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Abstract: Finding structurally similar compounds in compound databases is highly efficient and is
widely used in present-day drug discovery methodology. The most-trusted and -followed similarity
indexing method is Tanimoto similarity indexing. Epigenetic proteins like histone deacetylases
(HDACs) inhibitors are traditionally used to target cancer, but have only been investigated very
recently for their possible effectiveness against rheumatoid arthritis (RA). The synthetic drugs that
have been identified and used for the inhibition of HDACs include SAHA, which is being used
to inhibit the activity of HDACs of different classes. SAHA was chosen as a compound of high
importance as it is reported to inhibit the activity of many HDAC types. Similarity searching using
the UNPD database as a reference identified aglaithioduline from the Aglaia leptantha compound
as having a ~70% similarity of molecular fingerprints with SAHA, based on the Tanimoto indexing
method using ChemmineR. Aglaithioduline is abundantly present in the shell and fruits of A. leptantha.
In silico studies with aglaithioduline were carried out against the HDAC8 protein target and showed
a binding affinity of −8.5 kcal mol. The complex was further subjected to molecular dynamics
simulation using Gromacs. The RMSD, RMSF, compactness and SASA plots of the target with
aglaithioduline, in comparison with the co-crystallized ligand (SAHA) system, showed a very stable
configuration. The results of the study are supportive of the usage of A. leptantha and A. edulis
in Indian traditional medicine for the treatment of pain-related ailments similar to RA. Our study
therefore calls for further investigation of A. leptantha and A. edulis for their potential use against RA
by targeting epigenetic changes, using in vivo and in vitro studies.

Keywords: similarity indexing; rheumatoid arthritis; molecular docking; molecular dynamics;
traditional medicine; Aglaia leptantha; Aglaia edulis

1. Introduction

Rheumatoid arthritis (RA) is an autoimmune disease characterized as a chronic inflam-
matory disease, which affects around about 1% of the population. It is mainly caused by
genetic dispositions and environmental conditions, but may also occur because of abnormal
activation of the immune system. The divergent activation of innate as well as adapted
immune systems plays an important role in the pathogenesis of RA. Elevated levels of
inflammatory cytokines produced from B cells and T cells play a very significant role in
the development of the disease. The increase in levels of cytokines creates an abnormal
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environment around the cartilage and bone cells, leading to their destruction, which creates
a disturbance in the moment of peripheral joints. The main instances that define RA in its
active state are swelling and joint pain, resulting in disability and the destruction of joints,
which finally leads to dysfunction of the joints. The anomalies that are characteristic of RA
include the erosion of joints immediately after the symptoms appear, synovial infiltration in
the clinically unaffected joints and the presentation of autoantibodies before the beginning
of the disease, suggesting that the development of the disease occurs significantly earlier
than the clinically significant symptoms start to appear [1].

Technological developments have led to clearer identification of the pathogenesis of
RA. In recent years, the contribution of resident synovial fibroblasts (SF) has emerged as
a key component in the pathogenesis and development of RA leading to the destruction
of joints. RASF (rheumatoid arthritis synovial fibroblasts) are the most common cell
types at the site of the invasion [2]. In recent years, aberrant epigenetic changes are
characterized in connection with RASF that can help in solving intrinsic activation during
the destruction of joints. This connection can help in providing the missing link between RA,
risk factors and different therapy response [3]. Epigenetic modifications can be defined as
the alteration of gene expression or phenotypes at the cellular level caused by mechanisms
other than those of changes occurring in the DNA sequence where these modifications can
be induced by environmental changes that are short-lived and reversible alterations [4].
Epigenetic modifications include DNA methylation and a network of post-translational
modifications on histone tails like acetylation, phosphorylation, methylation, ubiquitination
or sumoylation [5].

The target HDAC8 (histone deacetylase 8) is involved in the reaction that catalyzes the
deacetylation of lysine residues present on the N-terminal region of the core histones [6–8].
The deacetylation functionality of the HDAC (histone deacetylase) enzymes plays a key
role in epigenetic repression, which directly affects the transcriptional regulation and cell
cycle development [6,7,9]. The key structural configuration of HDAC8 consists of a specific
domain (region) ranging from 14–324 amino acids, which defines it as histone deacetylase
enzyme [10], with an active site in 143rd position, and two types of binding sites: a divalent
metal cation binding site in 178th, 180th and 267th position [11]; and substrate binding site
in 101st, 151st and 306th position, as shown in Figure S1. Furthermore, disease-modifying
antirheumatic drugs (DMARDs) are used specifically for the treatment of RA. Drugs like
Methotrexate, Hydroxychloroquine, Sulfasalazine and gold salts are the most commonly
used DMARDs, but due to their high number of side effects, which include damage to bone
marrow and the nervous system, there is a need for alternative therapeutic procedures
for the treatment of RA [12]. The mechanism of epigenetic modification in RA has gained
growing research interest in recent times. The application of epigenetically modified meth-
ods is an important field in the research of RA pathogenesis. SAHA (Suberanilohydroxamic
acid) is one of the known inhibitors of HDAC that has been applied in the treatment of RA
and is known to be effective [13]. In this study, the compound aglaithioduline was selected
based on the similarity indexing approach following most of the parameters considered.

The information on plants that are being used for the treatment of rheumatoid arthritis
was obtained from multiple sources like Indian traditional knowledge, Ayurveda practition-
ers and some published material available globally. Table S1 provides a list of published
plants given in sources like “Indian Medicinal Plants, An Illustrated Dictionary”, C.P.
Khare, 2007, Springer-Verlag New York [14] and “WHO Monographs on Selected Medicinal
Plants”—Volume 1, 2, 3, 4.

Chemistry is a field of study where structural analogy plays a very important role, and
understanding the analogy and its functional impact becomes very important. Medicinal
chemistry would have been very difficult to study, understand and apply if the structural
similarity principle did not exist. The similar property principle states that structurally
similar molecules tend to have similar properties, making this method a rule of thumb
for application where there is an absence of detailed knowledge of chemicals. Similarity
indexing mainly focuses on chemical similarity, which has also increased interest in the field
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of biological similarity. Similarity measurement techniques have always been looked at as
foreign techniques, and people still are apprehensive about their efficiency and credibility. A
single measure cannot therefore be stated as a perfect measure of similarity [15]. Molecular
descriptors are the numerical values that have been assigned to a chemical structure, and
the level of dimensional properties is defined by these descriptors, as shown in Table S2.

The similarity coefficient is a quantitative measure of similarity between two sets of
molecular descriptors. The similarity coefficient can be measured by various methods like
the Tanimoto coefficient/fingerprint method, the cosine coefficient method, the Euclidean
distance method and the Tversky index. The Tanimoto fingerprint method is the standard
method for measuring the similarity coefficient, which is accepted globally, as given in
Formula (1).

The Tanimoto coefficient for two molecules, A and B, can be given as:

SIMAB =
c

a + b − c
(1)

where the c bits are set in common in the two fingerprints, and the a and b bits are set in the
fingerprints for A and B respectively [16,17].

The need to validate the application of traditionally used herbs in a medicinal system
with modern techniques is a very important step for the acceptance of these herbs globally.
The gap between the usage and validation of traditional medicines can be closed only by
initiating preliminary studies. In the current study, one such method of similarity indexing,
in combination with widely used in silico techniques like molecular docking and molecular
dynamics (MD), has been carried out [18,19]. Along with MD, MM/PBSA analysis and
principal component analysis were carried out to understand the ligand–protein complex
mechanisms in a system [20]. The main objective of this study is to understand the similarity
correlation between the compounds from traditionally used herbs and standard drugs in
the treatment of rheumatoid arthritis.

2. Results
2.1. Similarity Indexing

Similarity searching using the R programming method and the Tanimoto coefficient
method resulted in similarity indices of phytocompounds in comparison to SAHA based
on fingerprint values. The similarity indexing was carried out using the Shiny application
called “Similarity indexing”, hosted and available for public usage on GitHub (https://
github.com/sandes89/Similarityindexing, accessed on 30 September 2022). The application
was used to identify highly similar compounds. Aglaithioduline showed ~70% of similarity
in comparison to SAHA, the standard drug, and the co-crystallized compound with HDAC8
(PDB id: 1T69). The molecular properties of the compounds SAHA and aglaithioduline
were compared, and it was seen that both compounds showed very similar chemical
properties, as shown in Table 1. The pharmacokinetics properties of both compounds were
also compared, and it was seen that both the compounds had very similar activities and
properties predicted.

Both the compounds, i.e., the standard drug (SAHA) and the compound obtained from
similarity indexing (aglaithioduline), were subjected to preADMET checks using a pKcsm
server [21], and complete details are given in Supplementary Table S1. From the preADMET
studies, it was observed that the water solubility of both compounds showed very similar
values, whereas the caco2 permeability of aglaithioduline was higher in comparison with
that of SAHA. The total clearance rate, which includes both hepatic and renal clearance,
was very high for aglaithioduline, making it more effective in terms of excretion from
the body.

https://github.com/sandes89/Similarityindexing
https://github.com/sandes89/Similarityindexing
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Table 1. Molecular properties of the compounds SAHA and aglaithioduline.

Descriptor SAHA Aglaithioduline

Molecular Weight 264.325 306.431
LogP 2.4711 2.1184
Rotatable Bonds 8 9
Acceptors 3 3
Donors 3 2

2D Structure
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interaction of compounds with the amino acid sites of the protein are tabulated in Table 
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2.2. Binding Site Assignment

The binding site for docking studies was assigned using the binding sites of the co-
crystallized structure, P2RANK and a review of the literature. It was also based on curated
sites from UniProt KB (Q9BY41). The assigned sites and the site coordinates are given in
Table 2.

Table 2. The co-ordinates and the residues in the binding site of HDAC8 (1T69).

X Y Z Residues

31.5106 −2.4886 −9.5104

ASP101 SER138 GLY139 GLY140 TRP141 HIS142
HIS143 GLY151 PHE152 CYS153 TYR154 HIS180
GLY206 PHE207 PHE208 MET274 GLY303
GLY304 TYR306 LEU31 LYS33 ILE34 ARG37

2.3. Protein–Ligand Interactions

The molecular docking with the shortlisted compound based on the similarity in-
dexing calculation and HDAC8 showed very promising results. The binding score and
the interaction of compounds with the amino acid sites of the protein are tabulated in
Table 3. Aglaithioduline showed a binding affinity with −8.4 kcal/mol and the interaction
diagram is shown in Figure 1. Moreover, to confirm the correctness of the docking, the
target HDAC8 and SAHA from the crystallized structure (PDB id: 1T69) were docked using
the same configuration. The docking result clearly indicated that the compound stayed in
the same binding pocket, thereby confirming the appropriateness and correctness of the
docking procedure. The docked and the crystallized structure were superimposed and
is shown in Figure 2. The results of docking showed that the binding affinity value of
SAHA (standard inhibitor) with the target was found to be highest, and the aglaithioduline
binding affinity value was very near to that of SAHA. Aglaithioduline, having ~70% struc-
tural similarity with SAHA, showed very promising results. Based on the binding affinity
and the interactions, the HDAC8–aglaithioduline complex was further taken for molecular
dynamics and simulation studies.

Table 3. Binding energy and amino acid interaction profile of HDAC target protein docked with
aglaithioduline obtained from similarity indexing and the standard drug SAHA.

Compound
Name

Docking Score
(Kcal/mol)

Interaction Sites

Hydrophobic Interactions Hydrogen Bonds

Aglaithioduline −8.5 HIS180, PHE208 HIS143
SAHA −8.7 TYR100, PHE152, PHE208 HIS180
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2.4. Molecular Dynamics and Simulation

The molecular dynamics trajectory analysis for all three systems, namely APO (protein
only), LIG (protein in complex with standard drug SAHA) and AG (protein in complex with
aglaithioduline), was carried out. The RMSD of the backbone, RMSF of the residues, solvent-
accessible surface area (SASA) and radius of gyration were plotted, and the number of
hydrogen bonds between the compound and protein was also plotted for 100 ns (100,000 ps)
of simulation duration.

2.5. Trajectory Analysis of APO, LIG and AG Systems

RMSD analysis of the trajectories was carried out and it was observed that the APO
system was stable after 20 ns. The RMSD plot of the LIG system and AG system was plotted
and it was seen that the RMSD of aglaithioduline was higher than the APO system but
stayed stable after the 20ns, and the RMSD was seen to be in the range of 0.3–0.38 nm. The
trajectory of the AG system followed the pattern of the APO system (0.2–0.28 nm), whereas
the trajectory of the standard drug (LIG system) showed high variability, which showed an
increasing trend Figure 3a.

The RMSF of APO, AG and LIG was plotted and it was clearly seen that the APO and
AG system showed lower fluctuations than the LIG system. The stable residues indicate
the stable configuration of the system in the APO and LIG systems, as shown in Figure 3b.
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gyration) of APO, LIG and AG systems plotted over 100 ns; and (d) solvent-accessible surface area
(SASA) in nm2 for APO, LIG and AG systems over 100 ns. (100 ns = 100,000 ps).

The Rg, which is a measure of the overall size of a protein, is calculated as the root-
mean-square distance of a group of atoms from their shared center of mass. The Rg plot
of APO, AG and LIG in Figure 3c displays significant variation and fluctuation during
simulation time, which suggests that the native conformation of the protein is flexible
and subject to change throughout the simulation period. Therefore, this analysis provides
valuable insights into the dimensions and dynamics of the protein structure.

In addition, the solvent-accessible surface of the target protein was calculated and
the volume against the time was plotted (Figure 3d). It was seen that the volume of the
APO and AG systems stayed similar but the volume of the LIG system varied during the
simulation duration.

2.6. Hydrogen Bond Counts for LIG and AG Systems

Hydrogen bond analysis of the LIG and AG systems was carried out using the
“hbonds” module of Gromacs. The analysis clearly showed that the LIG and AG sys-
tems had hydrogen bonds in the system throughout the simulation duration. The presence
of hydrogen bonds during simulation indicates the stability of the protein in the sys-
tem, which is a very important aspect in understanding the protein–ligand interactions
(Figure 4).

2.7. MM/PBSA and Residual Decomposition Energy

The estimated relative binding energy of the complex AG was −53.405 ± 44.255 kJ/mol
and the Van der Waals, electrostatic, polar solvation and SASA energy was −45.480 ± 73.158,
−5.641 ± 9.017, 2.539 ± 61.749, and −4.823 ± 7.161 kJ/mol, respectively. Furthermore, the
AG system residue decomposition energy was calculated to infer the individual residue
contributing most to the binding energy (Figure 5). The residues Pro35, Trp141, Phe152,
Asp176 and Tyr306 favored stable complex formation by exhibiting the lowest contribution
energy of −1.319, −1.552, −1.449, −0.727, and −1.44kJ/mol, respectively. However, the
Arg37 residue did not favor the interactions (5.032 kJ/mol).
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The estimated relative binding energy of the complex LIG was 4.996 ± 16.014 kJ/mol
and the Van der Waals, electrostatic, polar solvation and SASA energy was −112.149 ± 16.106,
−96.119 ± 12.946, 226.486 ± 17.539, and −13.222 ± 0.869 kJ/mol, respectively. Furthermore,
the LIG system residue decomposition energy was calculated to infer the individual residue
contributing most to the binding energy (Figure 6). The residues Asp267, Asp272, Asp178,
His180 and Phe208 favored stable complex formation by exhibiting the lowest contribution
energy of −27.08, −3.76, −30.19, −6.77 and −6.97 kJ/mol, respectively.
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2.8. Principal Component Analysis

We performed principal component analysis to explore the conformational flexibility
and diversity of conformations that emerged from the stable trajectory obtained from
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100ns MD simulation. The maximum collective motion is captured by the first 50 eigenvec-
tors/principal components. Therefore, we precisely studied the first two eigenvectors/PCs
(principal components) in detail. Figure 7 represents the 2D projection of the first two
eigenvectors. It is observed that the Apo form shows a lower diversity of conformation
during the simulations (−3 to 4). However, the ligand–protein complex shows higher
diversity of conformations during simulation (−7 to 3). This reveals that the ligand with
protein is well equilibrated and stabilized during the simulation.
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3. Discussion

Many types of similarity indexing methods that utilize 2D fingerprints are available,
and each has its own advantages and disadvantages. In this study, the Tanimoto coefficient
(TC) is used to quantify and compare the similarity of the drug. The output from the TC is
in the range between 0 (maximum dissimilarity) and 1 (maximum similarity) [22]. The TC
is considered to be one of the best indices in similarity indexing, and is most efficient in
cases that have compounds with moderate molecular weight [22]. The similarity indexing
of SAHA and natural compounds resulted in aglaithioduline with a coefficient of ~0.7
(70% similarity).

Aglaithioduline has a molecular weight of less than 300 which is the best-fit compound
for the Tanimoto indexing method. The molecular docking studies result in the best-fit pose
of aglaithioduline in complex with HDAC8 with a binding energy of −8.5 kcal/mol. The
best-fit complex further underwent molecular dynamics analysis. The RMSD plot clearly
showed that the LIG system of SAHA was unstable in comparison with the aglaithioduline
(AG) system. RMSD stability indicates the stability of the protein–ligand binding and the
RMSF calculations also showed stability in the AG system [23]. The MM/PBSA and residual
decomposition energy analysis indicated stability and showed low energy, which is highly
favorable in nature for the protein–ligand complex. Aglaithioduline, which is present in
Aglaia leptantha and Aglaia edulis, has been traditionally used in Indian traditional medicine
for the treatment of cancer, inflammatory conditions, fungal infections, tuberculosis and
viruses [24,25]. Moreover, specific plants from Aglaia have been known to inhibit the
translation process that is directly related to the epigenetic activity of the body [26].

Aglaithioduline and SAHA are both histone deacetylase inhibitors (HDACi) regularly
used in cancer treatments. Both of these drugs have proven to be effective in treating
various diseases which involve HDACs (histone deacetylases), but there are some key
differences between them. Aglaithioduline is an orally administered HDACi that has been
shown to have a high level of anti-inflammatory activity and that can inhibit the growth of
tumor cells in a variety of cancer types. Studies have demonstrated that aglaithioduline
has a higher selectivity for HDAC enzymes and a lower toxicity profile than other HDACi
drugs. Aglaithioduline has also been shown to be effective in combination with other drugs
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and to have synergistic effects when combined with chemotherapy [27]. SAHA, on the
other hand, is an intravenously administered HDACi. It has been used to treat a variety of
cancers, including leukaemia and RA [28]. In summary, both aglaithioduline and SAHA are
effective HDACi drugs used in various pathological conditions, including cancer and RA.
All the known activities of the compound and the herb clearly show that the compound
aglaithioduline is a compound of interest and that herbs can also be studied further for the
elucidation of synergetic activities of other compounds of potential use in the treatment
of RA.

4. Materials and Methods
4.1. Similarity Searching

To begin the process of similarity searching, 2,231,213 compounds from the UNPD
database were downloaded in sdf format with their corresponding metadata. The refer-
ence compound to be searched for similarity is appended at the beginning of the multi-
compound sdf file and the merged sdf file is further imported into R [29]. Similarity
searching was carried out based on the fingerprints of compounds that are stored in the
database in matrix form [30]. The fingerprint set of compounds acts as a searchable database
that consists of compounds’ fingerprints [31]. The fingerprints of the compounds are sup-
ported by the atom pair database [32]. Similarity searching is further carried out using the
Tanimoto similarity search index [33]. The output is given in the form of index values in
decreasing order: the higher the value, the more similar the compound is to the reference
compound. Using the existing algorithms and library, an R-based Shiny application was
developed, which was used to carry out similarity indexing.

4.2. Docking Studies

Molecular docking of the highly similar phytocompounds in comparison with the
structure of target protein HDAC8 (PDB id: 1T69) [34] was carried out using Autodock
vina [35,36] with help of POAP implementation [37]. The POAP tool is a powerful program
designed to facilitate protein–ligand docking. This tool is used to optimize the binding
parameters of protein–ligand complexes by using the methods of free energy calculation,
electrostatics and molecular dynamics. The binding site of the target protein was assigned
based on the interaction of the co-crystallized structure with the ligand SAHA and also,
based on the literature, showing the active sites and binding sites on the target protein.
In addition, the target protein was subjected to P2RANK [38] analysis, which provides
detailed information on binding sites and their ranking. P2RANK binding site assignment
is a computational method for predicting and ranking the potential binding sites of a target
protein. The method is based on several physicochemical parameters that measure the
strength of the interactions between a target protein and its ligands. These parameters
include the electrostatic, hydrophobic, Van der Waals and steric interactions between the
two molecules. To rank the binding sites, the P2RANK method calculates a score for
each potential binding site, based on these parameters. The compounds selected from the
similarity indexing were listed and the chemical structures in sdf format were converted
to pdbqt format using POAP, with energy minimization conducted using the steepest
descent method [39]. The energy-minimized structures were used for docking studies
with an exhaustiveness of 100 [40]. The top complex based on the binding energy was
further considered for MD studies based on the interactions with the active site of the
co-crystallized structure of HDAC8. The preADMET properties of the test compound and
the standard drug were predicted using the pkCSM server. The prediction of ADMET
properties is very important in understanding the drug-likeness and toxicity profile [41].

4.3. Molecular Dynamics Studies

The simulation systems in the study considered were the apoprotein, the target in
complex with the standard drug and the target in complex with the compound obtained
from similarity indexing. Simulations were carried out on Gromacs version 2019.4 [42].
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The system for the simulations was subjected to 50,000 steps of steepest descent energy
minimization to nullify the steric overlap. Furthermore, all the systems were applied
to a two-step equilibration phase, namely NVT (constant number of particles, volume
and temperature) and NPT (constant number of particles, pressure and temperature).
NVT equilibration was run for 500 picoseconds (ps) to stabilize the temperature of the
system, and NPT was run for 500 ps to stabilize the pressure of the system to be subjected
to dynamics, in order to relax the system and maintain restraint on the protein. The
temperature coupling [42,43] method was applied for the NVT ensemble, along with the
constant coupling of 1 ps with 303.15 K. For NPT, Nosé–Hoover pressure coupling [44,45]
was applied with the constant coupling of 1ps with 303.15 K under conditions of position
restraints (h-bonds) by the selection of random seed. The calculation of electrostatic forces
for NVT and NPT were carried out using the particle mesh Ewald method [46]. All the
systems were subjected to a complete 100 nanosecond (ns) simulation under no restraint
conditions, with an integration time step of 0.002 ps and an xtc collection interval of
5000 steps for 100 ps.

The analysis of the Gromacs trajectory files was carried out using Gromacs utilities.
The trajectory’s root-mean-square deviation (RMSD) was calculated using “gmx rmsd”
and root-mean-square fluctuation (RMSF) analysis was carried out using “gmx rmsf”. The
radius of gyration was calculated using “gmx gyrate” to determine whether the system
reached convergence over the 100 ns simulation. The solvent-accessible surface area (SASA)
was calculated using the “gmx sasa” command to determine the area accessible by water
in the protein, in which the ligand can move around bound with the target protein. The
hydrogen bond counts for the protein–ligand complex in both the target in complex with
standard drug and the target in complex with the compound resulted from similarity
indexing [47].

4.4. MM/PBSA and Residual Decomposition Energy

The molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) is a computa-
tional method used to study the thermodynamic properties of protein–ligand complexes.
This approach calculates the free energy of a protein–ligand system by breaking it down into
separate contributions from various energy terms, such as molecular mechanics, Poisson–
Boltzmann electrostatics and solvation-free energies. The MM/PBSA method has been
widely used in drug discovery and design, as it provides insights into the molecular in-
teractions between a ligand and a protein target. This information can be used to design
and optimize drug candidates for further development. In the current study, the rela-
tive binding energy and its contribution to individual residues were calculated using the
MM/PBSA method by utilizing the “g_mmpbsa” tool. The parameters from past research
were taken into account while calculating the binding energy. Using 50 representative
snapshots, the binding energy was determined throughout the steady trajectory observed
between 50 and 100 ns [48,49]. The MM/PBSA result summary comprises Van der Waals
energy, electrostatic energy, polar solvation energy and total binding energy. Based on the
low binding energy of the system the stability of the system can be determined.

4.5. Principal Component Analysis

The molecule’s rotational and translational motion using the “least square fit” to the
reference structure was examined using MD trajectories. The eigenvalue related to each
eigenvector indicates the energy contribution of that part to the motion. The projection of
the trajectory on a specific eigenvector illustrates the “time-dependent movements” that the
components perform in a specific vibrational mode [50,51]. The projection’s time average
reveals the contribution of atomic vibration components to this mode of coordinated
motion. The eigenvectors and eigenvalues of the trajectory were generated using the
Gromacs in-built utilities “g_covar” by calculating and diagonalizing the covariance matrix.
The “g_anaeig” tool was also used to analyze and illustrate the eigenvectors.
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5. Conclusions

The similarity indexing approach of identifying compounds having activity similar to
that of the existing standard is a highly efficient and accurate method. In this study, the
standard drug used in patients with rheumatoid arthritis, SAHA, was taken as a reference
molecule against the database of natural compounds to find similarity indexes. The
similarity indexing method resulted in the identification of aglaithioduline as a compound
with ~70% similarity, and further in silico studies with HDAC8 clearly showed a high
stability in the system in comparison with the standard drug. The system was also found
to be very compact based on the radius of gyration around the axis. Hydrogen bond
contact analysis also revealed the high binding affinity of aglaithioduline with HDAC8.
Based on the results obtained, Aglaia leptantha and Aglaia edulis, in which aglaithioduline is
present abundantly, can be taken further for in vivo and in vitro studies as anti–arthritic
treatments specifically.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28062430/s1, Figure S1: Protein structure of HDAC8
(PDB id: 1T69) with its structural and functionally important regions; Table S1: List of plants used
for the treatment of rheumatoid arthritis across the globe; Table S2: The level of descriptors and the
descriptors for each level; Table S3: ADMET properties of SAHA and aglaithioduline.
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