditions. We believe that this research on the development of a “third” catalytic radical
reaction will lead to a new approach for the precise introduction of heteroatom-centered
functional groups.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28062450/s1. Copies of 1H and 13C{1H} NMR spectra.
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