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Abstract: Porcine circovirus 2 (PCV2) infection is one of the most serious threats to the swine
industry. While the disease can be prevented, to some extent, by commercial PCV2a vaccines, the
evolving nature of PCV2 necessitates the development of a novel vaccine that can compete with
the mutations of the virus. Thus, we have developed novel multiepitope vaccines based on the
PCV2b variant. Three PCV2b capsid protein epitopes, together with a universal T helper epitope,
were synthesized and formulated with five delivery systems/adjuvants: complete Freund’s adjuvant,
poly(methyl acrylate) (PMA), poly(hydrophobic amino acid), liposomes and rod-shaped polymeric
nanoparticles built from polystyrene-poly(N-isopropylacrylamide)-poly(N-dimethylacrylamide).
Mice were subcutaneously immunized with the vaccine candidates three times at three-week intervals.
All vaccinated mice produced high antibody titters after three immunizations as analyzed by the
enzyme-linked immunosorbent assay (ELISA), while mice vaccinated with PMA-adjuvanted vaccine
elicited high antibody titers even after a single immunization. Thus, the multiepitope PCV2 vaccine
candidates designed and examined here show strong potential for further development.

Keywords: peptide-based vaccine; adjuvant; polyleucine; liposome; nanoparticles; block copolymers;
rods; poly(methyl acrylate); porcine circovirus

1. Introduction

Porcine circovirus 2 (PCV2) is a single-stranded DNA virus. Infection with PCV2
leads to porcine multisystemic wasting syndrome (PMWS), that has been considered one
of the most serious threats to the swine industry since 1985. PCV2 infection causes a wide
range of clinical symptoms, including post-weaning diarrhea, respiratory dyspnea, anemia,
icterus and wasting disease, whereby pigs’ growth is hampered. Respiratory distress,
tremors, enteric disease, dermatitis, nephropathy and reproductive failure have also been
observed. Morbidity rates at affected farms have been estimated to range from 4% to
30% (and occasionally extend to 50–60%), with mortality between 4–20% [1]. The main
PCV2 genotypes are labeled PCV2a–h [2]. These eight genotypes share two similar major
structural proteins: replicase and capsid. Ongoing genetic mutations have continuously
introduced new viral genotypes, including recombinants with changes predominantly
on the capsid genetic sequence [3,4]. Analysis of clinical PCV2 cases revealed the most
relevant genotypes to be a, b and d [2,5]. There is no direct treatment for PCV2 infection in
pigs, and thus vaccination is the only available option to prevent the infection. Moreover,
such treatment, with help of monoclonal antibodies, for example, will most likely not be
commercially feasible. Consequently, several vaccines were developed and commercialized
(Table 1). Current commercial vaccines are derived from the PCV2a genotype including:
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Ingelvac CircoFLEX® (Boehringer Ingelheim), Circumvent® (Intervet/Merck) and Porcilis®

PCV (Schering-Plough/Merck). The capsid protein has been selected as the primary
target for vaccine development as the immune responses generated against this protein
can neutralize the virus [6,7]. The commercial capsid-based vaccines differ in dosing
and efficacy, and these differences are related to the selection of adjuvants used in the
formulations (Table 1).

Table 1. Commercially available PCV2 vaccines.

Vaccine Antigen Adjuvant Administration

Circovac® Inactivated PCV2a Light paraffin oil

Single dose, intramuscular (IM) for
piglets older than 3 weeks or

healthy female pigs of breeding age;
or two doses, prior to breeding for

gilts and sows.
Ingelvac CircoFlex® Capsid PCV2a Cross-linked carbomer-polymer Single dose, IM

Circumvent® Capsid PCV2a D1-α-tocopherol + liquid paraffin Two doses, IM (3 weeks old)

Porcillis® PCV Capsid PCV2a D1-α-tocopherol + liquid paraffin Two doses, IM (3 days old) or
Single dose, IM (3 weeks old)

Fostera™ PCV
(Suvaxyn® PCV2 one dose™)

Inactivated chimaeric
PCV1/2a

Sulpholipo-cyclodextrin
in squalane Single dose, IM (3 weeks old)

The success of PCV2a vaccines can be attributed to common epitopes shared between
the field genotypes and existing PCV2a vaccines. However, as mutations occurring in the
capsid sequence accumulated over time, the shared epitopes among PCV2a-based vaccines
and field strains declined. Consequently, the distorted immune recognition enabled the
virus to escape from the PCV2a vaccine-induced immune response. Thus, the efficacy of
the PCV2a vaccines decreased gradually. Many investigations have suggested that, while
monovalent PCV2 vaccines provide good homologous protection, bivalent PCV2 vaccines
may be the answer to rectify current PCV2a vaccines’ “leaky” nature [8,9]. Thus PCV2a,
PCV2b and a universal helper T cell epitope have been combined into one bivalent vaccine
to compare its efficacy with a similar monovalent PCV2a counterpart [10]. Animals treated
with the bivalent vaccine had a reduced number of PCV2 in their blood and feces compared
to the monovalent treated group. Thus, the introduction of PCV2b antigens into the vaccine
formulation has been proven to broaden the ability of pigs to respond appropriately to
diverse PCV2 field strains.

Due to their success in reducing the prevalence and severity of infection, PCV2a
vaccines became the exemplar in the swine industry. However, as mutations in the capsid
sequence occur and accumulate over time, the number of shared epitopes between PCV2a-
based vaccines and field strains has declined. In fact, alteration in the capsid amino acid
sequence changed the epitope conformation, affecting the binding capacity of neutralizing
antibodies induced by PCV2a vaccines. The resulting distorted immune recognition enabled
the virus to escape from the vaccine-induced immune response [3,9,11,12]. As a result, the
efficacy of the PCV2a vaccines decreased gradually.

The inability of current PCV2a vaccines to provide complete cross-protection has
prompted researchers to broaden antigenic selection for vaccine design [9]. This study
aimed to test the efficacy of a peptide-based subunit vaccine comprised of three PCV2b cap-
sid peptides and one universal helper T cell epitope with novel delivery systems in eliciting
antibodies in mice. Peptide-based vaccines contain only the necessary short antigens, thus
reducing the chances of adverse reactions [13,14]. These vaccines also provide high vaccine
viability and more feasible transport and storage conditions. Peptide-based vaccines can
be produced effectively at large scale in a manner similar to, for example, cyclosporine
peptide drug manufacturing [15]. However, the antigens commonly incorporated into
subunit vaccines are poorly immunogenic [16]. To induce strong, long-lasting immune
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responses, peptide-based vaccines require an adjuvant (immune stimulator) and multiple
immunizations (boosts) [17–19].

Many antiviral therapies aim to block the interaction of the virus with receptors and
inhibit viral replication by immitating the viral external structures, such as spike pro-
teins [20]. This method has been used successfully in the development of multi-epitope
subunit vaccine against the SARS-CoV-2 variants [21]. Following this strategy, we de-
veloped our vaccine based on the PCV2 outer envolope, the capsid. Three PCV2b cap-
sid protein-derived peptide sequences (Cap41 [SRTIGYTVKKTTVRTPSWNVDM], Cap67
[SNPLTVPFEYYRIRKVKVE] and Cap121 [KPVLDRTIDYFQPNNKR]) were chosen to en-
hance the coverage of PCV2b genotypes, as increased breadth of coverage has been shown
to consistently improve protective efficacy [10,22]. The selected epitopes (CAP41, CAP67
and CAP121) have been shown to induce the production of IgG in pigs against recombinant
CAP OVA PCV2b protein [22]. Incorporation of CD4+ T cell epitope into the vaccine is
also crucial to enhance its immunogenicity [23]. Therefore, universal CD4+ T cell epitope
P25 (KLIPNASLIENCTKAEL) derived from the fusion protein of the Morbillivirus, canine
distemper virus, was included to support uniform humoral responses. The epitope efficacy
was proven in previous studies on fertility control, Group A Streptococcus (GAS) and hook-
worm vaccines [24–27]. Polylysine (KK) solubilizing moiety was added to each peptide
sequence to improve the hydrophilicity of the overall structure.

Four novel delivery systems were tested: poly(methyl acrylate) (PMA) (V1), polyleucine
(L10) possessing ten amino acid units (V2), Leu10 formulated in liposomes (V3) and rod-
shaped polymeric nanoparticles (rods) built from polystyrene-poly(N-isopropylacrylamide)-
poly(N-dimethylacrylamide) (V4) for PCV2 vaccine delivery. In addition, the epitopes
adjuvanted with powerful but toxic complete Freund’s adjuvant (CFA) (V0) were used as a
positive control formulation (Figure 1). Polymers have been of interest for drug/vaccine
delivery due to their customizable physicochemical properties, controllable stability in vivo,
relative safety and efficacy of cargo delivery to desired cells/tissues [28]. These features
allow them to be widely used as immunostimulants for vaccine delivery [29,30], including
veterinary vaccines [31–34]. These polymers have been applied as a nanocarrier or have
been directly conjugated to an antigen. The first polymer-peptide antigen conjugation
approach was reported in 2010, where J14 epitope (a B cell epitope) was conjugated to
dendritic polyacrylate polymer [35]. The conjugate self-assembled into nanoparticles that
were efficient in eliciting antibody formation after single-dose subcutaneous and intranasal
treatment, in a size dependent manner, and were also shown to be opsonic against all tested
GAS clinical isolates [29].

Poly(hydrophobic amino acid) (pHAA), a sequence of repeating units of hydrophobic
amino acids that can form fully biodegradable nanoparticles, was tested as a vaccine carrier
in mice upon conjugation with a peptide antigen [36]. PADRE-J8 (B cell epitope derived
from GAS M protein and universal T cell epitope) was incorporated into a pHAA sequence
built based on a variety of hydrophobic amino acids [36–38]. The resulting amphiphilic
compounds were self-assembled into nanoparticles (10–30 nm), which self-assembled in
larger chain-like aggregates. Polyleucine-based nanoparticles induced the maturation
of antigen presenting cells (APCs) in vitro and triggered the highest titers of opsonic
antibodies among the tested sequences in mice. In addition, the nanoparticles greatly
reduced the bacterial burden in mice challenged with the M1 GAS strain without inducing
potentially damaging soluble inflammatory mediators. Upon conjugation with hookworm
epitope, the polyleucine system was also effective in inducing protective immune responses
in intraperitoneally and orally vaccinated hookworm-challenged mice [24,25,39]. Therefore,
polyleucine was also selected as a PCV2 vaccine delivery system for this study.
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V2 into liposomes. Vaccine candidate V4 was formed by physically mixing 1–4 with rods. 
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formed narrowly polydisperse spherical nanoparticles (DLS analysis: 280 ± 8 nm; PDI = 
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aggregated nanoparticles for polyleucine conjugates were reported previously [36]. 
Vaccine candidate V3 was produced by incorporation of vaccine candidate V2 into 
liposomes via thin lipid hydration (precisely, peptides 9–12 were incorporated into 
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Figure 1. The composition of PCV2b subunit peptide-based vaccine candidates and structure of
polymers PMA, Leu10, and rods. Positive control V0 was formed by emulsification of 1–4 with CFA.
Vaccine candidate V1 was formed through conjugation of 1–4 with PMA to produce 5–8, respectively.
Vaccine candidate V2 was formed by conjugation of 1–4 with Leu10 (10 repeating units of leucine
amino acid) to form 9–12, respectively. Vaccine candidate V3 was formed by formulating V2 into
liposomes. Vaccine candidate V4 was formed by physically mixing 1–4 with rods.

Liposomes were discovered more than half a century ago by Alec Bangham and they
have been a mainstay drug delivery system ever since [40]. The liposome lipid bilayer can
carry hydrophobic compounds, while the core of the vesicles can encapsulate hydrophilic
compounds [41]. Liposome formulations can maximize active ingredients’ therapeutic
index, stability and absorption while reducing toxicity and prolonging the biological half-
life of the encapsulated compound [41,42]. Antigens encapsulated within liposomes are
protected against degradation in vivo and are preferentially taken up by APCs. Cationic
liposomes possess immune potentiating properties that alleviate their appeal compared
to negatively charged or neutral liposomes, as their positive charge allows the cationic
liposomes to interact more efficiently with the immune cells’ anionic membranes [43,44].
Therefore, APCs, such as macrophages and dendritic cells (DCs), preferentially interact with
cationic liposomes when compared to neutral or anionic liposomes. Moreover, delivery
of polyleucine antigen conjugates with liposomes has been recently tested [45]. Thus,
liposomes in combination with polyleucine-based delivery system have been also selected
for PCV2 vaccine formulation.

Spleen macrophages are important scavenger cells involved in viral clearance from a
host [46]. Recently, rod-shaped polymeric nanoparticles have been reported to have the
tendency to accumulate in the spleen systemic administration, especially when produced in
form of rods [47]. Indeed, these rods were able to act as a very effective immune adjuvant
once physically mixed with an antigen. Interestingly, the physical mixture of rod-shaped
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polymeric nanoparticles and antigen was found to be more efficient than their chemical
conjugates in inducing antibody formation [48].

Herein, four new PCV2 vaccines (V1–V4) have been designed, synthesized and formu-
lated (Figure 1). Three PCV2b capsid protein epitopes (1–3) and universal T-helper epitope
(4) were conjugated with PMA (5–8) and mixed to produce V1, coupled with Leu10 (9–12)
and mixed to produce V2, which was further incorporated into liposomes V3. Finally,
epitopes 1–4 were physically mixed with rod-shaped polymeric nanoparticles to produce
V4 or emulsified with CFA to produce control formulation V0. All formulations, V0–V4,
were characterized for their size/morphology and evaluated for the ability to produce
antigen-specific antibodies in mice.

2. Results

All PCV2 epitopes and related peptides (1–4, P1–P4 and 9–12) were synthesized via
microwave-assisted Fmoc SPPS [49]. Conjugates 5–8 were produced by the conjugation of
alkyne-modified antigens (P1–P4) and PMA using a copper catalyzed Huisgen1,3-dipolar
cycloaddition “click” reaction [50]. Following the click reaction, conjugates 5–8 were mixed
together and self-assembled via solvent exchange method (DMF-water) and extensively
dialyzed for 3 days against water to remove unreacted peptide and residual copper to
produce V1 (Supplementary Figure S3) [50]. Vaccine candidate V1 (in PBS) formed nar-
rowly polydisperse spherical nanoparticles (DLS analysis: 280 ± 8 nm; PDI = 0.23 ± 0.01)
with a positive zeta potential (43.7 ± 0.7 mV) (Table 2, Figure 2, Supplementary Figure S2).
Vaccine candidate V2, the mixture of peptides 9–12, formed broadly polydisperse, aggre-
gate chain-like nanoparticles (DLS analysis: 86 ± 19 nm, 363 ± 54 nm; PDI = 0.57 ± 0.18)
with a positive zeta potential (34.0 ± 0.1 mV) upon simple dissolution in PBS at pH = 7.4
(Table 2, Figure 2, Supplementary Figure S2). The formation of chain-like aggregated
nanoparticles for polyleucine conjugates were reported previously [36]. Vaccine candi-
date V3 was produced by incorporation of vaccine candidate V2 into liposomes via thin
lipid hydration (precisely, peptides 9–12 were incorporated into liposomes during thin
layer formation). V3 formed globular nanoparticles with relatively narrow polydispersity
(206 ± 3 nm, PDI = 0.26 ± 0.01) and a positive zeta potential (25.0 ± 0.8 mV) upon simple
dissolution in PBS at pH = 7.4 (Table 2, Figure 2, Supplementary Figure S2). Vaccine can-
didate V4 was produced by the simple mixing of antigens 1–4 with rods in PBS. Vaccine
candidate V4 formed broadly polydisperse nanoparticles as expected for rod-shaped par-
ticles (158 ± 15 nm, 503 ± 55 nm, 5200 ± 180 nm; PDI = 0.42 ± 0.07) with a positive zeta
potential (11.9 ± 0.7 mV) upon simple dissolution in PBS at pH = 7.4 (Table 2, Figure 2,
Supplementary Figure S2).

Table 2. Particle size, PDI and zeta potential of the vaccine candidates.

Vaccine
Candidate Antigen Adjuvanting

Moiety Size (nm) PDI Zeta Potential
(mV)

V1 Cap41, Cap67,
Cap121, P25 PMA 280 ± 8 0.23 ± 0.01 43.7 ± 0.7

V2
Cap41, Cap67,
Cap121, P25 Leu10

86 ± 19
0.57 ± 0.20 34.0 ± 0.1363 ± 54

V3 Cap41, Cap67,
Cap121, P25

Leu10,
liposome 206 ± 3 0.26 ± 0.01 25.0 ± 0.8

V4
Cap41, Cap67,
Cap121, P25 rods

158 ± 15
0.42 ± 0.07 11.9 ± 0.7503 ± 55

5200 ± 180
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Figure 2. Transmission electron micrographs of PCV2 vaccine candidates V1, V2, V3 and V4. All
compounds were stained with 2% uranyl acetate. Bar = 500 nm.

To test vaccine candidate efficacy, mice were immunized subcutaneously with V0–V4
and PBS (Figure 3). V0 served as a positive control, while PBS was used as a negative control.
After the first immunization, significant antibody production against PCV2 antigens was
detected in mice immunized with CFA-adjuvanted antigens (V0) and PMA-conjugated
antigens (V1). Notably, the titers induced by the positive control were not significantly
higher than those of V1. Following second immunization, IgG titters produced by V1
increased significantly and exceeded these induced by the positive control; however, the
difference was not statistically significant. Vaccines V2 and V3 also produced high IgG
titters, while V2 was poorly effective after second immunization. Interestingly, after the
second boost, all vaccine candidates (V1–V4) induced IgG production in mice in similar
levels to the positive control (CFA-adjuvanted formulation V0) (Figure 3).
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Figure 3. Sera IgG titers of mice immunized with V0–V4 subunit vaccines after the first, second and
third immunizations, as analyzed by enzyme-linked immunosorbent assay. Statistical analysis was
performed using one-way ANOVA followed by Tukey’s post-hoc test (ns > 1; ****, p < 0.0001). PBS:
phosphate-buffered saline.

3. Discussion

Systemic humoral immunity, measured as serum antigen-specific antibody titers, has
shown strong correlation with protective immunity against PCV2 in pigs [51]. As peptide
antigens are not, or are poorly, immunogenic alone (do not induce efficient systemic
humoral immunity), a proper vaccine delivery system/adjutant must be incorporated into
vaccine formulation. Thus, we investigated four self-adjuvanting delivery systems for
inducing antigen-specific antibody responses and compared their efficacy with the gold
standard powerful adjuvant, CFA. CFA-based formulation V0 elicited high IgG titers even
after single immunization; however, two mice in this group died at day 65, which made V0
applicability as a vaccine candidate unacceptable. While single immunization with CFA
is usually safe for animals, CFA is also well-known for its reactogenicity and excessive
pro-inflammatory responses that can lead to uncontrolled tissue damage [52]. The mice
immunized with V1–V4 vaccine candidates did not show any adverse effects, as expected.
The delivery systems used in these vaccine formulations have been previously proven to
be safe [24,25,48]. Interestingly, the vaccine candidates have very distinct abilities to induce
antibody production, especially after the first two vaccinations.

The immune responses generated against nanoparticles (all vaccine candidates V1–V4
were produced in nanoparticles form) are very often correlated with size and shape of
particles [53–55]. Typically, smaller nanoparticles are more immunogenic [56,57]. The small
nanoparticles can easily travel to lymph nodes (without participation of peripheral DCs),
and the nodes are the fighting core of the human immune system [56]. In contrast, larger
particles have the potential to create a depot effect, keeping the antigen at the injection
site and lengthening the time the immune cells are exposed to the vaccine, boosting the
immunogenic activity [16]. Thus, nanovaccines have been widely used to target variety
of diseases [58–60]. V1–V4 all formed nanoparticles, primarily in the range of 200 to
500 nm, with some aggregates, as observed by DLS and TEM. Thus, there is not any
apparent difference between the vaccines’ particle size. However, while the size of V1–
V4 particles was similar, their shapes were significantly different. V1 formed spherical
nanoparticles, V2 chain-like aggregates of very small nanoparticles, V3 typical liposomes,
i.e., spherical nanoparticles, and V4 was produced based on rod-shaped nanoparticles, as
can be seen on TEM images. Morphology influences antigen presentation by APCs, as well
as intracellular particle processing [53]. Both spherical and rod-like particles have been
reported to induce superior immunity in comparison to other shapes and when compared
to each other [48,61,62]. For example, rod-shaped nanoparticles have a higher tendency
to accumulate in the spleen, thereby increasing uptake by the immune system [47] and
triggering a strong immune response [48,62,63]. However, only V1 induced high antibody
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titters after a single immunization. Thus, the shape of nanoparticles was not associated
with their immunogenicity. Finally, surface charge also plays an important role in cellular
processing of nanoparticles; uptake by APCs increases with increasing nanoparticle surface
charge [64]. As immune cell membranes are anionic in nature, the highly positive surface
of V1 (44 mV) may have facilitated stronger interaction, explaining the stronger and faster
stimulation of humoral responses (IgG production) [43]. However, positively charged
nanoparticles V2 (34 mV) induced lower antibody titers upon second immunization than
weakly positive V3 (25 mV) and V4 (12 mV).

Interestingly, we have previously reported that PMA-based nanoparticulate vaccines
were less effective than rod-based when these nanoparticles were applied for GAS anti-
gen delivery (PADRE-J8). Rod-shaped polymeric nanoparticles in physical mixture with
PADRE-J8 elicited significantly higher antibody titers than CFA-adjuvanted antigen [48].
However, PMA conjugates have been also reported to be effective after a single immuniza-
tion in a similar manner as reported here for formulation V1 [65].

Both V1 and V4 were polymeric-based vaccines. Nevertheless, the polymer in V1 was
chemically conjugated to antigen epitopes, whereas the polymeric rods in V4 were only
physically mixed with antigen epitopes. This may suggest that chemical conjugation was
preferable over physical mixture in triggering potent immune responses. However, the
same rods in physical mixture with antigen have been reported to be more immunogenic
than the conjugated equivalent [48]. Finally, the ability of polyleucine to be quantitatively
entrapped in liposomes was previously reported [45]; however, this entrapment did not
result in enhanced immunity, while here V3 clearly induced higher antibody titers than V2
after second immunization.

However, it must be emphasized that. following third immunization. all particles
were practically equally effective in inducing antibody titers. Thus, the observed differences
between formulations were present only following initial immunizations. It is important to
stress that V1 elicited the quickest antibody response, even at a single dose, similarly to the
strong but toxic CFA (V0). Most currently available PCV2 vaccines require administration
of a single dose, thus V1 is the most promising vaccine candidate for further optimization
and examination, including immunization of pigs and PCV2 challenge.

4. Materials and Methods
4.1. Chemicals

All chemicals used were analytical grade. Protected 9-fluorenylmethoxycarbonyl
(Fmoc) amino acids and rink amide p-methylbenzhydrylamine (MBHA) resin were pur-
chased from Novabiochem (Lau-felfingen, Switzerland). 1-[Bis(dimethylamino)methylene]-
1H-1,2,3-triazolo [4,5-b]pyridinium-3-oxide hexafluorophosphate and hexafluorophos-
phate azabenzotriazole tetramethyl uronium (HATU) was purchased from Mimotopes
(Melbourne, Australia). N,N-diisopropylethylamine (DIPEA), N,N-dimethylformamide
(DMF), dicholoromethane (DCM), piperidine, trifluroacetic acid (TFA) and acetonitrile
were purchased from Merck (Hohbrunn, Germany). Pentanoic acid, triisopropylsilane
(TIPS) and phosphate buffered saline (PBS) were obtained from eBioscience (California,
USA). Rod-shaped polymeric nanoparticles (polystyrene-poly(N-isopropylacrylamide)-
poly(N-dimethylacrylamide) were synthesized as reported previously [47]. C57BL/6 mice
were purchased from The University of Queensland Biological Resources (UQBR) (Queens-
land, Australia).

4.2. Equipment

Shimadzu reverse-phase HPLC instruments (Shimadzu Corp, Kyoto, Japan) equipped
with Vydac C4 and C18 columns were used to analyze and purify the peptides. An
ESI-MS electrospray ionization mass spectrometer (Sciex API-3000, Sciex, Vaughan, ON,
Canada) was used to confirm structure and purity. A Zetasizer Nano (Malvern Instruments,
Worcestershire, UK) was used to measure the particle size distribution of self-assembled
vaccines via dynamic laser scattering. A BMG CLARIOStar fluorescence plate reader
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(BMG LABTECH, Cary, NC, USA) was used to assess ELISA. Mathematical and statistical
presentation of the data was conducted using Graphpad Prism v8.3 (GraphPad Software,
Inc, San Diego, CA, USA). Electron micrographs of self-assembled vaccine compounds
were captured with a JEM-1010 transmission electron microscope (HT7700 Exalens, Hitachi
Ltd., Jeol Ltd., Tokyo, Japan).

4.3. Synthesis of Peptides, Conjugates and Formulations

Peptides 1–4, pentynoic acid modified 1–4 (P1–P4) and 9–12 were synthesized us-
ing microwave-assisted Fmoc solid-phase peptide synthesis (SPPS) following a previ-
ously established protocol [49]. They were purified using preparative reverse-phase high-
performance liquid chromatography (RP-HPLC), and their structure and purity (>95%)
were confirmed using electrospray ionization mass spectroscopy (ESI-MS) and analytical
RP-HPLC (Supplementary Figure S1).

Peptide 1 (SRTIGYTVKKTTVRTPSWNVDM-KK). Yield: 18%. MW: 2582.0; ESI-MS:
[M + 2H+]2+ m/z 1291.5 (found 1291.5), [M + 3H+]3+ m/z 861.3 (found 861.3), [M + 4H+]4+

m/z 646.2 (found 646.2). HPLC: C18 column, 0–100% Solvent B (acetonitrile 90%, water
10%, acetic acid 1%), Solvent A (water 99%, acetic acid 1%). Retention time = 15.00 min.
Purity 99%.

Peptide 2 (SNPLTVPFEYYRIRKVKVE-KK). Yield: 17%. MW: 2379.8; [M + 2H+]2+

m/z 1190.9 (found 1191.0), [M + 3H+]3+ m/z 794.0 (found 794.3), [M + 4H+]4+ m/z 596.4
(found 596.0). HPLC: C18 column, 0–100% Solvent B, Solvent A. Retention time = 22.58
min. Purity 98%.

Peptide 3 (KPVLDRTIDYFQPNNKR-KK). Yield: 16%. MW: 2145.5; [M + 2H+] 2+ m/z
1073.7 (found 1069.3), [M + 3H+] 3+ m/z 716.1 (found 713.2), [M + 4H+] 4+ m/z 537.3 (found
535.2). HPLC: C4 column, 0–100% Solvent B (acetonitrile 90%, water 10%, acetic acid 1%),
Solvent A (water 99%, acetic acid 1%). Retention time = 37.20 min. Purity 98%.

Peptide 4 (KLIPNASLIENCTKAEL-KK). Yield: 17%. MW: 2755.3; [M + 2H+]2+ m/z
1378.7 (found 1378.9), [M + 3H+]3+ m/z 919.4 (found 919.6), [M + 4H+]4+ m/z 689.8 (found
689.9). C4 column, 0–100%, Solvent B (acetonitrile 90%, water 10%, acetic acid 1%), Solvent
A (water 99%, acetic acid 1%). Retention time = 21.29 min. Purity 99%.

Alkyne-modified peptide 1, P1 (CHCCH2CH2C(O)-SRTIGYTVKKTTVRTPSWNVDM-
KK). Yield: 18%. MW: 2620.2; [M + 2H+]2+ m/z 1311.1 (found 1312.0), [M + 3H+]3+ m/z 874.4
(found 875.0), [M + 4H+]4+ m/z 656.1 (found 656.5). HPLC: C18 column, 0–100% Solvent
B (acetonitrile 90%, water 10%, acetic acid 1%), Solvent A (water 99%, acetic acid 1%).
Retention time = 20.04 min. Purity 99%.

Alkyne-modified peptide 2, P2 (CHCCH2CH2C(O)-SRTIGYTVKKTTVRTPSWNVDM-
KK). Yield: 17%. MW: 2417.8; [M + 2H+]2+ m/z 1209.9 (found 1209.7), [M + 3H+]3+ m/z
806.9 (found 806.8), [M + 4H+]4+ m/z 605.5 (found 605.4). C18 column, 0–100% Solvent
B (acetonitrile 90%, water 10%, acetic acid 1%), Solvent A (water 99%, acetic acid 1%).
Retention time = 23.03 min. Purity 98%.

Alkyne-modified peptide 3, P3 (CHCCH2CH2C(O)-KPVLDRTIDYFQPNNKR -KK).
Yield: 16%. MW: 2183.5; [M + 2H+] 2+ m/z 1092.8 (found 1093.1), [M + 3H+] 3+ m/z
729.1 (found 729.1), [M + 4H+] 4+ m/z 546.9 (found 547.0). C4 column, 0–100% Solvent
B (acetonitrile 90%, water 10%, acetic acid 1%), Solvent A (water 99%, acetic acid 1%).
Retention time = 22.78 min. Purity 98%.

Alkyne-modified peptide 4, P4 (CHCCH2CH2C(O)-KLIPNASLIENCTKAEL-KK).
Yield: 17%. MW: 2192.7; [M + 2H+]2+ m/z 1097.3 (found 1097.4), [M + 3H+]3+ m/z 731.9
(found 731.9), [M + 4H+]4+ m/z 549.2 (found 549.2). C18 column, 0–100% Solvent B (acetoni-
trile 90%, water 10%, acetic acid 1%), Solvent A (water 99%, acetic acid 1%). Retention time
= 22.82 min. Purity 99%.

Peptide 9 (LLLLLLLLLL-SRTIGYTVKKTTVRTPSWNVDM-KK). Yield: 18%. MW:
3713.6; [M + 2H+]2+ m/z 1857.8 (found 1858.2), [M + 3H+]3+ m/z 1238.9 (found 1239.1),
[M + 4H+]4+ m/z 929.4 (found 929.6). C4 column, 0–100% Solvent B (acetonitrile 90%, water
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10%, acetic acid 1%), Solvent A (water 99%, acetic acid 1%). Retention time = 32.57 min.
Purity 99%.

Peptide 10 (LLLLLLLLLL- SNPLTVPFEYYRIRKVKVE-KK). Yield: 17%. MW: 3512.4;
[M + 2H+]2+ m/z 1757.2 (found 1756.8), [M + 3H+]3+ m/z 1171.8 (found 1171.5), [M + 4H+]4+

m/z 879.1 (found 878.9). C4 column, 0–100% Solvent B (acetonitrile 90%, water 10%, acetic
acid 1%), Solvent A (water 99%, acetic acid 1%). Retention time = 36.28 min. Purity 98%.

Peptide 11 (LLLLLLLLLL-KPVLDRTIDYFQPNNKR-KK). Yield: 16%. MW: 3278.0;
[M + 2H+] 2+ m/z 1640.0 (found 1639.8), [M + 3H+] 3+ m/z 1094.0 (found 1093.5); [M + 4H+] 4+

m/z 820.5 (found 820.4). C4 Column, 0–100% Solvent B (acetonitrile 90%, water 10%, acetic
acid 1%), Solvent A (water 99%, acetic acid 1%). Retention time = 36.25 min. Purity 98%.

Structure 12 (LLLLLLLLLL-KLIPNASLIENCTKAEL-KK). Yield: 17%. MW: 3287.2; [M
+ 2H+]2+ m/z 1644.6 (found 1644.8), [M + 3H+]3+ m/z 1096.7 (found 1096.4, [M + 4H+]4+ m/z
822.8 (found 822.9). C4 column, 0–100% Solvent B (acetonitrile 90%, water 10%, acetic acid
1%), Solvent A (water 99%, acetic acid 1%). Retention time = 32.75 min. Purity 99%.

4.4. Synthesis of Polymer Conjugates 5–8

P1–P4 were conjugated to azide-modified PMA using a copper(I)-catalyzed alkyne-
azide cycloaddition (CuAAC) click reaction [50]. Copper wire was submerged in con-
centrated sulfuric acid for 1 min, then washed on a glass filter funnel with MilliQ water
(5 times) and methanol (5 times) before being dried under a stream of nitrogen. 10 mg PMA
and 20 mg 4-pentynoyl peptide moiety, copper wire (10 mg) and DMF (2 mL) were added
to the flask and stirred. The click reaction was terminated after 12 h when the solution color
turned to greenish-blue. The resulting solution was filtered through a Cameo® syringe
filter with PTFE membrane (pore size: 0.45 µm, volume: 12 mL). The polymer-peptide
conjugate was self-assembled by solvent exchange (DMF-water) using a syringe pump.
A DMF solution containing the polymer peptide conjugate (2 mL) was slowly added to
the water (4 mL) over 3 h. The conjugate was dialyzed for 3 days to remove unreacted
peptide, copper and organic solvent. The resulting conjugate nanoparticles (5–8) were ana-
lyzed upon freeze drying by element microanalysis to determine the antigen substitution
ratio as previously reported [50], based on comparison of the theoretical N/C (nitrogen
carbon ratio) and the N/C obtained from elemental analysis (Supplementary Figure S3)
and characterized by DLS and TEM (Figure 2 and Supplementary Figure S2).

4.5. Preparation of Vaccine Candidate V0

Vaccine candidate V0 was freshly prepared before each immunization by emulsifica-
tion of 1–4 with CFA. Thus, peptides 1–4 (0.25 mg of each) dissolved in PBS (0.5 mL) was
emulsified with 0.5 mL of CFA solution.

4.6. Preparation of Vaccine Candidate V1

The solution of conjugates 5–8 (0.5 mg of each) in DMF (0.5 mL each) were mixed
together and slowly added to the water (4 mL) using a syringe pump over 2 h. The mixture
of conjugates was dialyzed for 3 days and then concentrated (1.1 mg/mL of 5–8 in water).
Finally, 10X PBS (0.1 mL) was added to the aqueous solution of 5–8 (0.9 mL) to produce V1
(1.0 mg/mL of 5–8 in PBS).

4.7. Preparation of Vaccine Candidate V2

Peptides 9–12 (0.25 mg each) were dissolved in PBS (1.0 mL). The solution of peptides
(1 mg/mL) was vortexed for 1 min.

4.8. Preparation of Vaccine Candidate V3

Liposomes were prepared by thin lipid hydration. Chloroform (1 mL) was used to
dissolve DPPC (4 mg), DDAB (0.017 mg) and cholesterol (1.05 mg) (at a molar ratio of
2:0.01:1). The peptides 9–12 (0.25 mg of each peptide) were dissolved in 1 mL of methanol
to form a clear solution and added to the lipid solution. The solvents were then slowly
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evaporated under reduced pressure using a rotatory evaporator to produce a film on the
inner surface of a round bottom flask. Residual solvents were removed under vacuum
overnight. The lipids were rehydrated with 1 mL of water and swirled gently to produce
liposomes. The emulsion was extruded 21 times in both directions using a 200 nm pc
membrane filter to create homogenous liposomes. Formulation in PBS was achieved by
adding 0.1 mL of 10X PBS into 0.9 mL of the liposomal formulation. The final concentration
of 9–12 in liposomes was 1 mg/mL.

4.9. Preparation of Vaccine Candidate V4

Peptides 1–4 (0.25 mg each) were dissolved in PBS (0.5 mL) and gently mixed with the
solution of rods (1 mg in 0.5 mL of PBS).

4.10. Dynamic Light Scattering

Individual vaccine candidates V1–V4 (1 mg/mL in PBS) were analyzed using DLS to
measure particle size (zeta intensity) and PDI. Measurements were taken at 25 ◦C and 173◦

light scattering using a Malvern Zetasizer Nano ZP instrument with Malvern Zetasizer
Analyser 6.2 software (Malvern, Worcestershire, UK).

4.11. Transmission Electron Microscopy

Particle imaging was captured using a JEM-1010 TEM (HT7700 Exalens, HITACHI Ltd.,
JEOL Ltd., Japan) operated at 80 kV, using negative staining. Samples of V1–V4 (1:2 dilution
of samples prepared for DLS analysis) were applied to glow-discharged carbon-coated
copper 200 mesh grids (Ted Pella) and stained with 2% uranyl acetate.

4.12. Immunization

C57/BL6 female mice (six weeks old) were used for immunization experiments [35,66].
Mice, housed in cages under sterile conditions, were evenly divided into four groups
(V1–V4), and positive (V0) and negative control (PBS) groups, with five mice per group.
Each mouse received 50 µg of the vaccine candidate (in the respective formulations) in
50 µL of PBS, except for mice in the negative control group, that just received 50 µL PBS.
Immunizations were carried out on day 1, 22 and 43. Blood samples were collected via
tail bleed on days 0, 21 and 42. Blood was centrifuged for 10 min at 8000 rpm. The
supernatant serum was then transferred into sterile tubes and stored at −80 ◦C for further
use. All animal experiments were approved by The University of Queensland Animal
Ethics Committee (AEC), AEC Approval number: 2017/AE000069.

4.13. Antibody Titer Detection

IgG levels were examined by enzyme-linked immunosorbent assay [45]. In prepa-
ration, 96-well microtiter plates were coated with carbonate coating buffer comprising
50 µg of mixture 1–3 as antigens. To minimize nonspecific binding, the plates were subse-
quently blocked with 5% skim milk. Serum samples were serially diluted in 0.5% skim milk,
starting at 1:100, down the plate. Afterwards, secondary antibody (33 µL of horseradish
peroxide-conjugated anti-mouse IgG) in 100 mL of 0.5% skim milk was added to the plates.
The plates were then incubated with 100 µL of OPD substrate (o-phenylenediamine dihy-
drochloride substrate tablet) for 20 min at room temperature. Absorbance was measured at
450 nm using a Spectra Max microplate reader (Molecular Devices, San Jose, USA).

4.14. Statistical Analysis

Statistical analysis of antibody titers between groups was performed using one-way
analysis of variance (ANOVA) followed by Tukey’s multiple comparisons test. GraphPad
Prism 7.03 software (GraphPad Software Inc., La Jolla, USA) was used for statistical analysis.
Differences were considered significant at p < 0.05.
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5. Conclusions

All currently approved PCV2 vaccines use attenuated whole PCV2a pathogen or its
fragments, and thus do not cover other subtypes of PCV. We developed novel peptide-
based subunit PCV2b vaccine candidates that elicited high IgG antibody titers in mice.
All our vaccine delivery systems were as effective as the powerful but toxic commercial
adjuvant (CFA) after 3 immunizations. However, only the poly(methyl acrylate)-based
delivery system induced superior antibody titers after a single immunization, showing its
advantage over other systems. To ultimately prove efficacy of the vaccines, immunization
and challenge studies in pigs are still required. Nevertheless, our strategy opens the door
for the application of multiepitope peptide-based subunit vaccines against PCV2. As many
farms worldwide are burdened by PCV2, the development of more effective vaccines
against PCV would be a great economic gain to the swine industry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28052248/s1, Figure S1: HPLC and ESI-MS spectra
of 1–4, P1–P4 and 9–12; Figure S2: DLS spectra of vaccine candidates V1–V4 (size distribution by
intensity and zeta potential); Figure S3: The curve of the theoretical substitution ratio (1 = 100%,
horizontal axis) of peptide P1–P4 to PMA in conjugates 5–8 versus N/C ratio (nitrogen carbon ratio
of elemental analysis) of conjugates (vertical axis). Experimentally determined N/C by elemental
analysis: 0.124 (5), 0.170 (6), 0.091 (7), and 0.204 (8).
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42. Çağdaş, M.; Sezer, A.D.; Bucak, S. Liposomes as potential drug carrier systems for drug delivery. Appl. Nanotechnol. Drug Deliv.

2014, 1, 1–50. [CrossRef]
43. De Serrano, L.O.; Burkhart, D.J. Liposomal vaccine formulations as prophylactic agents: Design considerations for modern

vaccines. J. Nanobiotechnol. 2017, 15, 83. [CrossRef]
44. Yang, J.; Azuar, A.; Toth, I.; Skwarczynski, M. Liposomes for the delivery of lipopeptide vaccines. Vaccine Des. 2021, 2412, 295–307.

[CrossRef]
45. Azuar, A.; Madge, H.Y.R.; Boer, J.C.; Gonzalez Cruz, J.L.; Wang, J.; Khalil, Z.G.; Deceneux, C.; Goodchild, G.; Yang, J.; Koirala, P.;

et al. Poly(hydrophobic Amino Acids) and Liposomes for Delivery of Vaccine against Group A Streptococcus. Vaccines 2022,
10, 1212. [CrossRef]

46. Wijburg, O.L.; Heemskerk, M.H.; Boog, C.J.; Van Rooijen, N. Role of spleen macrophages in innate and acquired immune
responses against mouse hepatitis virus strain A59. Immunology 1997, 92, 252–258. [CrossRef]

47. Gu, W.; Bobrin, V.A.; Chen, S.-P.R.; Wang, Z.; Schoning, J.P.; Gu, Y.; Chen, W.; Chen, M.; Jia, Z.; Monteiro, M.J. Biodistribution of
PNIPAM-Coated Nanostructures Synthesized by the TDMT Method. Biomacromolecules 2019, 20, 625–634. [CrossRef]

48. Koirala, P.; Chen, S.-P.R.; Boer, J.C.; Khalil, Z.G.; Deceneux, C.; Goodchild, G.; Lu, L.; Faruck, M.O.; Shalash, A.O.; Bashiri, S.; et al.
Polymeric Nanoparticles as a Self-Adjuvanting Peptide Vaccine Delivery System: The Role of Shape. Adv. Funct. Mater. 2023,
2209304. [CrossRef]

49. Waleed, M.; Hussein, M.S.; Istvan, T. Peptide Synthesis, Methods and Protocols, 1st ed.; Humana: New York, NY, USA, 2021.
50. Chandrudu, S.; Bartlett, S.; Khalil, Z.G.; Jia, Z.; Hussein, W.M.; Capon, R.J.; Batzloff, M.R.; Good, M.F.; Monteiro, M.J.; Skwar-

czynski, M. Linear and branched polyacrylates as a delivery platform for peptide-based vaccines. Ther. Deliv. 2016, 7, 601–609.
[CrossRef] [PubMed]

51. Fort, M.; Olvera, A.; Sibila, M.; Segalés, J.; Mateu, E. Detection of neutralizing antibodies in postweaning multisystemic wasting
syndrome (PMWS)-affected and non-PMWS-affected pigs. Vet. Microbiol. 2007, 125, 244–255. [CrossRef]

52. Petrovsky, N.; Aguilar, J.C. Vaccine adjuvants: Current state and future trends. Immunol. Cell Biol. 2004, 82, 488–496. [CrossRef]
53. Champion, J.A.; Mitragotri, S. Shape induced inhibition of phagocytosis of polymer particles. Pharm. Res. 2009, 26, 244–249.

[CrossRef]
54. Gupta, N.; Vedi, S.; Kunimoto, D.Y.; Agrawal, B.; Kumar, R. Novel lipopeptides of ESAT-6 induce strong protective immunity

against Mycobacterium tuberculosis: Routes of immunization and TLR agonists critically impact vaccine’s efficacy. Vaccine 2016,
34, 5677–5688. [CrossRef]

55. Sun, B.; Xia, T. Nanomaterial-based vaccine adjuvants. J. Mater. Chem. B 2016, 4, 5496–5509. [CrossRef] [PubMed]
56. Fifis, T.; Gamvrellis, A.; Crimeen-Irwin, B.; Pietersz, G.A.; Li, J.; Mottram, P.L.; McKenzie, I.F.; Plebanski, M. Size-dependent

immunogenicity: Therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 2004, 173, 3148–3154.
[CrossRef] [PubMed]
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