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Abstract: The renaissance of research into natural products has unequivocally and paradigmatically
shifted our knowledge about the significant role of natural products in cancer chemoprevention.
Bufalin is a pharmacologically active molecule isolated from the skin of the toad Bufo gargarizans or
Bufo melanostictus. Bufalin has characteristically unique properties to regulate multiple molecular
targets and can be used to harness multi-targeted therapeutic regimes against different cancers.
There is burgeoning evidence related to functional roles of signaling cascades in carcinogenesis and
metastasis. Bufalin has been reported to regulate pleiotropically a myriad of signal transduction
cascades in various cancers. Importantly, bufalin mechanistically regulated JAK/STAT, Wnt/β-
Catenin, mTOR, TRAIL/TRAIL-R, EGFR, and c-MET pathways. Furthermore, bufalin-mediated
modulation of non-coding RNAs in different cancers has also started to gain tremendous momentum.
Similarly, bufalin-mediated targeting of tumor microenvironments and tumor macrophages is an
area of exciting research and we have only started to scratch the surface of the complicated nature
of molecular oncology. Cell culture studies and animal models provide proof-of-concept for the
impetus role of bufalin in the inhibition of carcinogenesis and metastasis. Bufalin-related clinical
studies are insufficient and interdisciplinary researchers require detailed analysis of the existing
knowledge gaps.
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1. Introduction

Recent advancements in next-generation sequencing and multi-omics analyses have
demonstrated how crosstalk of different signaling cascades can result in the formation of a
complex web of circuitries within cancer cells that, if fully mapped, can be utilized for more
precisely targeted therapies. A wealth of information shows that intracellular signaling is
dependent on a multitude of signaling pathways that have evolved for tightly orchestrated
and dynamic cellular responses. Furthermore, many signaling cascades interact with each
other and form multi-dimensional networks that regulate the integration of numerous
inputs to generate sophisticated cellular responses. Seminal research works have uncovered
key discoveries in fundamental biology and different types of cellular signaling pathways.
Deregulation of transduction cascades not only promoted cancer progression but also
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fueled the spread of therapeutically resistant and metastatically competent cancer cells to
distant organs for the development of secondary tumors [1–6].

Natural product research in preclinical studies has generated valuable literature related
to inhibition of carcinogenesis and metastasis [7–9]. Small molecules are pharmacological
tools of considerable value for mechanistic dissection of highly intricate biological processes
and identification of possible therapeutic interventions. Chemoproteomic workflows have
enabled additional multiplexing in research methodologies, which will be valuable for
assessing target identification and compound selectivity. The metamorphosis of preclinical
research has widened the avenues of effective clinical research. Mechanistic insights
gleaned over decades of ground-breaking discoveries have sparked unprecedented research
interests in pharmacological evaluation of natural products in the amelioration and remedy
of different diseases [10,11].

Bufalin is a pharmacologically active molecule isolated from the skin of the toad
Bufo gargarizans or Bufo melanostictus. A substantial volume of conceptual knowledge
has been added to the rapidly evolving field of medicinal research associated with the
pharmaceutical significance of bufalin. Cancer chemopreventive effects of bufalin have been
reviewed previously in various useful and informative review articles [12–16].In the current
mini-review we summarize the mechanism-based roles of bufalin in different cancers. We
browsed PUBMED and SCOPUS using different keywords to retrieve the results. Moreover,
clinical trials associated with bufalin were carefully browsed in https://clinicaltrials.gov
access date 15 February 2023. We put the spotlight on bufalin-mediated regulation of
JAK/STAT, Wnt/β-Catenin, mTOR, TRAIL/TRAIL-R, EGFR, and c-MET pathways.

2. Regulation of JAK/STAT Pathway by Bufalin

A look through a scientific lens indicates that in a burst of research activity, principally
published between 1991 and 1994, the cast of JAK-STAT family members and the trajectories
of the pathway were mapped to a greater extent. Many functional and structural protein
studies and physiological studies on the proteins of the pathway have been reported. The
Janus kinase (JAK)/signal transducers and activators of transcription (STATs) transduction
pathway is an intracellular signaling cascade required for response to many extracellular lig-
ands. Essentially, phosphorylation induces JAK activation and consequently these kinases
phosphorylate intracellular components of the receptors, which allows the recruitment of
STAT proteins [17–21]. Genome-wide analyses have yielded a number of discoveries about
the biology of STAT proteins. In this section, the most recent evidence has been gathered to
summarize multi-step regulation of JAK/STAT pathways by bufalin in different cancers.

Cancer-associated fibroblasts (CAFs) have a critical role in tumor microenvironment.
CAF-conditioned media-treated colorectal cancer cells expressed high levels of p-STAT3
and matrix metalloproteinase-2, whereas low levels of E-cadherin were found in hyperac-
tive STAT3-expressing cancer cells. Bufalin blocked CAF-induced invasion and metastasis
of colorectal cancer cells by inactivation of the STAT3 pathway. Intraperitoneal injec-
tions of bufalin efficiently suppressed hepatic metastatic nodules in mice injected with
HCT116 and CAF cells in the spleen (shown in Figure 1) [22].

Bufalin inhibited the growth of the tumors in BALB/c mice subcutaneously injected
with CT26 cancer cells. Bufalin notably reduced tumor blood vessels in xenografted
mice. There was an evident reduction in the number of blood vessels around subcuta-
neously transplanted tumors and the proportions of p-STAT3-positive blood vessels in
mice intraperitoneally injected with bufalin. Bufalin significantly inhibited liver metastases
without affecting bodyweight in rodent models. Small-sized metastatic foci were found
in the livers of rodent models treated with bufalin. Importantly, there was significant
reduction in metastatic lesions on the surface of the liver in experimental mice administered
with intraperitoneal injections of bufalin. Bufalin efficiently reduced the number of blood
vessels in the liver and spleen metastases (shown in Figure 1) [23].

https://clinicaltrials.gov
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CDK9-mediated activation of STAT3 was inhibited in the tumor tissues in acetyl-bufalin-
treated mice [24]. 

BF211, a derivative of bufalin, significantly suppressed the levels of p-JAK2 and p-
STAT3 in ARP-1 and CAG cells. Tumors were larger in NOD/SCID mice subcutaneously 
inoculated with ARP-1 multiple myeloma cells. However, BF211 not only reduced tumor 
growth but also reduced the levels of p-JAK2 and p-STAT3 [25].  

Bufalin-mediated inactivation of STAT3 has also been reported in colon cancer cells 
[26]. Bufalin considerably reduced Mcl-1 levels in MCF-7 and MDA-MB-231 cancer cells. 
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Figure 1. (A) JAK/STAT signaling triggered the upregulation of Bcl2, Mcl-1, survivin, and VEGF.
JAK2 phosphorylated STAT3 and promoted nuclear accumulation of STAT3 proteins. (B,C) Bufalin
inhibited the activation of JAK2 and STAT3. (D) Acetyl-bufalin inhibited tumor formation in mice.
Bufalin also inhibited angiogenesis and liver metastasis.

STAT3 transcriptionally upregulated Bcl2, Mcl-1, survivin, and VEGF (shown in
Figure 1). Acetyl-bufalin concentration-dependently reduced p-STAT3 levels in non-small-
cell lung cancer cells. CDK9 promoted IL6-induced phosphorylation of STAT3, while
IL6-induced STAT3 phosphorylation was considerably impaired in CDK9-silenced cells.
Acetyl-bufalin directly interacted with CDK9 and blocked CDK9-mediated activation of
STAT3. Intraperitoneal injections of acetyl-bufalin caused regression of primary tumors
in rodent models subcutaneously implanted with H460 cancer cells (shown in Figure 1).
CDK9-mediated activation of STAT3 was inhibited in the tumor tissues in acetyl-bufalin-
treated mice [24].

BF211, a derivative of bufalin, significantly suppressed the levels of p-JAK2 and p-
STAT3 in ARP-1 and CAG cells. Tumors were larger in NOD/SCID mice subcutaneously
inoculated with ARP-1 multiple myeloma cells. However, BF211 not only reduced tumor
growth but also reduced the levels of p-JAK2 and p-STAT3 [25].

Bufalin-mediated inactivation of STAT3 has also been reported in colon cancer cells [26].
Bufalin considerably reduced Mcl-1 levels in MCF-7 and MDA-MB-231 cancer cells. Fur-
thermore, bufalin-mediated inactivation of STAT3 remarkably enhanced apoptotic death in
breast cancer cells [27]. Overall, these findings indicated that bufalin prominently enhanced
apoptosis via inactivation of STAT3.

Overall, these findings indicate that bufalin demonstrated significant efficiency against
STAT3 molecules. Inactivation of STAT3 led to considerable downregulation of the levels
of STAT3-regulated target gene networks, which promoted carcinogenesis. There have
been encouraging results in the context of significant tumor shrinkage as well as metastatic
spread to the secondary organs in mice treated with bufalin. However, there is a need to
further explore whether bufalin regulates various other STAT proteins and inhibits carcino-
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genesis. Therefore, multi-targeted approach by pharmacological targeting of different STAT
proteins by bufalin will perhaps be more exciting and valuable in future studies.

3. Regulation of AKT/mTOR Pathway by Bufalin

mTOR protein kinase occupies a central role in the nexus of many signaling cascades
and plays essential roles in the regulation of different mechanisms. Protein synthesis is
a resource-intensive and energy-intensive process in the rapidly growing cells. It is thus
tightly controlled by mTORC1, which promotes protein synthesis by phosphorylation of
4E-BPs (eukaryotic initiation factor 4E-binding proteins) and p70S6K1 (S6 kinase 1). In
its unphosphorylated state, 4E-BP1 suppressed translation by binding and sequestration
of eIF4E (eukaryotic translation initiation factor 4E), an essential constituent of the eIF4F
cap-binding complex [28]. mTORC1 regulated cap-dependent translation of mRNAs by
direct phosphorylation of the inhibitors of eIF4E: namely, 4E-BP1 and 4E-BP2. TSC2 formed
a heterodimeric complex with TSC1 and inhibited mTORC1. However, phosphorylation of
TSC2 at the 1462nd threonine by AKT inhibited its GAP activity for RHEB, which therefore
remained in a GTP-bound active state and activated mTORC1. AMPK inhibited mTORC1
by phosphorylation of RAPTOR at serine-792 and TSC2 at serine-1387 which promoted
the inhibitory functions of TSC1-TSC2 complexes [29,30]. Here, we offer an overview of
current advancements in the field regarding the regulation of the AKT/mTOR pathway
by bufalin.

Importantly, bufalin significantly reduced the phosphorylation levels of mTOR and
S6K. Furthermore, HIF-1α levels were significantly reduced by bufalin. HIF-1α overexpres-
sion attenuated the inhibitory effects of bufalin on ovarian cancer cells. Intraperitoneal
injections of bufalin proficiently induced regression of tumor xenografts in rodent models
inoculated with PA-1 cells [31].

Cbl-b efficiently promoted autophagic pathway activity induced by bufalin through
the inactivation of mTOR and activation of ERK1/2. mTOR has been reported to nega-
tively regulate autophagy. Therefore, once activated by AKT/PKB, mTOR inhibited au-
tophagy by enhancing the phosphorylation of p70S6K. Bufalin effectively reduced p-AKT,
p-mTOR, and p-p70S6K (Figure 2) [32]. Together, these details indicate that inactivation of
AKT/mTOR/p70S6K cascades and functionalization of the ERK pathway are involved in
the activation of the autophagic pathway in bufalin-treated MGC803 cancer cells.

Bufalin inactivated the AKT/mTOR pathway and inhibited migratory and invasive ca-
pabilities of ACHN cells. Additionally, bufalin suppressed invasive properties by reducing
the levels of HIF-1α and N-cadherin in ACHN cells [33].

There are direct pieces of evidence which suggest that bufalin induces apoptosis via
inactivation of AKT/mTOR. Bufalin suppressed the levels of mTOR, p-p70S6K, and p-
4EBP1 in Eca109 cancer cells (Figure 2). Bufalin also attenuated growth of orthotopically
transplanted tumors in nude mice [34].

Bufalin and sorafenib worked effectively and reduced the levels of p-AKT and p-
mTOR in SMMC-7721 cancer cells. Moreover, bufalin and sorafenib remarkably impaired
the growth of the volume and mass of primary tumors in mice implanted subcutaneously
with SMMC-7721 cells [35].

A series of pioneering research works clearly revealed that p70S6K-mediated phos-
phorylation of S6 correlated with the rate of mRNA translation. Classically, p70S6K has
been characterized as a versatile kinase for the regulation of mRNA translation through
S6 phosphorylation, and pharmacological targeting of p70S6K has been found to result in
effective inhibition of cancer progression. As p70S6K is a downstream effector of mTOR,
inactivation of the AKT/mTOR pathway therefore efficiently interferes with the activation
of p70S6K, leading to significant reduction in cancer growth in animal models.
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4. Regulation of Wnt/β-Catenin by Bufalin

In the absence of Wnt signals, degradation of β-catenin is mediated by a destruction
complex consisting of adenomatous polyposis coli (APC), Axin and glycogen synthase
kinase-3 (GSK-3β) proteins. Following the binding of Wnt to receptors of Frizzled and
LRP families on the cell surface, β-catenin efficiently moved into the nucleus and tran-
scriptionally regulated a myriad of gene networks. Phosphorylation of GSK-3β at serine-9
resulted in the inactivation of GSK-3β. Therefore, GSK-3β inactivation led to activation
and transportation of β-catenin to the nucleus [36–39]. In this section, we highlight the
recent breakthroughs that have been made in the field of molecular oncology and discuss
how regulation of the Wnt/β-catenin pathway by bufalin will influence ongoing basic re-
search and the design of rationale-based clinical trials to improve the treatment options for
cancer patients.

Cell cycle-related kinase (CCRK) acted as an oncogenic master modulator for the
activation and nuclear translocation of β-catenin, where it formed a complex with tran-
scriptional factor TCF. Notably, the complex binds to promoter regions of EGFR (epidermal
growth factor receptor) and CCND1 (cyclin D1). Bufalin efficiently reduced the levels of
CCND1, EGFR, and CCRK. It was shown that CCRK overexpression promoted tumorigen-
esis by activation of β-catenin/TCF signaling. Subcutaneous inoculation of PLC5 cells into
the right flanks of athymic nude mice was used for the construction of the xenograft rodent
model. Tumor pieces were implanted into the liver lobes of nude mice for the development
of orthotopic models. Bufalin not only reduced CCRK but also decreased nuclear levels of
β-catenin in the tumor tissues [40].

Bufalin effectively blocked androgen receptor-mediated transcriptional upregulation
of CCRK (cell cycle-related kinase) in HepG2.2.15 and PLC5 cells. Levels of phosphorylated
androgen receptor were found to be reduced by bufalin. GSK-3β phosphorylation by CCRK
caused activation of β-catenin. Bufalin inhibited HBx-mediated intrahepatic tumorigenicity,
and reduced the levels of p-ARSer81, CCRK, p-GSK3βSer9, and active β-catenin in tumor
tissues [41].

Bufalin markedly inhibited the migratory and invasive capacities of hepatocellular
carcinoma cells, and efficiently caused reduction in the levels of p-GSK3βSer9 and active
β-catenin in BEL-7402 cells [42].
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Deregulated expression of β-catenin resulted in the instability of the complexes formed
with E-cadherin. Dissociation of β-catenin and E-cadherin resulted in a loss of epithelial
characteristics and potently promoted increasingly invasive phenotypes. Bufalin interfered
with nuclear transportation of β-catenin in colorectal cancer cells [43].

The recent advancements in the characterization of aberrantly activated β-catenin
target gene programming in cancer cells also provide exceptional prospects for pharmaco-
logical targeting of the oncogenic Wnt/β-catenin pathway. As illustrated by the examples
given in this section, comprehensive experimental evaluation of the functional effects of
bufalin on the Wnt/β-catenin pathway will be advantageous.

5. Regulation of TRAIL Pathway by Bufalin

Excitingly, a maze of information in the rapidly growing field of apoptosis research
has unveiled dichotomously branched pathways, consisting of extrinsic and intrinsic
apoptotic pathways. Binding of TRAIL to TRAIL-R1 or TRAIL-R2 results in oligomeriza-
tion of receptors on the cell membrane and initiation of apoptotic cell death. Following
ligand–receptor interactions, FAS associated protein with death domain (FADD) is re-
cruited to death domain motifs within the carboxyl terminus of death receptors. Studies
have shown that death inducible signaling complex (DISC) is formed at death receptors
by assembly of multi-molecular machinery consisting of FADD and pro-caspase-8, and
promotes the functionalization of caspase-8 [44–49]. During intrinsic apoptosis, loss of
subcellular and submitochondrial compartmentalization triggered the exit of cytochrome
c, SMAC/DIABLO, and OMI/HTRA. In this section, we review collected key aspects
associated with bufalin-mediated regulation of TRAIL-mediated apoptotic cell death.

Intriguingly, aggregations of lipid rafts as well as redistribution of death receptors
(DR4, DR5) in lipid rafts were identified in bufalin-treated MCF-7 and MDA-MB-231 cancer
cells. The findings revealed that lipid raft dysfunction caused resistance against TRAIL,
whereas bufalin-mediated redistribution of DR4 and DR5 within lipid rafts significantly
contributed to TRAIL-mediated apoptotic death in breast cancer cells. Depletion of choles-
terol by methyl-β-cyclodextrin has been a widely used approach. Clustering of DR4 and
DR5 was reduced markedly in cancer cells pre-treated with methyl-β-cyclodextrin [50].

Studies have yielded convincing evidence that Cbl-b negatively regulated the TRAIL-
driven pathway. Cbl-b was downregulated by bufalin in MDA-MB-231 and MCF-7 cancer
cells. Essentially, bufalin upregulated the levels of DR4 and DR5 by suppression in the
levels of Cbl-b. Bufalin and TRAIL-mediated activation of ERK, JNK, and p38 MAPK was
found to be significantly enhanced in Cbl-b-silenced cancer cells [51].

Bufalin increased the levels of Bax, cytochrome c, Endonuclease G and AIF (apoptosis-
inducing factor). Concomitantly, bufalin reduced Bcl-2 in NPC-TW 076 cells. Additionally,
bufalin stimulated the expression levels of TRAIL, DR4, DR5, and FADD [52].

The TRAIL pathway contains another protein that blocks caspase activation. Impor-
tantly, c-FLIP (cellular FLICE inhibitory protein) is an inactive homologue of caspase-8 that
contains a DED but lacks a catalytically active site. Bufalin upregulated the expression
of DR5 in T24 cancer cells. Moreover, TRAIL and bufalin efficiently reduced the levels of
c-FLIP and XIAP in T24 cancer cells (Figure 3) [53].

Bufalin enhanced the levels of FasL, Fas, cytochrome c, and APAF in NCI-H460 cells
(Figure 3). Intraperitoneal injections of bufalin efficiently impaired tumor growth in mice
inoculated with NCI-H460 cells [54].

Bufalin triggered apoptotic death by inducing an increase in mitochondrial release of
cytochrome c. Cyclosporin A, a specified inhibitor of mitochondrial permeability transition
pore, impaired bufalin-mediated apoptotic death [55].

Bufalin and 5-FU combinatorially reduced the levels of XIAP, Bcl-2, and Mcl-1 and
simultaneously enhanced the levels of Bax and Bad in HCT116 cells [56]. Bufalin also
promoted mitochondrial release of SMAC/DIABLO (Figure 2) [57].
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Figure 3. Diagrammatic representation of regulation of TRAIL-mediated apoptotic death by bufalin.
Importantly, bufalin enhanced the levels of FADD and DR4/DR5. Bufalin activated death inducible
signaling complex. Bufalin triggered the release of cytochrome c and SMAC/DIABLO. C-FLIP
prevented the formation of DISC but bufalin prominently reduced the levels of c-FLIP. Bufalin also
inhibited Bcl-2 and XIAP.

TRAIL-mediated signaling has been extensively studied with rapid advancements that
have drawn widespread appreciation. Above all, clinical trials of TRAIL-based therapeutics
have increased significantly. Therefore, it is necessary to unveil additional aspects of TRAIL-
mediated signaling likely to be targeted by bufalin in different cancers. Comprehensive
evaluation of bufalin as a TRAIL sensitizer will be very valuable in cancer prevention.
Therefore, expression analysis of death receptors including regulation of death receptor
internalization and degradation in bufalin-treated cell lines will yield insightful information.
Likewise, TRAIL-based therapeutics can be combined with bufalin for analysis of tumor
inhibition in xenografted animal models.

6. Regulation of Non-Coding RNAs by Bufalin

More prominently, extraordinary strides have been made in the achievement of a high-
resolution view of mechanistic regulation of cell signaling pathways by non-coding RNAs
in different cancers. The widespread alteration of non-coding RNAs demonstrated that
deregulation of miRNAs [58–60], lncRNAs [61–64], and circular RNAs [65–67] contributed
to multiple hallmarks of cancer. In this section, we discuss recent findings in the field,
where the emerging landscape gives a better overview of the regulation of non-coding
RNAs by bufalin in different cancers.

6.1. Tumor Suppressive Role of miRNAs

hsa-miR-3129 directly targeted CD44 and inhibited ovarian cancer progression. Tumor
growth was found to be dramatically suppressed in mice inoculated with miR-3129-CAOV-
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3 cancer cells. Bufalin-mediated cancer inhibitory effects were noted to be impaired in
miR-3129-silenced cancer cells [68].

SPARC (secreted protein acidic and rich in cysteine) promoted carcinogenesis and
metastasis. SPARC has been shown to be directly targeted by miR-203. SPARC levels were
found to be decreased significantly in miR-203-transfected U87 and U251 cells. Bufalin
stimulated the expression levels of miRNA-203 in glioma cells [69].

BAG5 (Bcl-2-associated athanogene 5) was shown to be negatively regulated by miR-
127-3p. Overexpression of miR-127-3p efficiently inhibited cancer growth and increased
bufalin sensitivity in epithelial ovarian cancer. Tumor growth was found to be significantly
reduced in mice inoculated with miR-127-3p-overexpressing OVCAR-3 cells [70].

Bufalin promoted miR-148a-mediated targeting of DNMT1 and proficiently inhibited
invasive properties of cancer stem cells derived from primary osteosarcoma cells [71].

6.2. Oncogenic miRNAs

BBC3 (Bcl2 binding component 3) inhibited the progression of osteosarcoma. However,
BBC3 is directly targeted by miR-221 in osteosarcoma cells. Bufalin efficiently downregu-
lated miR-221 and promoted apoptotic death in osteosarcoma cells [72].

Bufalin-induced apoptotic death was noted to be remarkably enhanced in miR-183-
silenced SKOV3 and ES-2 cells. Furthermore, primary tumors derived from miR-183-
silenced SKOV3 cancer cells were noted to be markedly reduced in tumor-bearing mice [73].

There is direct evidence that highlights miRNA-mediated targeting of pro-apoptotic
genes. miR-298 downregulated BAX and drastically impaired apoptotic death in gastric
cancer cells. Bufalin interfered with miR-298-driven targeting of BAX and enhanced
apoptotic death [74].

Studies have shown that DNA methyltransferases (DNMTs) epigenetically inactivated
oncogenic miR-155-5p. Bufalin downregulated DNMT1 and DNMT3a and contemporane-
ously increased the levels of miR-155-5p. However, miR-155-5p upregulation led to down-
regulation of FOXO3A. As FOXO3A is involved in the regulation of apoptosis-associated
signaling, therefore, miR-155-5p-mediated targeting of FOXO3A impaired bufalin-induced
apoptotic death in cancer cells [75]. In accordance with this approach, keeping in view
that bufalin stimulated the expression of miR-155-5p and blocked apoptosis, inhibition of
miR-155-5p should maximize the chemopreventive effects of bufalin.

6.3. Long Non-Coding RNAs

SRC-1 acted as an oncogene and promoted the stability of XIST RNA in cancer cells.
XIST expression was potently downregulated in SRC-1 knockdown-cells, whereas expres-
sion of XIST was increased in SRC-1 overexpressing cancer cells. miR-152 not only directly
targeted KLF4 but also acted as a competitive endogenous RNA of XIST. Essentially, KLF4
levels were found to be reduced and miR-152 levels were upregulated in SRC-1 knockdown
cells, whereas SRC-1 overexpression reduced miR-152 expression and simultaneously
stimulated the levels of KLF4. Tumors derived from SRC1-overexpressing LN229 cells
were larger. SRC-1 promoted tumorigenesis of glioblastoma, whereas SRC-1 inhibition effi-
ciently impaired intracranial glioblastoma growth in rodent models. Bufalin restricted the
proliferation and sphere-forming abilities of SRC-1-overexpressing glioblastoma cells [76].

NORAD, a lncRNA, has been shown to play a central role in carcinogenesis. Im-
portantly, subcutaneous tumor volumes were found to be significantly reduced in mice
inoculated with NORAD-silenced-OVCAR-3 cells. Inhibition of NORAD caused notable
reduction in bufalin resistance [77].

HOTAIR interfered with miR-520b-mediated targeting of FGFR1 and promoted pro-
gression of prostate cancer. HOTAIR overexpression led to reversal of the suppressive
effects of bufalin on DU145 and PC3 cancer cells [78].
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6.4. Circular RNAs

Tumor suppressor circular RNAs have started to attract widespread attention because
of their tremendous potential. Additionally, research into mediated regulation of circRNAs
by natural products has opened new horizons in molecular oncology. Circ_0046264 has
been demonstrated to suppress the invasive and metastasizing potential of cancer cells.
circ_0046264 acted as a sponge for miR-522-3p and inhibited proliferation of cancer cells.
Bufalin inhibited tumor growth in experimental mice but, expectedly, knockdown of
circ_0046264 led to abrogation of bufalin-mediated cancer inhibitory effects [79].

7. Tumor Inhibitory Role of Bufalin: Animal Model Studies

Osimertinib is a third-generation standard-of-care therapy for EGFR mutation-positive
advanced non–small-cell lung cancers. Osimertinib caused considerable reduction in
the levels of Mcl-1 in HCC827 and PC-9 cells. USP9X and Ku70 have been functionally
characterized as Mcl-1 deubiquitinases. Studies had shown that deubiquitinases removed
polyubiquitin chains from Mcl-1 and enhanced its stability (Figure 4). Levels of Mcl-1
levels were found to be robustly increased in Ku70-overexpressing PC-9 cells. However,
silencing of Ku70 led to a notable reduction in the levels of Mcl-1 and enhanced osimertinib-
sensitivity in PC-9/OR cells. Moreover, combinatorial treatment with osimertinib and
bufalin significantly downregulated the levels of Ku70 and Mcl-1 in tumor tissues of
NSCLC xenograft mouse models [80].
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Figure 4. (A) Bufalin induced dissociation of KU70 and Mcl-1 and promoted degradation of Mcl-1.
(B) Bufalin enhanced the interactions of ZFP91 and E2F2. Bufalin mediated an increase in the
polyubiquitination levels of E2F2. (C) Bufalin inhibited calcineurin mediated dephosphorylation and
nuclear accumulation of NFAT. NFAT stimulated the expression of c-Myc. (D,E) Bufalin enhanced
the expression of NKG2D in natural killer cells. Bufalin reduced the levels of ADAM9 and inhibited
the shedding of MICA.
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Bufalin enhanced proteasome activation and degradation of ATP1A1 (Na+/K+-ATPase
α1 subunit). There was an evident reduction in the levels of ATP1A1 in glioblastoma tissues
in the reported U87 orthotopic glioma animal model. Bufalin demonstrated a unique
ability to enter the brain through the blood-brain barrier and potently induced regression
of tumors in the central nervous system [81].

The E2 factor (E2F) family of transcriptional factors plays central roles in the tran-
scriptional regulation of oncogenic networks crucial for carcinogenesis and metastasis.
Zinc finger protein 91 (ZFP91), an E3 ubiquitin ligase, degraded E2F2. Bufalin-mediated
increases in the polyubiquitination levels of E2F2 were substantially decreased in ZFP91-
silenced cancer cells in the presence of proteasome inhibitor (MG-132). ZFP91 served as a
specified E3 ligase in poly-ubiquitination and proteasomal degradation of E2F2 (Figure 4).
Bufalin effectively enhanced complex formation of E2F2-ZFP91. Intraperitoneal adminis-
tration of bufalin considerably suppressed E2F2 in the tumor tissues in H22 tumor-bearing
mice. Bufalin potently enhanced the infiltration rates of CD4+ and CD8+ T cells in tumor
tissues, signifying that bufalin augmented anti-tumor responses [82].

Bufalin led to significant increase in the ubiquitylation and degradation of Mcl-1.
Bufalin dose-dependently activated GSK-3β by suppressing the levels of p-GSK-3β. Bufalin
enhanced GSK-3β-mediated reduction in the levels of Mcl-1 [83].

AHSA1 (activator of HSP90 ATPase activity-1) is a co-chaperone of HSP90A and
activates ATPase activity of HSP90A. Bufalin induced disassembly of AHSA1 and HSP90
and subsequently reduced the levels of PSMD2 and CDK6 in multiple myeloma cells.
KU-177, a selective inhibitor of AHSA1, was also found to inhibit the proliferation of MM
cells. KU-177 and bortezomib greatly extended the survival of 5TMM3VT mice. AHSA1
levels were higher in bortezomib-resistant ANBL6 cells. However, bufalin interfered with
association of AHSA1 and HSP90 and restored bortezomib sensitivity. Remarkably, KU-177
impaired the tumor-forming abilities of bortezomib-resistant ANBL6 cells [84].

Increasingly it is being realized that the functional versatilities of NFAT proteins can
be analyzed according to their complicated mechanisms of regulation and their capability
to integrate calcium signaling with other pathways. One of the roles of Ca2+ is to regulate
calcineurin, which consequently dephosphorylates NFAT proteins and promotes their
nuclear accumulation. NFAT transcriptionally enhanced the expression of c-Myc (Figure 4).
Bufalin reduced the intracellular calcium concentrations. Bufalin efficiently suppressed
the levels of NFATC1 and c-Myc in diffuse large B-cell lymphoma cells. Intraperitoneal
injections of cyclosporin A and bufalin markedly inhibited tumor growth in NOD/SCID
mice subcutaneously injected with SU-DHL-10 cells. Additionally, levels of NFATC1 and
c-Myc were found to be reduced in tumor-bearing mice [85].

Syndecans belong to the family of transmembrane heparan sulfate proteoglycans
expressed on the surfaces of cells. Syndecan-4 contains a transmembrane domain and a
cytoplasmic domain. Structurally, syndecan-4 interacts with its interacting partners through
its cytoplasmic domain. SDC4 interacts with DDX23 (DEAD-box helicase 23) through its
cytosolically located domain. Bufalin promoted the interactions of syndecan-4 with DDX23
for the regulation of genomic instability via induction of double-strand breaks. SDC4
knockdown significantly reduced the levels of p-ERK in HepG2 cells. Bufalin significantly
impaired tumor-forming abilities of HepG2 cells in animal models [86].

Achaete-scute-like 2 (ASCL2) fuels the migration and invasion of gastric cancer cells.
Bufalin downregulated the levels of ASCL2 in AGS cells. Tumors derived from ASCL2-
silenced AGS cancer cells were noted to be significantly reduced in experimental mice.
Furthermore, bufalin remarkably suppressed the growth of the tumors in mice inoculated
with ASCL2-silenced AGS cells [87].

8. Regulation of Tumor Microenvironment by Bufalin

Macrophages have functional plasticity and can be polarized into two characteristically
distinct phenotypes for modulation of the tumor microenvironment.
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Bufalin induced the activation the NF-κB pathway and triggered upregulation of IFNγ

and TNFα. However, constitutive overexpression of p50 in bone-marrow-derived macrophage
(BMDMs) markedly counteracted the effects of bufalin and concomitantly reduced the
expression of M1-associated genes. Importantly, the proportions of CD163+CD206+ M2
macrophages were found to be sharply increased and caused reversal of the pre-dominant
effects of bufalin-primed M1 macrophages. In HCC-bearing animal models, overexpression
of p50 led to remarkable impairment in the tumor-inhibitory effects of bufalin. Further-
more, the percentage of tumor-promoting M2 macrophages was found to be enhanced in
mice bearing p50-overexpressing tumors. The accumulation of bufalin-induced CD4+ and
CD8+ T cells in the tissue microenvironment was also reduced in mice inoculated with
p50-overexpressing cancer cells [88].

Bufalin efficiently inhibited chemo-resistant cell-mediated polarization of M2
macrophages. Macrophage migration inhibitory factor (MIF) inhibited the polarization of
macrophages. Bufalin blocked SRC-3-mediated transcriptional upregulation of MIF and
abrogated macrophage polarization [89].

First discovered in the late 1990s, activating receptor NKG2D participates in the
immunosurveillance of cytotoxic lymphocytes primarily through identification of stress-
induced ligands MICA/B on the surfaces of cancer cells. Bufalin upregulated membrane
bound-MICA (m-MICA) in liver cancer cells and reduced the levels of soluble s-MICA.
Bufalin enhanced the expression of NKG2D in NK-92MI cells. Moreover, expression levels
of inhibitory receptors (NKG2A, TIGIT and CTLA-4) were also found to be suppressed in
NK-92MI cells. Bufalin reduced the levels of ADAM9 and inhibited the shedding of MICA
(Figure 4) [90].

9. Nanotechnological Approaches for the Delivery of Bufalin

Previously, it has been reported that bufalin exerted cardiotoxic effects at high doses.
Therefore, interdisciplinary researchers are working on different strategies to minimize off-
target effects and enhance targeted delivery of bufalin to the tumor sites in animal models.

Tumor-targeted delivery of bufalin-loaded modified albumin-polymer hybrids have
been found to be highly effective against hepatocellular carcinoma. Bufalin-loaded nanopar-
ticles demonstrated considerably enhanced release time in circulation, with improved
permeability and retention effects. Albumin-coated nanocomplexes attenuated the side
effects of bufalin on weight gain in tumor-bearing mice [91].

Furthermore, research has shown that dual targeting immunomicelles loaded with
bufalin effectively inhibited HCC. There was a substantial accumulation of bufalin-loaded
nano-formulations in tumor tissues in mice subcutaneously injected with SMMC-7721
cells [92].

Co-delivery of multiple drugs using nanocarriers has been shown to inhibit tumori-
genesis. Lenvatinib and bufalin-loaded nanoparticles caused significant shrinkage of the
tumor mass in cholangiocarcinoma-bearing rodent models [93].

The fluorescence intensities of paclitaxel and bufalin-loaded polymeric micelles were
higher in tumors with extended circulation time and lower systemic toxicity [94].

Multifunctional albumin sub-microspheres displayed superior tumor-targeting prop-
erties. Bufalin-loaded nano-formulations significantly attenuated cardiac tissue lesions and
inflammations in the myocardial interstitial tissues were not noticed [95].

Folic acid-functionalized metal-organic framework nanoparticles have also been found
to be effective carriers of payload. These nanoparticles displayed improved water stability
and solubility, high cellular uptake, and enhanced activity against breast cancer cells [96].

10. Clinical Trials

Huachansu is a sterilized hot water extract of dried toad skin. Major chemical com-
ponents of Huachansu include indole alkaloids and steroidal cardiac glycosides (bufalin).
Importantly, dose-limiting toxicities were not observed with the use of eight-times higher
doses of Huachansu. Six patients demonstrated prolonged disease stability [97].
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Meanwhile, in another clinical trial it was observed that combinatorial treatment
with Huachansu and gemcitabine failed to improve the outcome of locally advanced or
metastatic pancreatic cancer patients [98]. However, the lack of efficacy reported in these
trials does not exclude the possible cancer chemopreventive role of Huachansu in other
different solid malignancies.

Importantly, determination of optimal doses, schedules, patient selection, and combinato-
rial strategies for bufalin and its derivatives requires continued clinical scientific exploration.

11. Future Directions and Existing Knowledge Gaps

High-throughput methods to investigate protein landscapes have quickly transported
molecular biologists into a remarkable era of precision oncology. Despite landmark dis-
coveries, numerous important questions remain unanswered. Bufalin-mediated cancer
inhibition is gradually gaining attention, and realization of the full-fledged potential of
bufalin with reference to broader analysis of regulation of signaling pathways will prove to
be advantageous. Detailed research into SHH/GLI pathway regulation is required.. Certain
hints have emerged about regulation of SHH/GLI by bufalin in cancer inhibition [99] but
these aspects need to be tested comprehensively in animal model studies. TGF/SMAD
signaling has also been tested, but needs to be analyzed in a detailed manner in different
cancers. Existing evidence reports that bufalin inhibited the TGFβ-induced migratory
capacities of A549 cancer cells. Importantly, SMAD2 and SMAD3 are directly activated
by TGFβ receptors, and bufalin exerted inhibitory effects on the SMAD2 and SMAD3 in
cancer cells. Furthermore, bufalin interfered with TGF/SMAD signaling by suppression
of TβRI and TβRII [100]. As can be concluded from the studies presented here, the early
phase of research into the cancer chemopreventive role of bufalin has gained momentum,
but this is possibly just the beginning of a new era.

12. Concluding Remarks

A wealth of knowledge and evidence has surfaced and started to resolve long-standing
questions about important molecular targets. Accordingly, regulatory roles of bioactive
molecules from natural sources at the molecular level are becoming more comprehensible.
The expanding lexicon of pharmacological properties has offered vast opportunities for
scientists from different fields to make therapeutically significant discoveries in the future.
A major challenge is our incomplete mechanistic knowledge of human biology and the
complex processes that take place within the culture of cancer cells and in rodent models
after treatment with bufalin.
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