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Abstract: Traditional coupling of ligands for gold wet etching makes large-scale applications prob-
lematic. Deep eutectic solvents (DESs) are a new class of environment-friendly solvents, which
could possibly overcome the shortcomings. In this work, the effect of water content on the Au
anodic process in DES ethaline was investigated by combining linear sweep voltammetry (LSV) and
electrochemical impedance spectroscopy (EIS). Meanwhile, we employed atomic force microscopy
(AFM) to image the evolution of the surface morphology of the Au electrode during its dissolution
and passivation process. The obtained AFM data help to explain the observations about the effect of
water content on the Au anodic process from the microscopic perspective. High water contents make
the occurrence of anodic dissolution of gold at higher potential, but enhances the rate of the electron
transfer and gold dissolution. AFM results reveal the occurrence of massive exfoliation, which
confirms that the gold dissolution reaction is more violent in ethaline with higher water contents. In
addition, AFM results illustrate that the passive film and its average roughness could be tailored by
changing the water content of ethaline.

Keywords: deep eutectic solvents; ethaline; water content; electrochemical etching; anodic dissolution;
passivation

1. Introduction

Wet etching of gold is an industrial technique for fabricating microstructures, which
play a vital role in electronic and microelectromechanical systems [1]. Owing to adjustable
current distribution and mass transport, electrochemical etching provides a better control in
the etching profile of the gold substrate, thus attracting considerable attention in microfab-
rication [2–5]. Traditionally, thiourea- and cyanide-based ligands have been used in etching
processes for complexation, but their toxicity cannot be bypassed [6–8]. Iodine-iodide
etchant has been considered as an alternative [9,10], however, the problem of iodine vapor
with quite a poisonousness is still worth considering [11,12]. Therefore, it is significant to
develop novel etchants to alleviate safety concerns.

Deep eutectic solvents (DESs) are usually made up of an organic salt and a hydrogen
bond donor (HBD) molecule in a specific molar ratio, leading to a eutectic melting point that
is much lower than the melting points of the individual constituents [13–15]. In addition
to their attractive properties, such as being nonflammable, low vapor pressure, as well as
good biocompatibility and biodegradation, DESs can be produced at low costs [16,17]. The
unique physicochemical properties of DESs are associated with the nature and strength of
the intermolecular interactions, primarily hydrogen bonds [15,18–20]. As a consequence,
as a new type of “green” environment-friendly solvents, DESs have already been applied
to the fields of electrochemistry [16,21–23], electroanalysis [24–26], catalysis [27–29] and
biotransformation [30,31].

The anodic processes of nine metals in ethaline (a mixture of choline chloride (ChCl)
and ethylene glycol (EG) in a molar ratio of 1:2) were exhibited by Abbott et al., and they

Molecules 2023, 28, 2300. https://doi.org/10.3390/molecules28052300 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28052300
https://doi.org/10.3390/molecules28052300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-7782-4030
https://orcid.org/0000-0002-0045-6169
https://doi.org/10.3390/molecules28052300
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28052300?type=check_update&version=2


Molecules 2023, 28, 2300 2 of 13

demonstrated that there were anodic dissolution and passivation processes in high anodic
polarization region [32]. In our previous work, the effect of HBD molecules on the anodic
dissolution and passivation process of the Au electrode, as well as the electrochemical
behaviors in the double-layer region, has been investigated [33]. In this respect, cyanide-,
thiourea-, and iodide-free DESs are promising media for electrochemical etching owing to
their high thermal and chemical stabilities as well as non-volatile features, which negate
the emission of volatile organic compounds during the etching process.

Many DESs including ethaline tend to absorb water when exposed to the ambient at-
mosphere [34]. Water molecules could change the interactions between the two components
of DES, e.g., HBD-anion interaction, and alter their physicochemical properties [35]. Particu-
larly, the addition of controlled amounts of water to highly viscous DESs has emerged as an
attractive route to enhance conductivity, fluidity, and solvation [36]. Some studies showed
that DESs possess distinct molecular-scale nanostructure both in the bulk liquid [37] and at
interfaces [38–40]. The presence of water, in both small and large quantities, could influence
the nanostructure in DESs since the liquid components must re-arrange to accommodate
the solute. Kaur et al. probed the bulk nanostructure of ethaline as a function of water
composition by MD simulations, demonstrating that a transition from an ethaline-like struc-
ture to a water-like structure between 25.5 and 40.6 wt% of water [41]. The ethaline-water
system is best described as an aqueous solution of ChCl and EG at higher water content.
Similarly, the higher concentrations of water (42 wt%) significantly disrupted the native
liquid nanostructure of reline (a mixture of ChCl and urea in a molar ratio of 1:2) [42].

The interfacial structures of three DESs (reline, ethaline, glyceline) have also been
explored by using atomic force microscopy (AFM)-based force curve measurements, reveal-
ing that the interfacial nanostructure increases with the addition of water up to ~40 wt%,
and then decreases at open circuit potential [38]. It was presented that the involvement of
water molecules in the hydrogen bond network of the DESs benefits the formation of layer
packaging. Theoretically, the electrosorption and distribution of water at the electrified
graphene interface in reline was revealed by employing atomistic molecular dynamics [43].
At moderate polarization, the water molecules are depleted from the negatively charged
electrode and accumulated at the positively charged electrode due to the interactions be-
tween water and chloride anion. At high polarization, water accumulates at both electrodes
due to the electrostatic interactions.

The effect of water on the electrochemical reactions in DESs has been investigated,
especially their application in electrodeposition. It was found that the addition of water
was beneficial the mass transport [44], and could result in the change of the structure of the
electrical double layer [38,45]. The addition of water into ethaline enhances transport and
facilitates higher deposition rates for Cu electrodeposition [46]. In addition, an increase
in water content alters not only the interaction between liquid components, but also the
structure of Ni2+ complexes and thus leads to the change of reduction potential of Ni2+ in
Ni electrodeposition [47].

In this work, the effect of water content on the Au anodic process in ethaline was
investigated by combining linear sweep voltammetry (LSV) and electrochemical impedance
spectroscopy (EIS). Meanwhile, we employed AFM to image the evolution of the surface
morphology of the Au electrode during its dissolution and passivation process. The
obtained AFM data help to explain observations about the influence of water content on
the Au anodic process from the microscopic perspective. Furthermore, a scanning electron
microscope (SEM) was employed to explore the overview of the evolution of gold surface
on an anodic process.

2. Results and Discussion

The chemical structures of ethaline components, choline chloride and ethylene glycol,
were depicted in Figure 1. We chose three representative water contents 0.7 wt%, 25.5 wt%,
and 57.7 wt% to investigate the effect of water content on the Au anodic process. As
shown in Table 1, the corresponding molar ratios of water to ethaline are 0.1:1, 5:1, and
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20:1, respectively. Figure 2 presents the linear sweep voltammograms of Au electrodes
in ethaline with different water contents at a sweep rate of 5 mV/s. The voltammetric
responses demonstrate an oxidation peak with a sharp increase in current density on the
anodic process under the three water contents. Normally, the anodic limit of potential was
cut off at the beginning of this current peak due to the rapid rising of current, which was
regarded as the electrochemical window of the Au electrode in DESs [48–50]. However,
with the further positive shift of the potential, the current reached its peak value and
then decreased sharply. Subsequently, the current leveled off and was almost equal to the
baseline, indicating that a passivation layer formed on the electrode surface.
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Figure 1. Chemical structures of ethaline components, (a) choline chloride (ChCl); (b) ethylene glycol (EG).

Table 1. Compositions of ethaline-water mixtures investigated in the present work.

Water Weight Percentage Water Mole Percentage Molar Ratio of
Water:Ethaline

0.7 wt% 3.4 mol% 0.1:1
25.5 wt% 62.5 mol% 5:1
57.7 wt% 87.0 mol% 20:1
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Figure 2. Linear sweep voltammograms of Au electrode in ethaline with different water contents
(black line: 0.7 wt%; red line: 25.5 wt%; blue line: 57.7 wt%). Scan rate: 5 mV/s. Yellow circled 1, 2, 3,
4 represent 0.8 V, 1 V, 1.2 V, 1.4 V, respectively.

Ethaline with different water content exhibited different electrochemical behaviors on
the Au electrode. In the active region, for “pure” ethaline (0.7 wt%, black line in Figure 2),
the anodic current began to increase at ~0.6 V, suggesting that the dissolution of gold
happened. When water was added to ethaline, the onset potential gradually shifted to a
higher potential. For ethaline with 57.7 wt% water, the potential shifted to ~0.7 V. In our
previous study, we found that chloride anions could strongly adsorb on the Au electrode
surface by forming an Au-Cl bond at a positively charged surface [51]. In addition, with
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the positive shift of the potential, a disorder-order phase transition of Cl− adlayer was
observed [51,52]. This indicates that gold anodic dissolution in ethaline is mainly induced
by chloride ions. The increase in water content decreases the concentration of chloride ions
in ethaline. Based on the LSV results, the lower concentration of chloride ions accounts for
the positive shift of the potential for the anodic dissolution of gold.

In the active-passive region, for “pure” ethaline (0.7 wt%), the current peaks at ~0.9 V
and then decreases sharply. The region of negative slope corresponds to the increased
rate of passive film formation, where the formation rate is much larger than the active
dissolution rate. It can be seen that the current peak shifted to lower potentials and the
peak value decreased when the water content increased. Besides the change in chloride
concentration at the interface, this can be concerned with the improved conductivity of the
electrolyte as the increase of water content.

Interestingly, in the passive region, the current increases again for “pure” ethaline
(0.7 wt%). It can be observed that the relatively obvious current exists within the whole
region, indicating that the formed passive film may be not stable and dense enough to
completely block the electrode surface. As the water content increases to 25.5 wt%, a small
current peak appears at around 0.92 V and rapidly decreases. With the increase of water
content to 57.7 wt%, the current levels off and is almost equal to the baseline within the
passive region. It indicates that the passive film formed is much denser and completely
blocks the electrode surface, thus hindering the continuation of the reaction.

Electrochemical impedance spectroscopy, as a significant method for understanding
the interfacial behavior, can be exploited for investigating electrochemical dissolution and
passivation of the metal electrodes [53,54]. Compared with mass transport, the information
about charge transfer at the electrolyte/electrode interface is present in the higher frequency
region. The electrochemical impedance spectra of Au electrodes in ethaline with different
water contents at various potentials are shown in Figure 3. The potential was shifted
in the positive direction during the measurements. The impedance spectra for all three
water contents present typical double-layer behavior from 0.2 to 0.5 V [50,55,56]. A single
semicircle corresponding to the process of electron transfer was observed at 0.6 V, which
should be due to the anodic dissolution of gold in “pure” ethaline (0.7 wt%). As the
potential is shifted positively, the semicircle lessens its width indicating a faster electron
transfer process that is caused by a positive polarization. As for ethaline with 57.7 wt%
water content, the double-layer behavior remains at 0.6 V. A semicircle begins to appear at
0.7 V, demonstrating that the occurrence of anodic dissolution of gold lags compared with
“pure” ethaline, which is consistent with the LSV results.
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Figure S2 presents the Nyquist plots and the corresponding fitted curves obtained in
ethaline with the three water contents. The equivalent circuit is shown in Figure S1, and
the fitting data are listed in Table S1 (Supplementary Materials). A distinct semicircle is
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present at 0.8 V for all three systems, and the radius of the semicircle corresponds to the
charge transfer resistance (Rct). By comparing the fitting values of Rct, we can see that
the charge transfer resistance for “pure” ethaline exhibited the largest value of 5088.0 Ω.
As for 25.5 wt% and 57.7 wt%, the charge transfer resistance decreased to 2182.6 and
2802.5 Ω, highlighting the important role of the water molecules in enhancing the electron
transfer and gold dissolution at the interface. The water duality properties act as HBA and
HBD. Significantly, water can interact with both HBA and HBD of ethaline and then break
down the hydrogen bond interactions between ChCl and EG by forming a multi-hydrogen
bond with the hydrogen bond donor [17]. The addition of water to ethaline alter the
physicochemical properties and it would define the anodic process. The pH value and
viscosity decrease as the water content increases [57–59]. The viscosity of the solvents plays
an important role in their electrochemical behavior [47]. When the water concentration
increases from 0.7 to 57.7 wt%, with a drastic decrease in the viscosity, would influence
the mass transport. As can be seen from the LSV curves (Figure 2), the current density of
25.5 wt% (red line) is higher than 0.7 wt% (black line) at 0.8V, implying the faster reaction
rate, and it can be attributed to the effect of physicochemical properties caused by water.
However, with the increase of water content to 57.7 wt% (blue line), the current density
decreased distinctly. The concentration of chloride anions in DES is reduced when adding
water. Chloride anions play an important role in the anodic process of Au by forming
an Au-Cl bond to induce the dissolution of gold and further impact the formation of the
passive film. The reaction rate originates as a result of two factors, i.e., the viscosity of the
electrolyte and the concentration of chloride anion. As a consequence, the reaction rate of
57.7 wt% is lower than 25.5 wt%, which is coincident with the variation of charge transfer
resistance (Rct) of EIS results.

Taking into account the results of LSV and EIS, the water content of ethaline shows
a significant influence on the Au electrode. Further, we scrutinize the anodic dissolution
process in ethaline with water contents of 0.7 and 57.7 wt% by employing various scan
rates. As can be clearly seen from Figure 4, when the scan rate increases from 5 to 100 mV/s,
the peak current density increases gradually and the peak potential moves positively. If
the oxidation peak current density is proportional to the square root of the scan rate, the
reaction can be considered to be controlled by the diffusion of solutes from the bulk to
the electrode. The relationship between the oxidation peak current density and the scan
rate is evaluated by plotting the values of the former against the square root of the latter
(Figure S3a,b). The correlation coefficients of the plots in Figure S3a,b are 0.994 and 0.989
for 0.7 and 57.7 wt%, respectively, which present a little deviation from the unity, i.e., the
anodic process is not just controlled by the diffusion. The diffusion control of the anodic
process can also be indicated by the angular coefficient of the logarithmic dependence of the
peak current density (ip) on the scan rate (v): Xv =

(
∆ log ip
∆ log v

)
[60]. Figure S3c,d demonstrate

that the curves for the two water contents are linear, however, the coefficient Xv of 0.7 and
57.7 wt% is 0.424 and 0.388, respectively, which is smaller than 0.5. Thus, it is reasonable to
assume that besides diffusion, extra process is involved in the gold dissolution in DESs,
which shows the complexity of Au anodic corrosion in ethaline.

The influence of water content on the anodic process of the gold electrode in ethaline
should be closely related to the water-induced change of interfacial structure. Water-
induced alteration of native DES nanostructure at the solid-liquid interface has been
investigated in the literature. Hammond et al. reported that water molecules dramatically
altered the interfacial structure between DESs and platinum at high hydration levels [38],
which is consistent with the observation of Elbourne et al. [39]. It showed that the interface
interaction is obviously different when the property of the electrolyte gradually changes
from ethaline-like to water-like. Particularly, compared with aqueous electrolyte, the anodic
dissolution of gold electrode occurs at the lower potential in ethaline, and the passive film
formed subsequently.
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To understand the evolution of gold surface morphology during the anodic dissolution
process, AFM measurements were conducted for Au(111) single crystal electrode with
the flat and well-defined surface after holding at different potentials in ethaline with 0.7
and 57.7 wt% water contents. Specifically, the Au(111) electrode was freshly prepared by
electrochemical polishing and hydrogen flame annealing to obtain a well-defined surface.
Next, the Au(111) electrode was immersed in ethaline and kept at various potentials for
3 min. The electrode was then taken out and washed twice in pure ethyl alcohol to remove
the residual ethaline, and further rinsed with ultrapure water thoroughly.

The freshly prepared Au(111) surface was first probed by AFM in tapping mode
(Figure S4), and the average roughness was measured to be around 310 pm across an area
of 5 um by 5 um. Hence, the Au(111) surface is smooth enough for further observation of
the anodic dissolution process. Figure 5 shows typical AFM images of the Au(111) surface
after holding at 0.8 V for 3 min in ethaline with 0.7 wt% and 57.7 wt% water contents. It can
be seen from the AFM images that surface etching occurs due to the gold anodic dissolution,
but the surface topographies after etching in the two water contents are quite distinct from
each other, indicating that the etching behavior obviously depends on the water content. As
illustrated in Figure 5a, the morphology is composed of relatively disordered and rugged
structures. When water content increases to 57.7 wt%, the morphology is dominated by
layer-shaped structure (Figure 5b), which suggests the occurrence of massive exfoliation,
indicating that the gold dissolution reaction is more violent in ethaline with 57.7 wt%
water contents.
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On the whole, the anodic dissolution behavior of gold in ethaline is more violent than
that in an aqueous electrolyte containing chlorine [61] and ionic liquid [62], which may be
due to the high concentration of chloride ions in ethaline. The addition of water promotes
the anodic dissolution of gold, which is consistent with the observed difference in the
reaction rates. Based on the above results, we propose the possible chemical equation for
the characteristic electrochemical oxidation of gold electrodes in ethaline:

Au + Cl− = (AuCl−)ad

(AuCl−)ad + Cl− = (AuCl2−)ad + e−

(AuCl2−)ad = AuCl2− (dissolution)

(AuCl2−)ad + 2Cl− = (AuCl4−)ad + 2e−

(AuCl4−)ad = AuCl4− (dissolution)

Further, to directly visualize the influence of water content on the formation of passive
film on the gold surface from a microscopic perspective, AFM measurements were per-
formed to image the morphological changes. Typical AFM images of the Au(111) surface
were acquired after Au(111) electrode was held at 1.0, 1.2, and 1.4 V for 3 min in ethaline
with water contents 0.7 wt% and 57.7 wt%, respectively (Figure 6a–f). It can be clearly ob-
served from Figure 6a that the morphology becomes more fragmented, indicating that the
passive film generated at this potential is not dense enough. This phenomenon is consistent
with the change of current in the LSV curve (black line of Figure 2). The current decreases
and then increases again in this potential region. Interestingly, when the water content
increased to 57.7 wt% (Figure 6b), although the gold surface fluctuation is larger than two
hundred nanometers, the morphology is dominated with island-like domains, indicating
that the passive film formed in this case may be relatively compact. Correspondingly, the
current in the LSV curve of Figure 2 does not increase in the passive region. It is worth
noting that in an aqueous solution the current in the LSV curve of gold anodic process
will not fall to the same level as the baseline, indicating that the passive film formed in
an aqueous solution is not dense, in comparison to the observations in DES [61,63,64]. In
halogen ion-modified IL, no formation of the compact passive film was observed [62].

The morphology of the passive film undergoes further modifications as the potential
is shifted positively to 1.2 V. Although the surface fluctuation varies slightly, more mas-
sive structures appear in the morphology, suggesting that the passive film is improved
(Figure 6c). Compared with “pure” ethaline, the number of island-like domains increases and
the corresponding size decreases at 1.2 V for ethaline with 57.7 wt% water content (Figure 6d).

When the potential is further moved to 1.4 V, it can be seen that more massive struc-
tures form on the gold surface in ethaline with 0.7 wt% water content (Figure 6e). Corre-
spondingly, there is still some residual current in the LSV curve (Figure 2), indicating that
the passive film does not completely block the electrode surface. In contrast, when the water
content is 57.7 wt%, the larger island-like domains appearing at 1.0 V are further broken
into smaller pieces at 1.4 V (Figure 6f). As a result, the passive film began to decompose at
the potential and the decomposition current can be clearly observed in the LSV curve as
the potential is shifted positively (blue line of Figure 2).

To further understand the influence of water contents, statistical analyses of the
average roughness of Au(111) electrode surface determined from the AFM images as a
function of applied potentials are made, which are shown in Figure S5. For 0.7 wt% water
content, the average roughness fluctuates with the positive shift of applied potentials.
The roughness reaches the maximum value when the applied potential is 1.0 V, and then
slightly decreases. However, for 57.7 wt% water content, the average roughness increases
progressively with the positive shift of the potential. In the passive region, the roughness is
lower than that of 0.7 wt% water content.
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The above AFM results illustrate that the topography of the gold surface is dependent
on the applied potentials, and passive film and average roughness could be tailored by
changing the water content of ethaline. It is worth recalling that in a 0.1 M perchloric acid
(HClO4) solution containing chloride anion, Ye et al. investigated the anodic dissolution
process of Au(111) by using an in-situ scanning tunneling microscope [61]. They found that
the dissolution of Au(111) anisotropically proceeds in a layer-by-layer mode. In terms of
current density and morphology, the etching of gold surface is relatively mild in an aqueous
solution [65,66]. In addition, in ionic liquids, Ueda et al. employed halide-modified gold
electrodes to investigate the electrochemical oxidation of gold, finding that only iodine
could have impacted the etching of gold [62]. In this choline chloride-based DES, the
vigorous dissolution of gold electrodes and the influence of water contents are revealed,
which show promising applications in the wet etching of the gold industry.

Furthermore, SEM was employed to explore the overview of the evolution of gold
surface on an anodic process. Figure 7 shows the SEM images of the surface of Au foil
after holding at different potentials for 3 min in ethaline with water contents of 0.7 wt%
and 57.7 wt%. Some scratches observed on the surface before the anodic dissolution were
caused by the mechanical polishing of the electrode (Figure S6). A bulk dissolution of gold
was observed after holding at 0.8 V. When the water content increases to 57.7 wt%, the
morphology is more fractured. In the passive region, the passive film was formed on the
surface of gold. The increase in water content alters the morphology of the film, which
accords with the AFM results.
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3. Materials and Methods

Choline chloride (Sigma-Aldrich, St. Louis, MO, USA, ≥98%) and ethylene glycol
(Sigma-Aldrich, St. Louis, MO, USA, ≥99.8%) were mixed in a molar ratio of 1:2 and
stirred at 333 K in a silicone oil bath till a homogeneous solution formed. Prior to the
use, ethaline was vacuum-dried for one hour at 333 K to remove the absorbed water and
oxygen in a glove box filled with Ar (99.999%). Water contents were determined by Karl
Fischer Coulometer (Metrohm, Herisau, Switzerland, KF-831). Ethaline with different
water contents was prepared via adding ultrapure water (Milli-Q, 18.2 MΩ·cm).

All the electrochemical measurements were performed with an Autolab potentiostat
(Metrohm, Switzerland, PGSTAT128N) controlled by the Nova 2.1 software package. A
polycrystalline Au disk electrode was employed as a working electrode. The counter elec-
trode was a platinum wire wound in a ring. The reference electrode was Ag/AgCl electrode
and a salt bridge was used to avoid the contamination of the electrolyte. The temperature
of the electrolytes in the cell was maintained at 23 ± 2 ◦C. Before the experiment, the Au
electrode was polished with alumina (0.05 um) and then the electrode was cleaned in an
ultrasonic bath and copiously rinsed with ultrapure water for three times [67]. Finally, the
electrode was dried with nitrogen gas flow. IR compensation was implemented during lin-
ear sweep voltammetry measurements to decrease the deviation caused by relatively large
currents [68]. The degree of correction is 80%. Solution resistance R is determined using the
intercept of the intersection point with the X-axis in Nyquist plots at high frequency in the
double-layer region. Electrochemical impedance spectroscopy experiments were recorded
from 100 kHz to 1 Hz with an amplitude of 10 mV. The impedance spectra were analyzed
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by fitting the parameters of the equivalent circuit (Figure S1) to the measured spectra by
using the RelaxlS 3 software. To avoid the disturbance from the external electromagnetic
field, a shielded box was used.

AFM experiments were performed by using a JPK NanoWizard Sense AFM instru-
ment (Bruker, Heidelberg, Germany). OLTESPA commercial silicon cantilever tips (2 N/m,
70 kHz) with a typical ~7 nm radius at the end were employed. All images were recorded
in tapping mode. Au(111) single crystal electrodes with flat surfaces were used in order
to clarify the evolution of gold surface nanostructure due to the electrochemical etching
in ethaline. Au(111) electrodes were prepared following a modification of Clavilier’s
method [69–71]. The electrodes were subjected to electrochemical polishing and flame anneal-
ing in hydrogen followed by cooling under a nitrogen atmosphere prior to each experiment.
The morphologies of gold foil (thickness 0.5 mm, 99.99%) with different applied potential
were characterized by scanning electron microscope (SEM, Hitachi, Tokyo, Japan, SU4800).

4. Conclusions

In summary, the characteristic anodic process of gold in ethaline has been systemati-
cally investigated. Combining LSV, EIS, and AFM measurements, we found that the gold
surface underwent dissolution and passivation during the positive shift of the potential in
ethaline DES. The reaction was evaluated to not merely be diffusion controlled, involving
an extra process, which displays the complexity of the gold anodic process in ethaline.
Furthermore, water molecules play a key role in the potential-induced anodic process by
changing the interaction between ethaline and gold surface. Combining EIS with AFM
and SEM measurements, the gold dissolution reaction is more violent in ethaline as water
contents increase. This might be ascribed to the fact that water molecules could destroy
the hydrogen bond network of DES. Therefore, the structure of the electrical double layer
changed, and water and components of ethaline are involved in the reaction at the interface.
The topography of the gold surface is dependent on the applied potentials, and passive
film and average roughness could be tailored by changing the water content of ethaline.

Our experimental results are helpful for the understanding of the effect of a water
molecule on electrochemical reaction in ethaline. What is more, the anodic behavior of gold
is of fundamental importance to extraction, refining, electroetching, and electropolishing.
The findings reported here provide new insights into the enlargement of wet etching of
gold to DESs systems. We employed DES, as environment-friendly solvents, to possibly
overcome the shortcomings of the traditional toxicity process. Besides, water also can be
added to not only purposely reduce their problematically high viscosity and lower their
high price but also adjustably regulate the morphology and degree of wet etching.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28052300/s1, Figure S1: The equivalent circuit used for
fitting EIS; Figure S2: The Nyquist plots of Au electrode in ethaline with different water contents at
0.8 V; Figure S3: (a,b) The plots of the oxidation peak current density vs. the square root of the scan
rate in ethaline. (c,d) Semerano plots for the Au electrode in ethaline. Water contents: 0.7 wt% (a,c)
and 57.7 wt% (b,d); Figure S4: AFM image of freshly prepared Au(111) electrode surface; Figure S5:
Average roughness of Au(111) electrode surface as a function of applied potentials. Water content:
0.7 wt% (black); 57.7 wt% (red); Figure S6: SEM image of a gold foil before anodic dissolution; Table
S1: Fitted parameters of Nyquist plots at 0.8V in ethaline with different water contents.
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