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Abstract: Alzheimer’s is the most common cause of dementia worldwide and seriously affects pa-
tients’ daily tasks. Plant endophytic fungi are known for providing novel and unique secondary
metabolites with diverse activities. This review focuses primarily on the published research re-
garding anti-Alzheimer’s natural products derived from endophytic fungi between 2002 and 2022.
Following a thorough review of the literature, 468 compounds with anti-Alzheimer’s-related ac-
tivities are reviewed and classified based on their structural skeletons, primarily including alka-
loids, peptides, polyketides, terpenoids, and sterides. The classification, occurrences, and bioac-
tivities of these natural products from endophytic fungi are summarized in detail. Our results
provide a reference on endophytic fungi natural products that may assist in the development of new
anti-Alzheimer’s compounds.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most
common cause of dementia worldwide that affects memory, thinking, and behavior and
even interferes with daily tasks. The abnormal accumulation of beta-amyloid and phospho-
rylated tau proteins and nerve cell degeneration are deemed to play key roles in Alzheimer’s
disease [1,2]. According to the latest WHO report, the number of people suffering from
dementia worldwide in 2010 was about 35.6 million, while the figure could be triple this
by 2050 [1]. Age is the biggest risk factor for Alzheimer’s dementia, which dramatically
increases the incidence and death rate of Alzheimer’s dementia and contributes to a heavy
burden on families and society. The incidence of dementia was 5.0–13.1% for people over
65 years old, while this number increased to 33.2% as the age rose to over 85 years of age,
and the death rate increased by 33–51% for people over 65 years of age and by 78% for
people aged 80 and older [3]. Only a few therapeutic agents have been made clinically
available for this disease, such as memantine, donepezil, rivastigmine, tacine, galantamine,
and aducanumab [4–6]. These drugs can relieve AD-related symptoms for mild cognitive
impairment, but are incapable of preventing disease progression to obtain ideal treatment
effects [7]. Thus, it is critical to develop new treatments for AD to prevent and delay the
progression of the disease, improve cognition, and reduce the behavioral disorders of
patients with AD.

Endophytic fungi were first identified in plants in 1809 [8]. They are microorganisms
that reside in the tissues of healthy plants for part of or all of their life cycle without
causing apparent infection in the host plant. Some endophytes provide new bioactive
compounds with unique structures containing alkaloids, phenols, lactones, quinones,
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terpenoids, steroids, and other compounds. These isolated metabolites display antibi-
otic, antioxidant, anti-inflammatory, antiviral, and anti-Alzheimer’s properties, among
others [9–12].

In this review, a comprehensive survey of approximately 468 compounds with anti-
Alzheimer’s-related activities derived from endophytic fungi from 2002 to 2022 is per-
formed. These compounds are classified by their structure skeleton and mainly include
alkaloids, peptides, polyketides, terpenoids, and sterides. The most investigated activities
of these metabolites are the inhibition of acetylcholinesterase (AChE), butyrylcholinesterase
(BChE), neuroprotection, β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) inhi-
bition, and their antioxidant activities. So far, the secondary metabolites of plant endophytic
fungi with anti-Alzheimer’s activities have not been summarized. This review mainly
focuses on the classification, occurrences, and bioactivites of the secondary metabolites
derived from endophytic fungi.

2. Bioactive Compounds from Plant Endophytic Fungi
2.1. Alkaloids
2.1.1. Cytochalasans

The chemical study of endophyte Xylaria sp. collected from the leaves of Casearia sylvestris
showed cytochalasins B–D (1–3) (Figure 1). Compounds 1 and 2 showed strong anti-
AChE activities at 60 µg [13]. Research on Aspergillus terreus obtained from the stems of
Artemisia annua afforded the four known cytochalasans cytochalasin E (4), 5,6-dehydro-7-
hydroxy cytochalasin E (5), ∆6,12-isomer of 5 (6), and rosellichalasin (7). Compounds 4–7
showed weak anti-AChE activities with IC50 from 110.9 to 176.0 µM [14]. Cytochalasins
J (8) and H (9) were identified from endophyte Phomopsis sp., which was isolated from
Senna spectabilis (Fabaceae). Compound 9 demonstrated AChE inhibition in vitro at a
minimum quantity of 25.0 µg [15].

Two heterocycle-fused cytochalasan homodimers, bisaspochalasins D (10) and E
(11), along with aspochalasins D (12) and B (13), were identified from an endophytic
Aspergillus flavipes associated with the stems of Hevea brasiliensis. Among them, compound
10 alone exhibited neurotrophic activities that could accelerate neurite growth with a
differentiation rate of 12.52% for rat pheochromocytoma cells (PC12) at 10 µM [16].

Seven compounds containing chaetoglobosins A (14), B (15), E (16), F (17), and Fex (18)
as well as penochalasins F (19) and G (20) were separated from Chaetomium globosum, an
endophytic fungus associated with the seeds of Panax notoginseng. Compound 14 showed
negligible anti-AChE activity with an inhibition ratio of less than 10% at 50 µM. None of
them showed 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging activity with
half effective concentration (EC50) greater than 100 ug/mL [17].

A total of six 10-indolyl-cytochalasans (16–18), cytoglobosin A (21), penocha-lasin
C (22), and isochaetoglobosin D (23), were collected from Chaetomiun globosum WQ in
Imperata cylindrical, and 9 and 18-methoxycytochalasin J (24) were identified from Phomopsis sp.
IFB-E060 in Vatica mangachapoi. With the exception of 22, these compounds showed scaveng-
ing DPPH activity with an EC50 between 0.002 ± 0.001 and 1.068 ± 0.350 mM, scavenging
ABTS activity with an EC50 between 0.002 ± 0.001 and 1.052 ± 0.357 mM, strong inhibiting
activity of hydrogen peroxide (H2O2)-mediated PC12 cell damage with an EC50 between
0.003 ± 0.0003 and 0.240 ± 0.236 µM, and inhibiting N-methyl-4-phenylpyridinium io-
dide (MPP+) induced PC12 cell damage activity with an EC50 between 0.009 ± 0.007 and
6.100 ± 0.007 µM [18].

Chemical research on mangrove endophyte Westerdykella nigra collected from the roots
of Avicennia marina (Forssk.) Vierh. resulted in the isolation of westalsan (25), phomacin
B (26), and 19-hydroxy-19,20-dihydrophomacin C (27), which showed apparent AChE
inhibition with IC50s of 0.056± 0.003, 0.088± 0.005, and 0.140± 0.007 µM, respectively [19].
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Figure 1. Chemical structures of cytochalasans (1–27).

2.1.2. Diketopiperazine Derivatives

Detailed chemical research on an endophytic fungus, Acrostalagmus luteoalbus TK-43,
collected from marine green alga Codium fragile, led to the identification of three pairs of
indolediketopiperazine enantiomers (acrozine A (28/29), acrozine B (30/31), and acrozine C
(32/33)), four new congeners (acrozines D–G, 34–37), and six known analogs (pseudellone
D (38), lasiodipine E (39), chetoseminudin C (40), chetoseminudin B (41), T988 C (42), and
T988D (43)) (Figure 2). Compounds 28–37 possessed an unusual methoxy site in N-2, which
was scarcely reported in indolediketopiperazine alkaloids. The evaluation of compounds
28–37 for anti-AChE activity revealed that compound 28 displayed better inhibition with
an IC50 of 2.3 µM than did 29 (IC50 = 13.8 µM). Compounds 30–33 demonstrated moderate
and weak AChE inhibitory activities with IC50 values in the range of 49.2 to 160.6 µM [20].
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The IC50 for AChE inhibition by compound 36 was 8.4 µM. Other compounds showed
weak activities at 32 µM [21].
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Acetylapoaranotin (44) was identified from the liquid fermentation of Aspergillus terreus
associated with the stems of Artemisia annua. The IC50 of compound 44 for anti-AChE activity
was 127.4 µM [14].
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Three known alkaloids, cyclotryprostatin B (45), fumitremorgin B (46), and fumitremor-
gin A (47), were isolated from the endophyte Neosartorya fischeri JS0553 of Glehnia littoralis.
None of these alkaloids showed obvious neuroprotection against glutamate-mediated HT22
cell injury at 20 µM [22].

Fumitremorgin C (48), brevianamide F (49), spirotryprostatin A (50), 6-methoxyspirotr-
yprostatin B (51), 3-dehydroxymethylbisdethio-3,10a-bis(methylthio)gliotoxin (52), bisde-
thiobis(methylthio)gliotoxin (53), and didehydrobisdethiobis(methylthio)gliotoxin (54)
were collected from endophyte Talaromyces sp. LGT-2 associated with Tripterygium wilfordi.
Compound 53 showed weaker anti-AChE activity [23].

A chemical study of Nigrospora camelliae-sinensis S30 collected from mangrove
Lumnitzera littorea afforded two new 2,5-diketopiperazine derivatives, nigrosporaamides
A and B (55, 56), and seven known analogs (57–63): cyclo-(L-Pro-L-Phe) (57), cyclo[L-(4-
hydroxyprolinyl)-L-Leu] (58), cyclo-(L-Val-L-Pro) (59), cyclo-(L-Leu-L-Pro) (60), cyclo-(R-
Leu-R-Pro) (61), cyclo-(L-Ile-L-Pro) (62), and cyclo-(4-methyl-R-Pro-S-Nva) (63). None
showed significant neuroprotection against H2O2-mediated cytotoxicity for HT22 cells at
100 µM [24]. In addition, compound 59 was also discovered in potato dextrose broth
fermentation cultures of Penicillium sp.1, an endophytic fungi living in the leaves of
Alibertia macrophylla (Rubiaceae), which exhibited potent AChE inhibition with a detec-
tion limit of 10.0 µg [25].

Diketopiperazines cyclo-(S-Pro-S-Tyr) (64) and cyclo-(S-Pro-S-Val) (65) were isolated
from Colletotrichum gloeosporioides [26]. Cyclo(D)-Pro-(L)-Val (66), cyclo(D)-Pro-(D)-Tyr (67),
cyclo(D)-Val-(D)-Tyr (68), cyclo(D)-Hyp-(L)-Ile (69), cyclo(D)-Pro-(D)-Leu (70), cyclo(D)-
Pro-(L)-Ile (71), cyclo(D)-Pro-(L)-Phe (72), and cyclo(D)-Pro-(D)-Phe (73) were isolated from
Colletotrichum crassipes [13]. Among them, compounds 64 and 65 exhibited moderate AChE
inhibitory activities at 200 µg [26].

2.1.3. Indole Alkaloids

One new alkaloid, 16α-hydroxy-5N-acetylardeemin (74), together with two known
compounds, 5N-acetylardeemin (75) and 15b-β-hydroxy-5N-acetylardeemin (76) (Figure 3),
were identified from the liquid fermentation of the endophyte Aspergillus terreus of Artemisia annua.
Compounds 74–76 displayed anti-AChE activities with IC50 values of 58.3, 149.4, and
116.9 µM, respectively [14].

A chemical study of the endophytic fungus Colletotrichum gloeosporioides collected
from the leaves of Michelia champaca led to the isolation of a new compound, 2-phenylethyl
1H-indol-3-yl-acetate (77), which exhibited moderate AChE inhibitory activity at 200 µg
during a bioautography analysis [26].

A new macfortine alkaloid, chrysogenamide A (78), was identified from
Penicillium chrysogenum No. 005, an endophyte from the root of Cistanche deserticola. Com-
pound 78 showed no scavenging DPPH free radical activity at 100 µM, while it exhibited
the inhibition of H2O2-mediated SH-SY5Y cell death by enhancing cell viability by 59.6%
at 1 × 10−4 µM, suggesting that 78 exhibited a protective effect on neurocytes via oxidative
stress-mediated cell death in SH-SY5Y cells rather than through antioxidant activity [27].

An investigation of the endophytic fungus Aspergillus fumigatus of Cynodon dactylon
revealed two new alkaloids, 9-deacetylfumigaclavine C (79) and 9-deacetoxyfumigaclavine
C (80), as well as the known compound fumigaclavine C (81). These isolates were practically
inactive to induce the neurie outgrowth of PC12 [28].

Two known alkaloids, aszonalenin (82) and acetylaszonalenin (83), were identified
from Neosartorya fischeri JS0553, an endophyte of Glehnia littorali. Neither showed obvious
neuroprotection against glutamate-induced HT22 cell damage [22].

A new indole alkaloid, alternatine A (84), and two known indole alkaloids, 1H-
indole-3-carboxylic acid (85) and indole-3-methylethanoate (86), were identified
from Alternaria alternate collected from the leaves of Psidium littorale Raddi. The cell
viabilities of 86 were prominently increased by 75.6 ± 4.2% and 84.8 ± 6.5% at 40 and
80 µM, respectively [29]. Compound 85 was also identified in Epicoccum nigrum and
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Penicillium brefeldianum F4a collected from the fresh leaves of Entada abyssinica Steud. ex
A. Rich. Fabaceae and the roots of Houttuynia cordata, respectively. This compound
exhibited weak scavenging activity with IC50 = 88.97 µg/mL in the DPPH assay and
EC50 = 21.48 ± 0.88 µM in the ABTS assay [30,31].
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Seven dimeric tryptophol-related alkaloids, colletotryptins A–D (87–90), E (91/92),
and F (93), were separated from the solid fermentation of Colletotrichum sp. SC1355, an
endophytic fungus collected from the healthy leaves of Cleistocalyx operculatus. Compounds
87–93 did not show AChE inhibitory activity [32].

2.1.4. Other Alkaloids

The chemical investigation of endophyte Colletotrichum gloeosporioides identified in the
leaves of Michelia champaca revealed two known compounds, uracil (94) and 4-hydroxy-
benzamide (95) (Figure 4), which exhibited moderate AChE inhibitory activities at 200 µg [26].

One new metabolite, α-pyridone derivative 3-hydroxy-2-methoxy-5-methylpyridin-
2(1H)-one (96), was isolated from Botryosphaeria dothidea KJ-1, an endophytic fungus from
the stems of Melia azedarach L. This compound showed low DPPH scavenging activity with
a rate of 22.5% at 50 µM [33].

One known compound, 5-(40-Hydroxybenzyl) hydantoin (97), identified from
Nigrospora camelliae-sinensis S30 associated with mangrove Lumnitzera littorea, was not
found to exhibit obvious neuroprotective activity against H2O2-mediated cytotoxicity for
HT22 cells [24].

Four new racemic mixtures of 4-quinolone alkaloids, (±)-oxypenicinolines A (98/99);
B (100/101); C (102/103); and D (104/105), and two congeners, penicinolines F (106) and
G (107), as well as seven known related compounds, 1,2,3,11b-tetrahydroquinolactacide
(108/109); quinolactacide (110); penicinoline (111); methyl-penicinoline (112); penicinoline
E (113); quinolonimide (114); and 4-oxo-1 and 4-dihydroquinoline-3-carboxamide (115),



Molecules 2023, 28, 2259 7 of 31

were collected from Penicillium steckii SCSIO 41025 (Trichocomaceae), a mangrove-derived
endophyte of Avicennia marina (Forsk.) Vierh (Trichocomaceae). Only compounds 111 and
113 showed mild AChE inhibition with IC50s of 87.3 and 68.5 µM, respectively [34].
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Endophyte Ceriporia lacerate HS-ZJUT-C13A identified in the medicinal plant Huperzia serrata
was chosen for transforming hupA in a liquid potato–dextrose medium. Five unusual
alkaloids, huptremules A–D (116–119) and 8α,15α-epoxyhuperzine A (120), were obtained.
Among them, 116–119 characterized irregular sesquiterpenoid–alkaloid structural hybrids,
which combined the features of fungal metabolites and the substrate of hupA. These isolates
displayed significant AChE inhibition with IC50 within a range of 0.06 to 12.11 µM (positive
control hupA with an IC50 of 0.54 µM) [35].
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Chemical research on Aspergillus terreus (No. GX7-3B), a mangrove endophytic fun-
gus from a branch of Bruguiera gymnoihiza (Linn.) Savigny, resulted in the isolation of
8-O-methylbostrycoidin (121), which showed prominent AChE inhibition with IC50 at
6.71 µM [36].

A study on the endophytic fungus Fusarium sp. HP-2 identified the compound
lumichrome (122), which did not exhibit AChE inhibition at 50 µM [37].

An investigation of Phomopsis sp. xy21 related to leaves of the Thai Xylocarpus granatum
isolated phomopsol A (123) with a matchless 3,4-dihydro-2H-indeno [1,2-b]pyridine 1-
oxide group. The cell activities of 123 were 76% at 40.0 µM, which showed neuroprotection
against corticosterone-mediated PC12 cell injury with a concentration-dependent effect
within the scope of 5.0–40.0 µM [38].

Two known compounds, 14-norpseurotin (124) and pseurotin A (125), were identified
from Aspergillus fumigatus related to a healthy stem of Cynodon dactyl. Compound 124 had
stronger activity than did 125 in promoting neurite outgrowth at 10.0 µM for PC12 [28].

Chemical research on Neosartorya fischeri JS0553 associated with Glehnia littoralis pro-
duced two known alkaloids: fischerin (126) and pyripyropene A (127). The investigation
of the mechanisms for glutamate-induced HT22 cell injury revealed that 126 could inhibit
Ca2+ influx, ROS, and the phosphorylation of JNK, ERK, and p38 to exert conspicuous
neuroprotection [22].

Three new alkaloids, penazaphilone E (128), isochromophilone VI (129), and peni-
azaphilone D (130), were identified from Penicillium sp. JVF17 related to Vitex rotundifolia.
Compounds 128–130 have been proven to possess almost 100% neuroprotection at 25 µM.
The mechanism of 128 regarding glutamate-mediated HT22 cell death involved restraining
MAPKs phosphorylation and reducing the Bax/Bcl-2 ratio [39].

An investigation of Cochliobolus lunatus SCSIO41401 led to the isolation of the lipopep-
tide epimers sinulariapeptides A (131) and B (132), which displayed obvious AChE inhibi-
tion with IC50s of 1.8 ± 0.12 and 1.3 ± 0.11 µM, respectively [40].

Research on the endophytic fungus Rhizopycnis vagum Nitaf22 revealed a novel al-
kaloid, rhizovagine A (133), which has an unprecedented 5/5/6/6/6 integrated penta-
cyclic skeleton. This compound was found to exhibit AChE inhibition with an IC50 of
43.1 µM [41].

The study of Talaromyces sp. LGT-2 associated with Tripterygium wilfordi resulted in
the identification of pseurotin A1 (134) and pseurotin A2 (135), which showed weaker
anti-AChE activities [23].

2.2. Peptides

Beauvericin (136) (Figure 5) was collected from Aspergillus terreus (No. GX7-3B) from
a branch of Bruguiera gymnoihiza (Linn.) Savigny. The IC50 of this compound for AChE
inhibition was 3.09 µM [36].

Colletotrichamides A−E (137–141) were identified from Colletotrichum gloeosporioides
JS419, a fungus collected from Suaeda japonica Makino. Colletotrichamide C (139) displayed
potent neuroprotection with 100% cell activity at 100 µM against glutamate-induced HT22
cell death [42].

The study of Bipolaris sorokiniana LK12 led to the isolation of BZR-cotoxin I (142) and
BZR-cotoxin IV (143), which possessed mild anti-AChE, lipid peroxidation, and urease
activities [43].

A chemical study of Cryptosporiopsis sp. identified cryptosporioptide (144), which
possessed significant lipoxygenase inhibition with an IC50 of 49.15 ± 0.17 µM [44].
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2.3. Polyketides
2.3.1. Pyranones and Pyranyl Derivatives
Simple Pyranones

Four new prenylated asteltoxin analogs, avertoxins A–D (145–148), along with the
known mycotoxin asteltoxin (149) (Figure 6) were obtained from Aspergillus versicolor Y10
associated with the leaves of Huperzia serrata. The IC50 of avertoxin B (146) for AChE
inhibition was 14.9 µM [45].

A study on Xylaria sp. HNWSW-2 collected from the stem of Xylocarpus granatum led
to the isolation of astropyrone (150), which diaplayed weak anti-AChE activity with an
inhibition rate of 10.4% at 50 µg/mL [46].

The investigation of Bipolaris sorokiniana LK12 identified in Rhazya stricta revealed the
isolation of bipolarisenol (151), which showed obvious AChE inhibition with an IC50 of
67.23 ± 5.12 µg/mL and also displayed mild lipid peroxidation inhibition with an IC50 of
168.91 ± 4.23 µg/mL [47].

Pycnophorin (152) was collected from Botryosphaeria dothidea KJ-1, which presented as
a weak DPPH scavenger with a scavenging rate of 22.5% at 50 µM [34].

A chemical study of Chaetomium globosum associated with the seeds of Panax notoginseng
led to the isolation of chaetomugilins A (153) and D (154). Neither showed antioxidant
activities with an EC50 greater than 100 µg/mL in DPPH free radical scavenging [17].
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Benzopyrones

Chromone derivatives hydroxylchromone (155) (Figure 7); 6-hydroxymethyleugenin
(156); 6-methoxymethyleugenin (157); chaetoquadrin D (158); isoeugenitol (159) and iso-
coumarin congeners diaporthin (160); 8-hydroxy-6-methoxy-3-methylisocoumarin (161);
and 6-methoxymellein (162) were isolated from Xylomelasma sp. Samif07 related to
Salvia miltiorrhiza Bunge. Compound 160 alone displayed powerful antioxidant activity
with an EC50 of 15.1 µg/mL in hydroxyl radical scavenging [48].

I-6-hydroxymellein (163), 6,8-dihydroxy-3-(10R, 20R-dihydroxypropyl)-isocoumarin
(164), 6-hydroxy-8-methoxy-3-methylisocoumarin (165), and de-O-methyldiaporthin (166)
were collected from Phaeosphaeria sp. LF5 associated with the leaves of Huperzia serrata. The
IC50 value of compound 166 for AChE inhibition was 21.18 µM. Other compounds showed
inactivity at 100 µM [49].

4-Hydroxymellein (167), 8-methoxymellein (168), and 5-hydroxymellein (169) were
isolated from Penicillium sp.2 collected from the leaves of Alibertia macrophylla (Rubiaceae).
This was the first time compounds 168 and 169 had been isolated from the genus Penicillium.
These compounds demonstrated moderate to weak AChE inhibitory activities [25].

α-Pyrone derivatives (167, 170–181) containing 4-hydroxymellein (167), palmariol
B (170), alternariol 9-methyl ether (171), botrallin (172), hyalodendriols A–C (173–175),
rhizopycnin D (176), penicilliumolide D (177), TMC-264 (178), penicilliumolide B (179), al-
ternariol (180), and graphislactone A (181) were obtained from Hyalodendriella sp. Ponipodef
12, an endophyte from the hybrid ‘N’va’ of Populus deltoides Marsh × P. nigra L. L. Com-
pounds 170–172, 174, 178, and 179 exhibited moderate to weak activities for AChE inhibi-
tion with IC50 values within the scope of 21.1 to 135.52 µg/mL. Other compounds were
inactive with an IC50 beyond 200 µM for anti-AChE activities [50,51].

Four known compounds, including graphislactone A (182), graphislactone A diac-
etate (183), botrallin (172), and botrallin diacetate (184), were isolated and identified from
Microsphaeropsis olivacea obtained from Pilgerodendron uviferum (D. Don) Florin (“Cipres
de las Guaitecas”). Compounds 182, 183, 172, and 184 showed strong to moderate AChE
inhibitory activities with IC50s of 8.1, 88, 6.1, and 27 µg/mL, respectively [52].
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Five isocoumarins, monocerin (185); monocerin demethylated derivative (186); fusar-
entin 6,7-dimethyl ether (187); fusarentin 6-methyl ether (188); fusarentin derivative (189);
and phthalide (190) were collected from the Colletotrichum sp. CRI535-02 of Piperornatum.
The IC50s of compounds 186 and 188 were 23.4 and 16.4 µM for DPPH inhibition and 52.6
and 4.3 µM for superoxide anion radical inhibition, respectively. Isocoumarins 185–187
showed excellent ORAC antioxidation with 10.8–14.4 ORAC units, and 190 displayed
antioxidation with 2.4 units [53].

Penialidin A (191), penialidin F (192), and myxotrichin C (193) were identified from
Penicillium brefeldianum F4a associated with the roots of H. cordata. Compounds 192 and 193
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could scavenge DPPH with EC50s of 28.42 ± 3.16 and 30.07 ± 2.83 µM, respectively. Com-
pounds 191–193 had the strongest scavenging ABTS+ activity with EC50s of 14.54 ± 0.46,
7.61 ± 0.46, and 14.96 ± 2.57 µM, respectively [31].

A detailed chemical study of Phomopsis sp. 33#., an endophytic fungus from
Rhizophora stylosa, led to the discovery of four new compounds, phomopsichins A–D
(194–197), and the known compound phomoxanthone A (198). Compounds 194–198
showed weak inhibitory activities against AChE with an inhibitory rate from 2.7% to
38.4% for a concentration of 250 µM and displayed weak scavenging DPPH activity with
an inhibitory rate from 17.0% to 52% at 1 mM [54].

A new compound, (2R,3S)-pinobanksin-3-cinnamate (199), isolated from the endo-
phytic fungus Penicillium sp. FJ-1 of Acanthus ilicifolius Linn, exhibited a potent neuropro-
tective effect on corticosterone-damaged PC12 cells [55].

Three novel aromatic polyketide dimers, bialternacin A (200), bialternacin E (201), and
bialternacin F (202), featured as racemic mixtures, were identified from a plant endophytic
Alternaria sp. associated with stem of Maianthemum bifolium. Compound 192 alone exhibited
AChE inhibition with an IC50 of 15.5 µM [56].

Pyranyl Derivatives

A chemical study of Penicillium sp. JVF17 associated with Vitex rotundifolia led to
the isolation of nine azaphilone-type polyketides, peniaphilones A–I (203–208, 210–212),
together with dechloroisochromophilone III (209) and isochromophilone V (213) (Figure 8).
Compounds 205, 208, 209, and 213 showed neuroprotective effects against glutamate-
induced HT22 cell injury within the scope of 25 µM and 100 µM [39].
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Three new azaphilones, chermesinones A–C (214–216), were collected from
Penicillium chermesinum (ZH4-E2) associated with the stem of Kandelia candel. None ex-
hibited the inhibition of AChE (IC50 > 100 µM) [57].

The chemical investigation of Saccharicola sp. isolated from Eugenia jambolana resulted
in the identification of two compounds: 2,2-dimethyl-2H-chromene-6-carboxylic acid
(217) and trans-3,4-dihydro-3,4-dihydroxy-anofinic acid (218). Compound 218 displayed
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huAChE-ICER and eeAChE-ICER inhibitory activities with IC50s of 0.037 ± 0.01 and
0.026 ± 0.005 mg/mL, respectively [58].

2.3.2. Quinones

The chemical investigation of Colletotrichum sp. JS-0367 associated with the leaves of
Morus alba (mulberry) led to the identification of the new compound 1,3-dihydroxy-2,8-
dimethoxy-6-methylanthraquinone (219) and the three known compounds 1-hydroxy-2,3,8-
trimethoxy-6-methylanthraquinone (220), 1,2-dihydroxy-3,8-dimethoxy-6-methylanthraqui-
none (221), and evariquinone (222) (Figure 9). Compound 222 inhibited intracellular ROS
aggregation, Ca2+ influx, MAPKs phosphorylation, and apoptotic cell death to exert potent
protection against glutamate-mediated HT22 cell death [59].
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Quinizarin (223) identified from Epicoccum nigrum, an endophyte from the fresh leaves
of Entada abyssinica Steud. ex A. Rich., Fabaceae, exhibited significant ABTS and DPPH
scavenging activities with IC50s of 10.86 and 11.36 µg/mL, respectively [30].

A chemical study of the Chaetomium sp. YMF432 of Huperzia serrata (Thunb. ex Murray)
Trev led to the discovery of known compounds 1-omethylemodin (224), 5-methoxy-2-
methyl-3-tricosyl-1,4-benzoquinone (225), and isosclerone (226), which were identified in
this fungus for the first time. Compounds 224 and 225 displayed mild AChE inhibition with
IC50s of 37.7 ± 1.5 and 37.0 ± 2.9 µM, respectively, while compound 226 was inactive for
anti-AChE activity with an inhibition rate of less than 10% at 100 µg/mL [60]. In addition,
isosclerone (226) was also identified from Alternaria alternate collected from the leaves of
Psidium littorale Raddi., which showed neuroprotective activities for glutamate-injured
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PC12 cells by significantly improving cell viabilities with values ranging from 65.9 ± 3.9%
to 74.6 ± 4.0% after treatment with the compound at 20, 40, and 80 µM [29].

Research on Aspergillus terreus (No. GX7-3B) related to a branch of Bruguiera gymnoihiza
(Linn.) revealed the identification of an unusual thiophene, 8-hydroxy-2-[1-hydroxyethyl]-
5,7-dimethoxynaphtho[2,3-b] thiophene-4,9-dione (227), as well as anhydrojavanicin (228),
8-O-methyljavanicin (229), botryosphaerone D (230), and 6-ethyl-5-hydroxy-3,7-dimethoxyn-
aphthoquinone (231). The IC50 of 228 for anti-AChE activity was 2.01 µM [36].

An investigation into Fusarium sp. HP-2 from “Qi-Nan” agarwood found two new
naphthalenone analogs: 3-demethoxyl-fusarnaphthoquinone B (232) and (2S,3S,4S)-8-
dehydroxy-8-methoxyl-dihydronaphthalenone (233). The inhibition ratio of 233 against
AChE was 11.9% at 50 µM [37].

A detailed chemical study on endophyte Talaromyces islandicus EN-501 associated with
red alga Laurencia okamurai led to the isolation of 8-hydroxyconiothyrinone B (234), 8,11-
dihy-droxyconiothyrinone B (235), 4R,8-dihydroxyconiothyrinone B (236), 4S,8-dihydroxyc-
oniothyrinone B (237), and 4S,8-dihydroxy-10-O-methyldendryol E (238). Compounds
234−238 exhibited antioxidant activities with IC50 = 12, 31, 42, 52, and 30 µM against DPPH
and IC50 = 8.3, 19, 34, 31, and 24 µM against ABTS, respectively [61].

5-Methoxy-2-methyl-3-pentacosylcyclohexa-2,5-diene-1,4-dione (239) identified from
the Colletotrichum sp. F168 of the plant Huperzia serrata Trev displayed negligible AChE
inhibition at 10.9% at 100 µg/mL [62].

2.3.3. Other Polyketides

Compounds 2(4-hydroxyphenyl)acetic acid (240) and 2(2-hydroxyphenyl)acetic acid
(241) (Figure 10) were identified from the endophyte Colletotrichum gloeosporioides. These
compounds exhibited mild anti-AChE activity at 200 µg via bioautography [26].

Orcinol (242) was obtained from Penicillium sp.1, an endophytic fungus from the leaves
of Alibertia macrophylla (Rubiaceae). It exhibited moderate AChE inhibition [25].

One bioactive compound, sorokiniol (243), was isolated from fungal endophyte
Bipolaris sorokiniana LK12. It exhibited significant AChE inhibition with an EC50 of
3.402 ± 0.08 µg/mL [43].

The chemical assay for endophyte Botryosphaeria dothidea KJ-1 led to the qualification
of altenusin (244) and 5′-methoxy-6-methylbiphenyl-3,4,3′-triol (245), which displayed
obvious DPPH scavenger activities with an IC50 of 17.6 ± 0.23 and 18.7 ± 0.18 µM,
respectively [33].

Parahydroxybenzaldehyde (246) collected from Epicoccum nigrum associated with
the fresh leaves of E. abyssinica Steud. Ex A. Rich., Fabaceae, exhibited significant ABTS
and DPPH scavenging activities with an IC50 of 38.43 ± 4.85 and 49.45 ± 6.52 µg/mL,
respectively [30].

Phomopsol B (247) and 248 were identified in Phomopsis sp. Xy21. Compound
248 was composed of a pair of epimers of 3-(2,6-dihydroxyphenyl)-4-hydroxy-6-methyl-
isobenzofuran-1(3H)-one at C-9 and possessed neuroprotection, improving cell viability by
96% for corticosterone-mediated PC12 cell damage at 40.0 µM, whereas 247 did not display
any such activity within the scope of 5.0−40.0 µM [38].

Three new p-terphenyls, 6′-O-Odesmethylterphenyllin (249), 3-hydroxy-6′-O-desmet-
hylterphenyllin (250), and 3′′-deoxy-6′-O-desmethylcandidusin B (252), along with two
known p-terphenyls, 3,3′′-dihydroxy-6′-O-desmethylterphenyllin (251) and 6′-O-desmethy-
lcandidusin B (253), were collected from Penicillium chermesinum (ZH4-E2) associated with
Kandelia candel. Compounds 252 and 253 inhibited AChE with IC50s of 7.8 and 5.2 µM,
respectively. The other compounds did not exhibit AChE inhibition with an IC50 beyond
100 µM [57].

Chemical research on the endophytic Chaetomium globosum isolated from the seeds
of Panax notoginseng resulted in the identification of flavipin (254), epicoccone (255), 3-
methoxyepicoccone (256), and epicoccolides A (257) and B (258). Compound 256 possessed
anti-AChE activity with an inhibition ratio of 72.6% at 50 µM. Compound 258 displayed
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obvious inhibitory activity against AChE with an IC50 of 5.55 µM. The AChE inhibition
rates of 254, 255, and 257 were lower than 10% at 50 µM. The structure–activity relationship
revealed that the key group for AChE inhibition was an oxygenic five-membered ring
between 256 and 258 [17].
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A new enalin analog, 7-hydroxy-2,4dimethyl-3(2H)-benzofuranone (263), together
with five known compounds, including butyrolactone I (259), ulocladol diacetate (260),
ulocladol triacetate (261), 2,5-diacetylphenol (262), and enalin [2,7-dihydroxy-2,4-dimethyl-
3(2H)-benzofuranone] (264), were isolated from Microsphaeropsis olivacea related to
Pilgerodendron uviferum (D. Don) Florin (“Cipres de las Guaitecas”). The IC50s of 260–262
for AChE inhibition were 83, 37, and 89 µg/mL, respectively [52].

An intensive chemical assay for Corynespora cassiicola L36 from Lindenbergi philippensis
(Cham.) resulted in the observation of corynesidones A (265) and B (266), corynether A
(267), and a diaryl ether (268). Corynesidone B (266) showed scavenging DPPH activity
with IC50 = 22.4 µM [63].
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An investigation of Penicillium citrinum from Bruguiera gymnorrhiza led to the identifica-
tion of (Z)-7,40-dimethoxy-6-hydroxy-aurone-4-O-b-glucopyranoside (269) and (1S,3R,4S)-
1-(40-hydroxyl-phenyl)-3,4-dihydro-3,4,5-trimethyl-1H-2-benzopyran-6,8-diol (270). Com-
pound 269 showed stronger neuroprotection than did 270 with respect to MPP+-mediated
PC12 cell damage. The mechanism of 269 involved improving cell viability and mitochon-
drial membrane potential, inhibiting caspase-3 and caspase-9 expression and reducing
DNA fragment formation [64].

The isobenzofuranone isopestacin (271) was identified in the endophytic fungus
Pestalotiopsis microspora isolated from Terminalia morobensis. Compound 271 exhibited
potent scavenging OH activity at 0.22 mM [65].

Oosporein (272) identified in the endophyte Cochliobolus kusanoi from Nerium oleander
L demonstrated a 50% scavenging DPPH capacity at 0.194 mM [66].

The careful chemical study of Sporothrix sp. (#4335) revealed the isolation of sporothrins
A–C (273–275) and sporothrin C (276), 1-hydroxy 8-methoxy-naphthalene (277), and 1,8-
dimethoxy-naphthalene (278) (Figure 11). Compound 253 showed potent AChE inhibition
with IC50 at 1.05 µM [67,68].
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Three novel aromatic polyketide dimers, bialternacins B–D (279–281), were collected
from Alternaria sp. interrelated with the stem of Maianthemum bifolium. Compound 281
alone exhibited anti-AChE capacity with IC50 at 68.3 µM [56].

The investigation of Phomopsis sp. NXZ-05 related to the twigs of Camptotheca acuminata
DECNE. (Nyssaceae). revealed seven compounds: 8-O-acetylmultiplolide A (282), 8-O-
acetyl-5,6-dihydro-5,6-epoxymultiplolide A (283), 5,6-dihydro-5,6-epoxymultiplolide A
(284), 3,4-deoxy-3,4-didehydromul-tiplolide A (285), (4E)-6,7,9-trihydroxydec-4-enoic acid
(286), methyl (4E)-6,7,9-trihydroxydec-4-enoate (287), and multiplolide A (288) (Figure 12).
The evaluation of AChE inhibition for 282–284 and 288 indicated that 282 possessed obvious
anti-AChE activity with an IC50 of 1.19 mg/mL, while the other compounds exhibited no
apparent activity with an IC50 beyond 10 mg/mL [69].

Detailed chemical research on Cladosporium cladosporioides MA-299, an endophytic
fungus from the mangrove plant leaves of Bruguiera gymnorrhiza, contributed to the iso-
lation of new compounds 5R-hydroxyrecifeiolide (289), 5S-hydroxyrecifeiolide (290), ent-
cladospolide F (291), cladospolide G (292), and cladospolide H (293) together with known
compounds iso-cladospolide B (294) and pandangolide 1 (295). Among them, 291 alone
exhibited strong AChE inhibition with an IC50 value of 40.26 µM [70].
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A study on Aspergillus flavus cf-5 from the red alga Corallina officinalis revealed the
isolation of the new compound (8E,12Z)-10,11-dihydroxyoctadeca-8,12-dienoic acid (296),
which had a weak AChE inhibitory capacity with a rate of 10.3% at 100 µg/mL [71].

2′-Deoxyribolactone (297) and hexylitaconic acid (298) were identified from a new
endophyte Curvularia sp., which was discovered on the stem bark of Rauwolfia macrophylla.
The IC50s of 297 and 298 for inhibiting AChE were 1.93 and 1.54 µM, respectively [72].

A chemical assay for Talaromyces aurantiacus demonstrated the separation of two new
compounds: talaromycins A (299) and B (300). The IC50 of 299 for AChE inhibition was
12.63 µM [73].

The compound E-G6-32 (301) was isolated from the endophyte Curvularia sp. G6-32
from the plant Sapindus saponaria L. It showed anti-DPPH and anti-ABTS activities with
inhibitory rates of 22.5% and 62.7%, respectively [74].
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The extensive investigation of Daldinia sp. TJ403-LS1 collected from Anoectochilus roxburghii
led to the identification of five new acetylenic phenol derivatives, daldiniols A–E
(302–305, 308); one new benzofuran derivative, daldiniol F (309); one new naphthol
derivative, daldiniol G (310); and two known analogs, 4-hydroxy-3-(3-methylbut-3-en-
l-ynyl)benzyl alcohol (306) and methoxy-3-(3-methylbut-3-enl-ynyl)benzyl alcohol (307).
The IC50s of 306, 307, 309, and 310 for anti-BChE activities were 6.93 ± 0.71, 16.00 ± 0.30,
23.33 ± 0.55, and 15.53 ± 0.39 µM, respectively [75].

Three new oxygenated cyclohexanoids, speciosins U–W (311–313), along with 4-
hydroxy-3-(3′-methylbut-3′-en-1′-ynyl)-benzoic acid (314) and 4-hydroxy-3-prenyl-benzoic
acid (315), were reported in the Saccharicola sp. of Eugenia jambolana. Compound 311 alone
exhibited inhibition toward huAChE-ICER and eeAChE-ICER with IC50s of 0.076 ± 0.01
and 0.0047 ± 0.0009 mg/mL, respectively [58].

A comprehensive assay for Alternaria alternate from the leaves of Psidium littorale
Raddi resulted in the discovery of a new liphatic polyketone, alternin A (316), as well as
the known compounds stemphyperylenol (317), 3(ζ)hydroxy-octadeca-4(E),6(Z)-dienoic
acid (318), E-7,9-diene-11-methenyl palmitic acid (319), p-hydroxybenzonic acid (320), and
benzoic acid (321) (Figure 13). Compound 316 exhibited a significant neuroprotective
capacity against glutamate-induced PC12 cell death, with cell viabilities improving from
64.7 ± 4.9% to 72.3 ± 4.5% after treatment with 20, 40, and 80 µM [29].
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Two unusual dimers, trematosphones A (322) and B (323), were separated from the
endophyte Trematosphaeria terricola isolated from desert plant Artemisia desertorum. Com-
pound 322 alone dispalyed neuroprotection for corticosterone-induced PC12 cell damage
at 6.25 µM [76].

A study on Phyllosticta capitalensis from the leaves of Loropetalum chinense var. rubrum
led to the isolation of the new compound guignardianone G (324), together with three
known compounds: xenofuranone B (325), linoleic acid (326), and 2-hexenoic acid (327).
Compound 326 showed potential neuroprotective activities toward glutamate-injured PC12
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cells with an EC50 of 33.9 µM. Compound 324 showed no neuroprotective activity at 40 µM,
and 325 and 327 even exhibited weak cytotoxicity at 40 µM [77].

A phthalide glycerol ether (328) was found in Cochliobolus lunatus SCSIO41401. This
compound displayed mild AChE inhibition with IC50 at 2.5 ± 0.21 µM, while the IC50 for
the active control of huperzine A was 0.30 ± 0.06 µM [40].

Phomeketales A–F (329–334) (Figure 14) were separated from Phoma sp. YN02-P-3.
Compound 331 alone exhibited moderate AChE inhibition with IC50 at 40.0 µM [78].

Molecules 2022, 27, x FOR PEER REVIEW 20 of 32 
 

 

A rare 1-oxaspiro chaetospirolactone (357), orsellide F (358), orsellide A (359), glo-

bosumone B (360), and globosumone C (361) were obtained from Chaetoium sp. NF00754. 

The IC50 values for compounds 359 and 361 for anti-AChE activity were 7.34 and 7.67 

µM, respectively [82]. 

 

Figure 14. Chemical structures of other polyketides (329–361). 

2.4. Terpenoids 

2.4.1. Sesquiterpenoids 

Two new compounds, asperterpenols A (362) and B (363) (Figure 15), with a rare 

5/8/6/6 tetracyclic ring skeleton, were separated from Aspergillus sp. 085242. Compounds 

362 and 363 powerfully inhibited AChE with IC50s of 2.3 and 3.0 μM, respectively. Nei-

ther compound inhibited BChE (IC50 >100 μM) [83]. 

The new compound (1R,5R,6R,7R,10S)-1,6-dihroxyeudesm-4(15)-ene (364) was 

identified from Alternaria alternate interrelated with the leaves of Psidium littorale Raddi. 

This compound was inactive for neuroprotective activity toward glutamate-injured 

PC12 cells at 40 and 80 μM [29]. 

Figure 14. Chemical structures of other polyketides (329–361).

Extensive research on Penicillium sp. sk14JW2P collected from the roots of
Kandelia candel (L.) DRUCE revealed the existence of 13-hydroxypalitantin (335) and (+)-
palitantin (336), which exhibited anti-AChE activities with IC50 values of 12 ± 0.3 and
79 ± 2 nM, respectively, while the IC50 for the positive control of huperzine A was
0.06 µM [79].

The intensive study of endophyte Aspergillus sp. xy02 from a Thai mangrove
Xylocarpus moluccensis uncovered seven new compounds, including (7R,10S)-7,10-epoxysyd-
onic acid (337), (7S,10S)-7,10-epoxysydonic acid (338), (7R,11S)-7,12-epoxysydonic acid
(339), (7S,11S)-7,12-epoxysydonic acid (340), 7-deoxy-7,14-didehydro-12-hydroxysydonic



Molecules 2023, 28, 2259 20 of 31

acid (341), (Z)-7-deoxy-7,8-didehydro-12-hydro-xysydonic acid (342), and (E)-7-deoxy-
7,8-didehydro-12-hydroxysydonic acid (343), as well as five known compounds: (+)-
1-hydroxyboivinianic acid (344), engyodontiumone I (345), (+)-sydonic acid (346), (+)-
hydroxysydonic acid (347), and (−)-(7S)-10-hy-droxysydonic acid (348). Compound 348
alone displayed a moderate scavenging DPPH capacity with an IC50 of 72.1 µM [80].

Intensive chemical research on Phaeosphaeria sp. LF5 from the leaves of Huperzia serrata
generated the identification of 3-(hydroxymethyl)-5-methylfuran-2(5H)-one (349), aspi-
lactonols G–I (350–352), and E-∆2-anhydromevalonic acid (353). Compound 352 alone
exhibited anti-AChE activity with IC50 at 6.26 µM. The other compounds showed no
activity at 100 µM [49].

Investigation into a co-culture of endophyte Epicoccum sp. YUD17002 and Armillaria sp.
contributed to the discovery of armilliphatics A–C (354–356). The IC50 value of compound
354 for anti-AChE activity was 23.85 µM. The other compounds were inactive against AChE
at 50 µM [81].

A rare 1-oxaspiro chaetospirolactone (357), orsellide F (358), orsellide A (359), globo-
sumone B (360), and globosumone C (361) were obtained from Chaetoium sp. NF00754.
The IC50 values for compounds 359 and 361 for anti-AChE activity were 7.34 and 7.67 µM,
respectively [82].

2.4. Terpenoids
2.4.1. Sesquiterpenoids

Two new compounds, asperterpenols A (362) and B (363) (Figure 15), with a rare
5/8/6/6 tetracyclic ring skeleton, were separated from Aspergillus sp. 085242. Compounds
362 and 363 powerfully inhibited AChE with IC50s of 2.3 and 3.0 µM, respectively. Neither
compound inhibited BChE (IC50 >100 µM) [83].

The new compound (1R,5R,6R,7R,10S)-1,6-dihroxyeudesm-4(15)-ene (364) was iden-
tified from Alternaria alternate interrelated with the leaves of Psidium littorale Raddi. This
compound was inactive for neuroprotective activity toward glutamate-injured PC12 cells
at 40 and 80 µM [29].

The extensive chemical investigation of endophyte Paecilomyces sp. TE-540 associ-
ated with the fresh leaves of Nicotiana tabacum L. led to the identification of two new
cadinane-type sesquiterpenes, paecilacadinols A (365) and B (366), and two new drimane-
type sesquiterpenes, ustusol D (367) and ustusol E (368), along with known compounds
12-hydroxyalbrassitriol (369), 2-hydroxyalbrassitriol (370), deoxyuvidin B (371), 3β,9α,11-
trihydroxy-6-oxodrim-7-ene (372), 2α,11-dihydroxy-6-oxodrim-7-ene (373), and ustusol
B (374). The AChE inhibition ratios of 365–374 were in the range of 17.56 ± 3.33 to
57.38 ± 4.51%. The IC50s of 369 and 370 for anti-AChE activities were 43.02 ± 6.01 and
35.97 ± 2.12 µM, respectively. The binding sites of 369 to the AChE catalytic pocket were
Trp84, Gly117, Ser122, and Tyr121 residues, while 370 lay on Asp72 and Ser122 residues [84].

A study on Pseudofusicoccum sp. J003 from the mangrove species Sonneratia apetala
Buch.-Ham led to the separation of the new sesquiterpene, acorenone C (375), which
exhibited moderate activity against AChE with a 23.34% inhibition ratio at 50 µM [85].

Comprehensive research on Nemania bipapillata (AT-05) from the marine red alga
Asparagopsis taxiformis-Falkenbergia stage led to the discovery of (+)-(2R,4S,5R,8S) (376), (+)-
(2R,4R,5R,8S)-4-deacetyl-5-hydroxy-botryenalol (377), (+)-(2R,4S,5R,8R)-4-deacetyl-botryen-
alol (378), (+)-(2R,4R,8R) (379), (+)-(2R,4S,8S)-(380), and 4β-acetoxy-9β,10β,15α-trihydroxy-
probotrydial (381). Compounds 376–381 showed AChE and BChE inhibition with inhibitory
ratios of 18.3% and 27.7%, and 3.2% and 7.3% at 100 µM, respectively [86].

Guaidiol (382) was identified in Xylaria sp. HNWSW-2. The inhibition rate of 382
against AChE was 12.9% at 50 µg/mL [46].

Nigrosirpexin A (383) was collected from a co-culture of Nigrospora oryzae and
Irpex lacteus. This compound showed an AChE inhibitory capacity with a ratio of 35%
at 50 µM [87].
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A chemical assay for Colletotrichum gloeosporioides GT-7 from the healthy tissue of
Uncaria rhynchophylla produced colletotrichine A (384), which inhibited AChE with IC50 at
28 µg/mL [88].

A co-culture of Armillaria sp. and endophyte Epicoccum sp. generated five protoilludane-
type sesquiterpenoids, epicoterpenes A−E (385–389), which were inactive for AChE inhibi-
tion at 50 µM [47].
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The comprehensive chemical investigation of Phomopsis sp. TJ507A from Phyllanthus glaucus
led to the identification of a 2,3-seco-protoilludane-type sesquiterpene, phomophyllin
A (390); eight protoilludane-type sesquiterpenes, phomophyllins B−I (391–398); four
illudalane-type sesquiterpenes, phomophyllins J−M (399/400, 401, and 402); and a botryane-
type sesquiterpene, phomophyllin N (403). In addition, seven known sesquiterpenoids,
granulone B (404), radulone B (405), 2-(2,2,4,6-tetramethylindan-5-yl)ethanol (406), pterosin
Z (407), onitin (408), dehydrobotrydienol (409), and 7-hydroxy-10-oxodehydrodihydrobotr-
ydial (410), were also isolated from this fungus. This represents the first natural product of
390 with an irregular 2,3-seco-protoilludane skeleton. Compounds 390–396, 398, 405, 408,
and 410 inhibited BACE1 within the range of 19.4% to 43.8% at 40 µM [89].

The fungus Colletotrichum gloeosporioides GT-7 generated the compound colletotrichine
B (411), which inhibited AChE with IC50 at 38.0 ± 2.67 µg/mL [90].

A chemical assay for Colletotrichum sp. SCSIO KcB3-2 from Kandelia candel produced
a new polychiral bisabolane sesquiterpene of bisabolanoic acid A (412), which exhibited
mild AChE inhibition with an IC50 of 2.2 µM, whereas the IC50 for the positive control of
huperzine A was 0.30 ± 0.06 µM [91].

2.4.2. Meroterpenoids

Extensive research on Penicillium sp. SK5GW1L, a mangrove endophytic fungus from
the leaves of Kandelia candel, resulted in the separation of two new α-pyrone meroterpenoids,
arigsugacin I (413) and 3-epiarigsugacin E (416), together with seven known analogs:
arigsugacin F (414), territrem B (415), arisugacin D (417), arisugacin B (418), territrem C
(419), and terreulactone C (420) (Figure 16). The IC50 values for all the isolates against
AChE were 0.64, 0.37, 7.03, 38.23, 53.39, 3.03, 0.23, and 0.028 µM, respectively [92,93].
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The investigation of Aspergillus terreus Thom, an endophytic fungus from
Tripterygium wilfordii Hook. f. (Celastraceae), revealed six undescribed meroterpenoids,
spiroterreusnoids A–F (421–426). The IC50s of 421–426 for BACE1 and AChE inhibition
ranged from 5.86 to 27.16 µM and from 22.18 to 32.51 µM, respectively [94].

A detailed study on Aspergillus 16-5c, a mangrove endophytic fungus identified from
Sonneratia apetala, found one new meroterpenoid, 2-hydro-acetoxydehydroaustin (427),
along with known analogs 11-acetoxyisoaustinone (428), isoaustinol (429), austin (430),
austinol (431), acetoxydehydroaustin (432), dehydroaustin (433), dehydroaustinol (434),
preaustinoid A2 (435), and 1,2-dihydro-acetoxydehydroaustin B (436). The IC50s for AChE
inhibition by compounds 429, 433, and 434 were 2.50, 0.40, and 3.00 µM, respectively [95].

2.4.3. Diterpenoids

Chemical research on Penicillium chrysogenum MT-12 collected from Huperzia serrata
revealed the new compounds penicichrysogene A (437) and penicichryso-gene B (438)
(Figure 17). Unfortunately, neither compound showed obvious AChE and BChE inhibition
at 100 µM [96].
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A study on the Aspergillus sp. YXf3 of Ginkgo biloba found an irregular C18 norditer-
penoid, aspergiloid I (439), which did not exhibit antioxidant properties or AChE inhibition
at 50 µg/mL [97].

2.5. Steroids

A new steroid, asporyergosterol (440), along with four known steroids, contain-
ing (22E,24R)-ergosta-4,6,8(14),22-tetraen-3-one (441), (22E,24R)-3β-hydroxyergosta-5,8,22-
trien-7-one (442), (22E,24R)-ergosta-7,22-dien-3β,5α,6β-triol (443), and (22E,24R)-5α,8α-
epidioxyergosta-6,22-dien-3β-ol (444) (Figure 18), were identified from culture extracts of
Aspergillus oryzae associated with the marine red alga Heterosiphonia japonica. All the com-
pounds exhibited a low capacity to modulate AChE with inhibitory rates from 0.4%–19.8%
at 100 µg/mL [98].

The instentive investigation of Aspergillus flavus cf-5 from the marine red alga
Corallina officinalis led to the separation of a new compound, 3β,4α-dihydroxy26-methoxyer-
gosta-7,24(28)-dien-6-one (445), as well as four known isolates: episterol (446), (22E,24R)-
ergosta7,22-dien-3β,5α,6α-triol (447), (22E,24R)-ergosta-5,22-dien-3β-ol (448), and (22E,24R)-
ergosta-4,6,8(14),22-tetraen-3-one (441). Compound 445 displayed weak activity against
AChE with an inhibition ratio of 5.5% at 100 µg/mL [71].

A study on Chaetomium sp. M453 associated with Huperzia serrata (Thunb. ex Murry)
Trev produced the isolation of neocyclocitrinols E–G (449–451) and 3β-hydroxy-5,9-epoxy-
(22E,24R)-ergosta-7,22-dien-6-one (452) as well as three known steroids (453–455) separated
from the endophytic fungus Chaetomium sp. M453 associated with Huperzia serrata (Thunb.
ex Murry) Trev. Compounds 451–452 were assayed for AChE inhibitory activities. Com-
pound 452 alone showed weak AChE inhibitory activity at 50 µM [99].

Four known steroids, (3β,5α,6α, 22E)-3-hydroxy-5,6-epoxy7-one-8(14),22-dien-ergosta
(456), 443,β-sitostenone (457), andβ-sitosterol (458), and 448 were obtained from Chaetomium sp.
YMF432 related to Huperzia serrata (Thunb. ex Murray) Trev. Compound 456 alone showed
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moderate AChE inhibition with an IC50 of 67.8 ± 1.7 µM and an inhibitory rate of 58.8 % at
100 µg/mL [60].
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An extensive study on Aspergillus terreus (No. GX7-3B) from a branch of Bruguiera gymnoihiza
(Linn.) Savigny resulted in the separation of 3β,5α-dihydroxy-(22E,24R)-ergosta-7,22-dien-
6-one (459), 3β,5α,14α-trihydroxy-(22E,24R)-ergosta-7, 22-dien-6-one (460), and NGA0187
(461). Compound 461 displayed remarkable anti-AChE activity with an IC50 value of
1.89 µM [36].

Ergosterol (462) was identified from Curvularia sp. associated with Rauwolfia macsrophylla.
The IC50 of 462 for AChE inhibitory activity was 1.52 µM [72].

Two known steroids, 441 and (17R)-4-hydroxy-17-methylincisterol (463), were identi-
fied from Alternaria alternate related to the leaves of Psidium littorale Raddi. Compounds
441 and 463 were inactive for neuroprotective activity toward glutamate-injured PC12 cells
at 40 and 80 µM, respectively [29].
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Research on Colletotrichum sp. F168 from the plant Huperzia serrata Trev produced the
compound ergosta-7,22-dien-5,9-epoxy-(22E,24R)-6-one-3-yl acetate (464), which showed a
negligible AChE inhibitory activity of 18.2% at 100 µg/mL [62].

The investigation of Talaromyces sp. SCNU-F0041 from the fresh leaves of Kandelia
produced cyclosecosteroid A (465), ergosterol (462), (22E,24R)-5α,8α-epidioxyergosta-6,22-
dien-3β-ol (466), and cerevisterol (443). The IC50 of compound 465 for inhibiting AChE
was 46 µM [100].

Brassicasterol (448), 5,6-epoxyergosterol (454), citreoanthrasteroid A (467), demethylin-
cisterol A (463), and chaxine C (468) were identified in Phyllosticta capitalensis derived from
the leaves of Loropetalum chinense var. rubrum. Compound 467 alone exhibited neuropro-
tection with an EC50 of 24.2 µM for glutamate-mediated PC12 cell injury [77].

3. Conclusions

Endophytic fungi are significant treasured natural products that provide numerous
bioactive compounds for the research of new drugs. According to the statistical results
(Tables S1–S5, Figures 1–18), 468 metabolites with anti-AD-related activities and diverse
structural features were identified in this study. These isolated natural products from endo-
phytes possessed diverse structural features and included alkaloids (135, 28.8%), peptides (9,
1.9%), polyketides (217, 46.4%), terpenoids (78, 16.7%), and steroids (29, 6.2%) (Figure 19).
Among these compounds, polyketides were the most common, followed by alkaloids,
terpenoids, and steroids. A total of 468 compounds were isolated from 83 endophytes,
which were assigned to 2 phyla, 5 classes, and 35 genera. Taxonomically, nearly all the
strains belonged to the phyla Ascomycotina (98.8%), including the classes Eurotinomycetes
(36.1%), Sordariomycetes (37.3%), Dothideomycetes (22.9%), and Leotiomycetes (2.4%),
while only Agaricomycetes belonged to the phylum Dasidiomycota (1.2%) (Figure 20).
Some genera contained two or more species of endophytes that possess promising bioactive
anti-Alzheimer’s components, including Aspergillus (13), Penicillium (11), Colletotrichum (9),
Phomopsis (5), Talaromyces (4), Chaetomium (4), Alternaria (2), Epicoccum (2), Cochliobolus (2),
and Curvularia (2) (Figure 21). Around 27.5% of the compounds were separated from the
genera Aspergillus and Penicillium, accounting for 72 and 58 compounds, respectively.
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Based on the analyzed data, the biological activity of these compounds was deter-
mined, mainly focusing on their anti-AChE, anti-BChE, antioxidant, and neurotrophic
activities. Some of the compounds exhibited micromolar to nanomolar biological activ-
ities, such as chaetoglobosin F (17) and isochaetoglobosin D (23), which showed strong
H2O2-induced PC12 cell damage-inhibiting activities with EC50s of 0.003 ± 0.0003 and
0.009 ± 0.001 µM, respectively. Huptremules C and D (118, 119) showed stronger AChE-
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inhibiting activities, with IC50s of 0.11 ± 0.01 and 0.06 ± 0.00 µM, respectively, than hupA
(IC50 = 0.54 µM). Hence, they represent valuable compounds for developing anti-AD agents.
Notably, structural changes to these compounds directly affect their bioactivities. Synthe-
sis and structural modifications for bioactive metabolites are necessary to prepare more
effective analogs. This review confirmed the significance of endophytes in the generation
of abundant metabolic products with anti-AD activities. In the future, with the addition
of further in-depth research on endophytic fungal metabolites, more biologically active
chemical resources will become available to medicinal chemists and biologists for anti-AD
drug research.
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Abbreviations
AD Alzheimer’s disease
AChE Acetylcholinesterase
BChE Butyrylcholinesterase
BACE1 β-site amyloid precursor protein-cleaving enzyme 1
PC12 Rat pheochromocytoma cells
DPPH 2,2-Diphenyl-1-picrylhydrazyl
ABTS 2,2-Azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)
EC50 Half effective concentration
IC50 Half maximal inhibitory concentration
H2O2 Hydrogen peroxide
HT22 Mouse hippocampal cells
JNK c-Jun N-terminal kinase
ERK Extracellular signal-regulated kinase
huAChE-ICER Immobilized capillary enzyme reactors
ROS Reactive oxygen species
MAPK Mitogen-activated protein kinases
ORAC Oxygen radial absorbance capacity against ROO·
MPP+ 1-Methy-4-phenylpyridinium
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