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Abstract: Carnosic acid is a diterpenoid abundantly present in plants belonging to the genus Rosmari-
nus and Salvia of the family Lamiaceae, accounting for their application in traditional medicine. The
diverse biological properties of carnosic acid that include antioxidant, anti-inflammatory, and anticar-
cinogenic activities have instigated studies on its mechanistic role, providing further insights into its
potential as a therapeutic agent. Accumulating evidence has established the relevance of carnosic
acid as a neuroprotective agent exhibiting therapeutic efficacy in combatting neuronal-injury-induced
disorders. The physiological importance of carnosic acid in the mitigation of neurodegenerative
disorders is just beginning to be understood. This review summarizes the current data on the mode
of action through which carnosic acid exerts its neuroprotective role that may serve to strategize
novel therapeutic approaches for these debilitating neurodegenerative disorders.

Keywords: neuroprotection; carnosic acid; natural sources; neurodegeneration; autophagy; oxidative
stress; apoptosis; Keap1/Nrf2 signaling

1. Introduction

Neuronal injury is a major factor contributing to various neurological disorders. De-
spite advancements in the field of medicine and neuroscience, most neurological disorders
remain incurable. Currently approved drugs for the treatment of neurological disorders
focus on symptomatic relief rather than cure. Recently, there has been an interest in natu-
ral products and their therapeutic potential against these disorders. The plants from the
genus Rosmarinus and Salvia, belonging to the family Lamiaceae, are the natural sources of
carnosic acid (CA) and other natural compounds, which are being widely studied for their
therapeutic effects against various conditions [1].

Salvia Rosmarinus, belonging to the family Lamiaceae, is native to the Mediterranean
but is now found abundantly throughout the world. Commonly referred to as ‘rosemary’, it
has been used as an herbal spice in food and has been a constituent of traditional therapies
for various illnesses, including inflammatory diseases, headaches, and gastrointestinal
issues [2,3]. Rosemary possesses significant intrinsic antioxidant activity that has been
attributed to its major constituents, rosmarinic acid and carnosic acid (CA), which have
demonstrated neuroprotective activity in various neurodegenerative diseases [4].

CA is the most abundant compound in rosemary leaves, accounting for 90% of its
antioxidant activity [5]. CA is a diterpenoid with an abietane skeleton. Its structure
comprises abieta-8,11,13-triene substituted by hydroxy groups at positions 11 and 12
and a carboxy group at position 20 [6]. This carbotricyclic polyphenolic compound is a
monocarboxylic acid and a conjugate acid of a carnosate [6]. It is a lipophilic antioxidant
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that scavenges singlet oxygen, hydroxyl radicals, and lipid peroxyl radicals, thus preventing
lipid peroxidation and disruption of biological membranes [7,8] (Figure 1).
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Figure 1. Three-dimensional structure of carnosic acid, acquired from PubChem (pubchem.ncbi.
nlm.nih.gov—accessed on 18 January 2023). White represents hydrogen, grey represents carbon and
red represents oxygen.

CA possesses diverse biological properties, including antioxidant, anti-inflammatory,
neuroprotective, and anticarcinogenic activity [8–11]. However, the mechanisms by which
CA exerts its neuroprotective effect have not been fully elucidated, and ongoing studies
are providing insight into possible mechanisms of action. In this review, we aim to sys-
tematically discuss the potential neuroprotective properties and mechanisms of action of
CA to provide a better understanding of its efficacy as a therapeutic agent in neural-injury-
associated disorders.

2. Carnosic Acid and Mechanisms of Neuroprotection

CA exerts its neuroprotective effects through a diverse range of mechanisms, some of
which include the prevention of amyloid-β (Aβ)-induced neurodegeneration, induction
of autophagy, alleviation of oxidative stress and via anti-apoptotic effects (Figure 2). We
systematically review these mechanisms to elucidate the potential of CA in the prevention
and control of neural-injury-associated disorders.
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2.1. Induction of Autophagy

The pathogenesis of most neurodegenerative disorders bears a resemblance to the
manner in which the pathogenic proteins are disposed of by neurons and glia. Autophagy,
a homeostatic process by which the degradation of long-lived cellular proteins, lipids,
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and dysfunctional organelles occur within the lysosomal machinery, plays a crucial role
in maintaining the metabolic balance between synthesis, degradation, and subsequent
turnover of cytoplasmic material [12–14]. Since it prevents the buildup of protein aggregates
and damaged mitochondria and organelles, loss of autophagy or its dysregulation may
lead to atrophy and neuronal death [15]. Autophagic dysregulation is also implicated in
neurodegenerative disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD),
Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), and lysosomal storage
disorders (LSDs) [14].

A study employing human neuroblastoma SH-SY5Y cells revealed an instrumental
role for CA in the reduction of Aβ-induced apoptosis and the accumulation of toxic proteins
through the induction of autophagy. Aβ aggregation is a hallmark feature of AD and is a
key target of AD-related therapies. The study by Liu and colleagues demonstrated that CA-
induced autophagy via AMP-activated protein kinase (AMPK) is an important regulator
of cellular metabolism [16]. AMPK triggers autophagy to avoid oxidative stress and
mitochondrial dysfunction in cells treated with CA, highlighting a therapeutic mechanism
of CA against Aβ [16]. In vitro studies that investigated the effect of pre-treating SH-SY5Y
cells with CA prior to serum starvation revealed that pretreatment significantly protected
these cells against nutrient depletion [17]. The cytoprotective effects of CA were afforded
by the phosphorylation of protein kinase B (Akt) and extracellular signal-regulated kinase
1/2 (Erk1/2) and moderate activation of autophagy since pretreatment with LY294002 and
U-0126, inhibitors of Akt and Erk1/2 phosphorylation, abolished the protective effects [17].

Another mechanism by which CA influences autophagy is through the parkin path-
way. Parkin is an E3 ubiquitin ligase that catalyzes the conjugation of ubiquitin to abnormal
proteins, facilitating their degradation by the ubiquitin proteasome system (UPS) [18].
Parkin gene mutations have been implicated in the pathogenesis of neurodegenerative
diseases, including Parkinson’s [19–21]. CA was shown to prevent cell death via induc-
tion of the parkin pathway, enhancing levels of parkin protein, the UPS, and α-synuclein
degradation [22]. The interaction between parkin and Beclin1 is considered to facili-
tate autophagosome maturation [23]. CA substantially enhances the parkin/Beclin1 in-
teraction, inducing autophagy [24]. These effects were attenuated by wortmannin and
bafilomycin A1 (an autophagosome-lysosome fusion blocker) [24]. Moreover, CA has also
been shown to mitigate mitochondrial impairment, which also involves the activation of
the PINK1/parkin/mitophagy pathway [25]. The neuroprotective effects of CA have also
been attributed to the upregulation of OPA1 (OPA1 mitochondrial dynamin-like GTPase)
via activation of the parkin/IKKγ/p65 pathway and are associated with an enhancement of
mitochondrial biogenesis. This pathway is linked to the inhibition of Parkin-interacting sub-
strate (PARIS) and induction of proliferator-activated receptor gamma coactivator-1-alpha
(PGC-1α) by parkin [26,27]. This interaction has been shown to prevent the degeneration
of dopaminergic neurons, demonstrating the therapeutic potential of CA against PD [27].

2.2. Alleviation of Oxidative Stress

Oxidative stress is a major contributing factor to neurodegenerative disorders [28].
Many studies have highlighted the anti-inflammatory and anti-oxidative properties of CA.
Hou and colleagues [29] demonstrated the neuroprotective effect of CA on neuronal cells
subjected to ischemia/hypoxia injury via the scavenging or reduction of ROS (reactive oxy-
gen species) and NO (nitric oxide) and inhibition of COX-2 and MAPK pathways [29]. CA
also displayed protective effects against 6-hydroxydopamine (6-OHDA)-induced neurotox-
icity by increasing the expression of antioxidant enzymes, including c-glutamate-cysteine
ligase catalytic (GCLC) subunit, c-glutamate-cysteine ligase modifier (GCLM) subunit,
superoxide dismutase (SOD), and glutathione reductase [30]. Furthermore, CA was also
demonstrated to be cytoprotective against chlorpyrifos (CPF)-induced inflammation, ox-
idative stress, and neurotoxicity in brain and eye tissues of mice [31] as well as in SH-SY5Y
cells [32]. CA protects against oxidative stress by employing various mechanisms, among
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which the induction of Nrf2-ARE and the activation of PI3K/Akt signaling pathways are
the most significant and widely studied.

2.2.1. Induction of the Nrf2-ARE Response

The pleiotropic transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2),
is a master regulator of numerous cytoprotective genes. As an important mediator of
the endogenous defense system, it serves to combat the imbalance between basal and
injury-induced changes in ROS/RNS (reactive nitrogen species) and antioxidant/defense
enzymes through its interaction with enhancer regions known as antioxidant response
elements (AREs) of defense genes [33–35]. Under normal cellular conditions, Nrf2 remains
sequestered in the cytoplasm by the regulator protein Keap1 (Kelch-like ECH-associated
protein 1) [36], a component of the Cullin 3 (CUL3)-based E3 ubiquitin ligase complex.
However, under conditions of cellular stress such as injury, toxicity, or oxidative stress,
Nrf2 becomes uncoupled from Keap1 and translocates into the nucleus, where it induces
the transcription of cytoprotective genes by binding with AREs [37,38].

As indicated above, CA is known to activate the Keap1/Nrf2 pathway, thereby re-
sulting in the production of cytoprotective proteins. This highlights the significance of
CA as a candidate neuroprotective agent for the treatment of neurodegenerative diseases.
Activation of the neuroprotective Keap1/Nrf2 transcriptional pathway by CA involves
the conversion of CA from an electrophilic precursor to an electrophilic form through a
mechanism involving the release of Nrf2 from the Keap1/Nrf2 complex that results in the
transcription of antioxidant enzymes (Figure 3) that protect neurons from oxidative stress
and excitotoxicity [39]. It has also been shown that the hydrophilicity of CA is critical for
its neuroprotective effects, which require both free carboxylic acid and catechol hydroxyl
moieties [40]. The mechanism of neuroprotection of CA involves a sequence of events
whereby the activation of the Keap1/Nrf2 pathway is followed by the transcription and
induction of enzymes involved in glutathione (GSH) metabolism (glutathione S-transferase,
alpha 4; glutathione S-transferase, alpha 2; and formylglutathione hydrolase) and phase
2 enzymes [NAD(P)H-quinone oxidoreductase1 and aldehyde dehydrogenase family 3,
subfamily A1] that would lead to the activation of GSH metabolism [41]. GSH is a potent
antioxidant that protects cells from the toxic effect of ROS.
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of Nrf2 and facilitates its dissociation from Keap1, resulting in its translocation to the nucleus, where
it binds to antioxidant response elements (AREs) of cytoprotective genes and facilitates transcription.
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Interestingly, it has been reported that nerve growth factor (NGF), a proteinaceous
neurotrophic molecule essential for the growth and functional maintenance of nervous sys-
tem tissue, was markedly enhanced in T98G human glioblastoma cells following treatment
with CA [42]. Investigations into the mechanisms by which CA increased the production
of NGF revealed an Nrf2-dependent pathway whereby treatment increased nuclear ac-
cumulation of Nrf2 and the activation of Nrf2 target genes, including heme oxygenase
1 (HO-1) and thioredoxin reductase 1 (TXNRD1) [43]. The neuroprotective mechanism of
CA was further delineated in a more recent study demonstrating a CA-mediated induction
of the activating transcription factor 4 (ATF4) through the integrated stress response (ISR)
pathway. This activation of Nrf2 and ATF4 by CA led to enhanced expression of NGF and
other antioxidant genes, including HO-1 and TXNRD1 [44]. CA also worked synergistically
with edavarone, a free radical scavenger, to enhance NGF expression in cultured human
astrocytes exposed to hypoxia/re-oxygenation [45]. Application of CA to SH-SY5Y cells
pretreated with the neurotoxin 6-OHDA facilitated the downregulation of the pro-apoptotic
JNK and p38 signaling pathways. This down-regulation was driven by the Nrf2-mediated
synthesis of GSH [46]. Similarly, by attenuating the 4-hydroxy-2-nonenal (4-HNE)-induced
inhibition of mitochondrial respiration, CA can also alleviate mitochondrial dysfunction.
4-HNE is a by-product of lipid-peroxidation-induced membrane damage and plays a criti-
cal role in neurodegeneration. The attenuation of 4-HNE by CA is also associated with the
induction of Nrf2-ARE [47]. CA exerts a similar neuroprotective effect through activation of
Nrf2-ARE following traumatic-brain-injury-induced oxidative damage and mitochondrial
dysfunction [48].

Additional evidence of the neuroprotective effects of CA was demonstrated in cultured
rodent and human induced pluripotent stem cell-derived neurons treated with cyanide as
well as in a non-Swiss albino mouse model of cyanide poisoning [49]. Acute exposure to
cyanide in humans results in a delayed onset (up to weeks or even months) of a neurological
syndrome that includes dystonia and signs and symptoms of Parkinsonism. Pretreatment
of mice with 0.05% CA in food pellets for 1 week followed by twice daily intraperitoneal
administration of 5–6 mg/kg potassium cyanide (KCN) for 8 days whilst maintaining
oral treatment (via food) resulted in reduced neurotoxicity and improved neurobehavioral
outcomes in treated mice [49]. Importantly, treatment with CA resulted in significantly
reduced apoptosis in the frontal cortex, hippocampus, and striatum of KCN-poisoned
mice [49]. CA was also capable of differentiating PC12 cells by activating Erk1/2 via the
trkA, nerve growth factor receptor, independently of Nrf2 [50]. In addition, CA also affords
neuroprotective effects by inhibiting ferroptosis via activation of the Nrf2 pathway [51].
Treatment of PC12 cells with erastin, a ferroptosis inducer, led to a dose-dependent loss in
cell viability and decreased glutathione levels that were reversed following treatment with
CA. In addition, CA also reversed the reduction in glutathione levels as well as the increase
in reactive oxygen and nitrogen species induced by erastin [51].

A study in ovariectomized mice further demonstrated the neuroprotective role of CA
in alleviating consequent depressive behaviors through the induction of serotonin and
activation of Nrf2/HO-1 signaling [52]. CA also reversed the ovariectomy-induced sup-
pression of the oxidoreductase protein, thioredoxin (Trx-1), and brain-derived neurotrophic
factor (BDNF), a pivotal neurotrophic factor associated with neuronal survival. Treatment
with CA for three weeks following ovariectomy also suppressed the oxidative stress mark-
ers GSH, malondialdehyde, and SOD as well as the pro-inflammatory cytokines TNF-α
and IL-1β and ameliorated histopathological changes induced by ovariectomy [52]. Other
evidence of the mood-altering effects of CA has been reported [53,54]. Observations of
increased serotonin and BDNF suggest that CA may represent a novel therapeutic avenue
for depressive behaviors that should be further explored.

2.2.2. Activation of the PI3K/Akt Signaling Pathway

The phosphoinositide-3-kinase (PI3K)/Akt signaling pathway is complex and is in-
volved in numerous cellular functions, including cell growth, metabolism, proliferation,
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and survival, amongst others. These myriads of functions are driven by the ability of
the pathway to regulate a broad spectrum of proteins, including NF-κB (nuclear factor
kappa-light-chain-enhancer of activated B cells), another signaling molecule that is pre-
dominantly involved in cell survival, inflammation, and protection from toxicity. CA has
been shown to mediate the activation of the PI3K/Akt/NF-κB pathway, leading to the
upregulation of GSTP (Glutathione S-transferase pi) [55], one of the seven classes of GSTs
and one that is highly expressed in glial cells of the nervous system. Upregulation of GSTP
enzyme activity was shown to attenuate 6-OHDA-induced apoptosis and cell death both in
SH-SY5Y neuroblastoma cells as well as in the striatum of mice [55]. Similarly, employing
methylglyoxal (MG), the most potent inducer of advanced glycation end-products (AGEs),
de Oliveira and colleagues [56] demonstrated that pretreatment of SH-SY5Y cells with CA
prevented cells from damage caused by free radicals produced during the metabolism of
MG. The cytoprotective effects of CA were exerted via activation of the PI3K/Akt/Nrf2 sig-
naling pathway, where antioxidant enzymes were modulated by Nrf2 [56]. CA prevented
MG-induced cell death by increasing levels of Bcl-2 (an apoptosis regulating protein) and
decreasing levels of Bax (another apoptosis regulator), as well as by blocking cytochrome
c release from mitochondria and the loss of mitochondrial membrane potential (MMP)
induced by MG. CA pretreatment also inhibited caspase-3 and caspase-9 activation and
decreased the fragmentation of DNA that is generally elicited by MG [56]. Similar effects
of CA were observed employing the paraquat (PQ) model of PD, where cytoprotection was
afforded by activation of Nrf2 through modulation of the PI3K/Akt pathway leading to an
increase in levels of antioxidant enzymes [32,56,57]. It is further suggested that CA also
exerts mitochondrial protection from glutamate-induced excitotoxicity. Results in SH-SY5Y
cells treated with CA revealed prevention of glutamate-induced mitochondrial impairment
and improved bioenergetics that was driven through the activation of Nrf2 [58].

2.3. Attenuation of Apoptosis

Although many studies highlight the role of CA in modulating autophagy, as discussed
earlier, it is also found to play a critical role in the attenuation of apoptosis. Investigations
have used variously in vitro and in vivo models of apoptosis to evaluate the neuroprotec-
tive role of CA and have revealed regulation at the level of apoptosis-inducible genes [59].
Studies in cultured dopaminergic cells (SN4741) employing the organochlorine pesticide
dieldrin, which is known to be a risk factor for PD, revealed that neuroprotection afforded
by CA was due to the repression of apoptosis-related caspase-3 and -12 and the stress sig-
naling molecule c-Jun N-terminal kinase (JNK) [60]. Pretreatment of SN4741 cells with CA
also significantly attenuated the downregulation of BDNF, a key molecule associated with
dopaminergic neuron survival and maturation [60]. Treatment of these cells with dieldrin
resulted in a 61% reduction in BDNF release from these cells, whereas pretreatment with
10 µM CA maintained levels of BDNF at basal expression [60]. Intriguingly, these results
suggest that treatment of SN4741 cells with 10 µM CA results in a 1.5-fold increase in levels
of BDNF, suggesting that prophylactic treatment with CA may support dopaminergic and
other cells in the brain. In another example of the neuroprotective effects of CA, Wu and
colleagues [30] reported that the cytoprotective effects of this diterpenoid were afforded
by its anti-apoptotic action in 6-OHDA-treated rats and SH-SY5Y cells. This effect was
mediated by Bax, a pro-apoptotic, and Bcl-2, an anti-apoptotic member of the Bcl-2 family
of proteins. Treatment with CA was shown to reverse the 6-OHDA-induced reduction
in the Bcl-2/Bax ratio [30]. CA also decreased 6-OHDA-induced apoptosis in SH-SY5Y
cells via upregulation of GSTP through the activation of the PKA/CREB pathway and
subsequent increase in the interaction between GSTP and JNK, resulting in an inhibition of
JNK signaling [61].

Another study investigating the mechanism by which CA inhibits apoptosis revealed
the role played by the E3 ubiquitin ligase, parkin. As indicated, parkin ubiquitinates
misfolded proteins and facilitates their degradation via the ubiquitin-proteasome sys-
tem [62,63]. Treatment of SH-SY5Y cells with 6-OHDA induced the expression of apoptosis-



Molecules 2023, 28, 2306 7 of 13

related protein in the TGF-β signaling pathway (ARTS), a pro-apoptotic protein, and
reduced the expression of X-liked inhibitor of apoptosis protein (XIAP), a protein that
directly blocks active sites of caspase 3 and caspase 7 and inhibits apoptosis. Pretreatment
of SH-SY5Y cells with CA ameliorated the induction of ARTS and reduction of XIAP and
also attenuated the activation of caspase 7 and 9, thereby reversing the apoptotic effects of
6-OHDA and shedding light on the therapeutic potential of CA in PD [64].

CA was also reported to exert a neuroprotective effect following subarachnoid hem-
orrhage induced by early brain injury through the inhibition of apoptosis [65]. Rats were
subjected to a sub-arachnoid hemorrhage procedure, and those in the experimental group
were then administered a 3 mg/kg dose of CA intraperitoneally. CA was shown to ame-
liorate brain edema and blood-brain barrier (BBB) disruption, as well as reduce neuronal
death via apoptosis [65]. CA was also shown to increase SIRT1, a member of the highly
conserved (NAD+)-dependent class of histone deacetylases responsible for combatting
ROS and apoptosis, MnSOD (manganese superoxide dismutase, a metalloprotein that
prevents mitochondrial dysfunction) and Bcl-2 (the founding member of a family of regu-
lator proteins that regulate cell death) expression [65], as well as decreased p66shc, Bax,
and cleaved caspase-3 expression. The anti-apoptotic effects of CA were proposed to be
facilitated through the SIRT1/p66shc signaling pathway [65,66].

Importantly, CA was shown to inhibit cell growth and induce apoptosis in IMR-32
human neuroblastoma IMR-32 cells [67]. The induction of apoptosis was accompanied
by ROS-mediated p38 MAPK activation resulting in a decrease in cell viability [67]. In-
triguingly, these results suggest that the activity of CA is selective in its regulation of cell
viability and apoptosis, whereby these processes are activated by CA to restore physiologi-
cal states, implying the substantive therapeutic potential of this compound that warrants
extensive investigation.

2.4. Effects of Carnosic Acid in Amyloid-β-Mediated Neurodegeneration

Brain atrophy associated with the deposition of Aβ in extracellular neuritic plaques
is the most prominent neuropathological hallmark of Alzheimer’s disease (AD) [68]. Aβ-
peptide, which constitutes the major component of amyloid plaques, is a 4-kDa peptide
formed by the proteolytic cleavage of the amyloid precursor protein (APP) by β-secretase
and the γ-secretase complex of proteins [69,70]. Cleavage of APP by β-secretase (β-site
APP-cleaving enzyme-1 (BACE1)) catalyzes the critical step in the generation of Aβ. How-
ever, the constitutive pathway of APP processing is via α-secretase cleavage that results
in the generation of a soluble ectodomain fragment termed soluble APPα (sAPPα), which
possesses neurotrophic and neuroprotective properties [71–73]. The protective role of CA
against neurodegeneration resulting from the presence of Aβ is well documented. An
investigation of the effects of CA on Aβ production in SH-SY5Y human neuroblastoma cells
revealed a critical role for this antioxidant in the suppression of Aβ42 generation, an isoform
of the peptide that is known to be more hydrophobic and toxic as well as possessing faster
oligomerizing properties compared to Aβ40. In the presence of CA, APP cleavage was
shuttled to the α-secretase pathway, thereby precluding Aβ generation [74]. This shuttling
in the presence of CA is driven by the upregulation of tumor necrosis factor-α-converting
enzyme (TACE) mRNA, a member of the ADAM (a disintegrin and metalloproteinase)
family of proteases, which contributes to α-secretase cleavage of APP [74]. Similarly, a
substantial reduction in Aβ production by CA via the activation of TACE was evident
in U373MG human astrocytoma cells [75]. Aβ also interacts with N-methyl-D-aspartate
receptors (NMDARs) to induce apoptosis and synaptic dysregulation. In another study
on SH-SY5Y cells, CA was shown to inhibit the phosphorylation of the NMDAR sub-
type 2B (NMDAR2B) receptor, thereby suppressing apoptosis and restoring expression of
synaptic proteins including BDNF, postsynaptic density protein-95 (PSD-95), and synap-
tophysin [76]. Additionally, CA significantly attenuated apoptosis induced by Aβ42/43,
further highlighting its therapeutic potential against Aβ-induced neurotoxicity [77].
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In vivo, CA has been demonstrated to be protective to neurons in subfield CA1
(cornu Ammonis) of the hippocampus in an acute experimental rat model of AD (bi-
lateral administration of Aβ into the hippocampus) where Aβ accumulation leads to
neurodegeneration of the hippocampus [78]. Employing a similar in vivo paradigm, Ra-
soolijazi and colleagues [79] demonstrated the neuroprotective effects of CA on cognitive
impairment associated with Aβ-induced neurotoxicity in the rat hippocampus. CA was
shown to significantly improve short-term and spatial memory attributes in rat models of
AD [79]. Furthermore, CA also delayed the deposition of Aβ and protected cells against
Aβ-induced cholinergic and mitochondrial dysfunction in a Caenorhabditis elegans model
of AD [80], thereby reiterating its promising potential as a neuroprotective agent against
AD-associated neurodegeneration.

In recent efforts incorporating biomedical advances, nano-carrier packaged CA re-
duced the deposition of Aβ, subsequently restoring cognitive deficits through the inhibition
of the CCAAT-enhancer-binding protein β (CEBPβ)-NFκB signaling pathway in APP/PS1
mice [81].

A recent study by Feng and colleagues [82] demonstrated a potential role of CA in
the suppression of Apolipoprotein E ε4 (ApoE ε4)-associated AD. Apolipoprotein E is
a major cholesterol transport protein. The ε4 allele of APOE is the strongest risk factor
for late-onset AD (LOAD), the most common form of the disease that affects more than
97% of individuals diagnosed with AD. An increase in the cell surface expression of ApoE
receptor 2 (ApoER2) activates the reelin signaling pathway that is important for synaptic
plasticity in the adult brain. The intracellular binding of ApoE4 to ApoER2 inhibits the
recycling of the receptor to the cell membrane and therefore renders neurons unresponsive
to reelin [83]. CA counteracts the negative effects of ApoE ε4 by facilitating the binding
of sorting nexin 17 (SNX17) to ApoER2, blocking ApoE ε4 binding and promoting the
recycling of the receptor to the cell membrane [84] where reelin binds to the receptor,
activating the pathway resulting in neurite growth [82].

2.5. Effects of Carnosic Acid in Models of Neuronal Injury

Intriguingly, CA also alleviated symptoms of metabolic-disease-induced brain injury
through the modulation of inflammatory responses. In a high-fat-diet-induced mouse
model, CA facilitated a significant decrease in the expression of various pro-inflammatory
cytokines regulated by the NF-κB signaling pathway, including interleukin (IL)-1β, IL-
6 and tumor necrosis factor-α (TNF-α). Additionally, it also modulated the apoptotic
pathway through the increased expression of anti-apoptotic Bcl-2 and downregulation of
the pro-apoptotic protein Bax and matrix metallopeptidase 9 (MMP9) [85].

Studies in levodopa-induced dyskinesia revealed that CA was capable of alleviating
the detrimental effects of excessive levodopa through the attenuation of apoptotic cell
death via the modulation of ERK1/2-c-Jun and induction of parkin [86]. It also attenuated
inflammation, mitochondrial damage, and oxidative stress in isoflurane-treated neuronal
cells through the activation of the AMPK/SIRT1 pathway [87]. CA has also been shown to
exert anti-inflammatory responses in bone-marrow-derived macrophages through the mod-
ulation of the toll-like receptor 2 (TLR2) and MAPK/NF-κB signaling pathway, resulting
in a decreased expression of TNF-α, IL-6, and IL-1β [88]. The anti-inflammatory response
of CA was further demonstrated via an integrated proteomic and bioinformatic study
that demonstrated the involvement of CA in the modulation of multiple inflammatory
processes, including MAPK, NF-κB, and FoxO signaling pathways [89]. CA also inhibits
the nucleotide-binding oligomerization domain-like receptor containing pyrin domain
3 (NLRP3) inflammasome, which plays a critical role in the pathogenesis of neurodegener-
ative disorders, including AD and PD and COVID-19, including ‘long-COVID’, thereby
representing its therapeutic potential [90]. Additionally, its neuroprotective role in the
prevention of prion protein (PrP) aggregation in cellular models as well as disruption of
PrP aggregates in cell-free assays [91], raises interesting possibilities for considering CA as
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a potential adjuvant candidate against prion diseases, including Creutzfeldt–Jakob disease
(CJD), Gerstmann–Straussler–Scheinker disease (GSS), and fatal familial insomnia (FFI).

Collectively, these studies demonstrate the cytoprotective characteristics afforded
by CA and support its use as both a prophylactic and a neuroprotective compound that
warrants continued investigation in diseases of the nervous system (summarized in Table 1).

Table 1. Neuroprotective effects of carnosic acid and its associated mechanisms of action.

Neuroprotective Effects Mechanisms

Induction of autophagy

Activation of AMP-activated protein kinase (AMPK) [16]

Phosphorylation of protein kinase B (Akt) and extracellular signal-regulated
kinase 1/2 (Erk1/2) [17,86]

Induction of Parkin pathway [22,86]

Enhancement of parkin/Beclin1 interaction [24]

Activation of the PINK1/parkin/mitophagy pathway [25]

Activation of the parkin/IKKγ/p65 pathway [26,27]

Alleviation of oxidative stress
Induction of Nrf2-ARE response [39–52]

Activation of the PI3K/Akt signaling pathway [32,55–58]

Attenuation of apoptosis

Repression of apoptosis-related caspase-3 and -12 and c-Jun N-terminal kinase
(JNK) [60,61]

Attenuation of BDNF downregulation [60]

Restoration of Bcl-2/Bax ratio [30]

Activation of the PKA/CREB pathway [61]

Amelioration of the induction of ARTS and reduction of XIAP [64]

Activation of SIRT1/p66shc signaling pathway [65]

Protection against Aβ-mediated
neurodegeneration

Upregulation of tumor necrosis factor-α-converting enzyme (TACE) mRNA to
suppress Aβ42 generation [74,75]

Inhibition of NMDAR subtype 2B (NMDAR2B) receptor phosphorylation [76]

Restoration of cognitive impairment [78,79]

Suppression of Aβ-induced cholinergic and mitochondrial dysfunction [80]

Inhibition of the CCAAT-enhancer-binding protein β (CEBPβ)-NFκB signaling
pathway [81]

Suppression of Apolipoprotein E e4 (ApoE e4)-associated AD [82]

Protective role in models of neuronal injury

Suppression of various pro-inflammatory cytokines [85]

Activation of AMPK/SIRT1 pathway [87]

Modulation of the toll-like receptor 2 (TLR2), MAPK/NF-κB, and FoxO signaling
pathway [88,89]

Inhibition of the nucleotide-binding oligomerization domain-like receptor
containing pyrin domain 3 (NLRP3) inflammasome [90]

Prevention of prion protein (PrP) aggregation [91]

3. Conclusions

The research discussed above reveals the neuroprotective effects of carnosic acid, the
most abundant compound found in plants belonging to the family Lamiaceae, including
rosemary and sage. When used either as a prophylactic or as a therapeutic, CA is capable of
mitigating the damage caused to nervous system tissue, thereby revealing a unique role in
the management of neurodegenerative disorders. A deeper understanding of the neuropro-
tective properties of CA will facilitate the broader applicability of this intriguing compound
and may aid in its use in conjunction with mainstay treatments for neurological disorders.
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