
Citation: Sun, H.; Sun, K.; Sun, J.

Recent Advances of Marine Natural

Indole Products in Chemical and

Biological Aspects. Molecules 2023, 28,

2204. https://doi.org/10.3390/

molecules28052204

Academic Editor: Gilbert Kirsch

Received: 29 January 2023

Revised: 16 February 2023

Accepted: 23 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Review

Recent Advances of Marine Natural Indole Products in
Chemical and Biological Aspects
Haoyi Sun 1,† , Kangping Sun 1,† and Jingyong Sun 1,2,3,*

1 School of Parmacy and Pharmaceutical Sciences, Institute of Materia Medical, Shandong First Medical
University & Shandong Academy of Medical Sciences, Jinan 250117, China

2 NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan 250117, China
3 Key Laboratory for Rare & Uncommon Discases of Shandong Province, Jinan 250117, China
* Correspondence: sunjingyong@sdfmu.edu.cn; Tel.: +86-531-59567209
† These authors contributed to the work equally.

Abstract: The ocean has always been one of the important sources of natural products. In recent
years, many natural products with different structures and biological activities have been obtained,
and their value has been clearly recognized. Researchers have been deeply engaged in the field of
separation and extraction, derivative synthesis, structural studies, biological evaluation, and other
fields of research for marine natural products. Thus, a series of marine indole natural products which
have structural and biological prospect have caught our eyes. In this review, we summarize some
of these marine indole natural products with relatively good pharmacological activity and research
value, and discuss issues concerning chemistry, pharmacological activity, biological evaluation, and
synthesis, including monomeric indoles, indole peptides, bis-indoles, and annelated indoles. Most of
the compounds have cytotoxic, antiviral, antifungal, or anti-inflammatory activities.

Keywords: marine natural products; indole; pharmacological activity; total synthesis; lead compound

1. Introduction

The marine environment has been explored for the purpose of searching for new
bioactive compounds over the past 50 years, becoming an important and rich source of
potent molecules and lead compounds. Alkaloids, which constitute one of the largest
classes of natural products, are synthesized by terrestrial and marine organisms on all
evolutionary levels, usually present in organisms as mixtures consisting of several major
and a few minor compounds. These compounds have the same biosynthetic source, and
the differences only appear in functional groups.

This class of compounds has apparently evolved as a defense mechanism against
predators, and as a result, alkaloids are often highly potent and toxic molecules [1]. Marine
invertebrates have proven to be an outstanding source of active molecules, one of the most
promising being indole alkaloids.

Indole alkaloids, their activity, synthesis, and potential use in medicine have already
been reviewed in several articles [2]. In this review, we provide information on current
and potential pharmaceuticals including small molecule marine indole alkaloids, their
biological properties, and structure-activity relationship studies.

2. Monomeric Indoles and Annelated Indoles

Jiang et al. isolated two new alkaloids, phidianidines A (1) and B (2) (Figure 1), from
the marine opisthobranch mollusk Phidiana militaris. They are the first natural products
with 1,2,4-oxadiazole ring system, which show strong antitumor activity against C6 and
Hela cells, with IC50 values in the nanomolar range [3], and they were synthesized for
the first time by Guo et al. (Scheme 1). Compound 1 and synthetic analogues showed
immunosuppressive properties [4]. In addition, compound 1 was also shown to be a
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selective inhibitor of the dopamine transporter and a selective, potent ligand and partial
agonist of the µ-opioidreceptor (versus δ- and κ-opioid receptors) [5]. In addition, by
using virtual screening and experimental method, compound 1 was considered as a new
antagonist of CXCR4 which is a chemokine receptor associated with several diseases such as
HIV, rheumatoid arthritis, and cancer [6]. Compound 1 is also a potent natural antifoulant
and its structure can be tuned to generate simpler and improved synthetic analogues [7].
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Five new indole-terpenoids named penerpenes E–I (3–7) were isolated from the marine-
derived fungus Penicillium sp. KFD28 from a bivalve mollusk, Meretrix lusoria, among them,
compounds 3, 4, and 6 exhibited inhibitory activity against PTP1B with IC50 values of
14, 27, and 24 µM. Compound 3 also inhibited PTP sigma with an IC50 of 38 µM, while
compound 6 inhibited TCPTP with IC50 values of 35 µM, respectively [8].

In 2020, two new compounds named epipaxilline 8 and penerpene J were isolated
from the marine-derived fungus Penicillium sp. KFD28 by Chen et al. Compounds 8
and 9 showed inhibitory activities against PTP1B with IC50 values of 31.5 and 9.5 µM,
respectively, and compound 9 also showed inhibitory activities against TCPTP with IC50
value of 14.7 µM [9].

With the aid of genomic analysis, eight indole-diketopiperazines, including three new
compounds, spirotryprostatin G (10) and cyclotryprostatins F and G (11–12), were obtained
by large-scale cultivation of the marine-derived fungus Penicillium brasilianum HBU-136
using rice medium with 1.0% MgCl2. In addition, compound 10 proved to be active against
HL-60 cell line with the IC50 value of 6.0 µM, whereas compounds 11 and 12 are active
against McF-7 cell line with the IC50 values of 7.6 and 10.8 µM, respectively [10] (Figure 1).

Discodermindole (13a) and 6-hydroxydiscodermindole (13b), isolated from the Ba-
hama sponge Discodermia polydiscus, and trachycladindoles A-G (14a–g), isolated from
the South Australian sponge Trachycladus laevispirulifer, belong to the rather limited class
of indole alkaloids containing a 2-aminoimidazoline substituent at position 3. In addition,
they all, with the exception of compound 14g, have one or more bromine atoms in their
structure, which is common for many secondary metabolites of marine origin [11–13]
(Figure 2).
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Convoluindole A (15) was isolated from the cosmopolitan species Amathia convoluta
Lamouroux (order Ctenostomata) from the Gulf of Mexico off the coast of Florida, as
a pale yellow oil which crystallized after storage at −30 ◦C overnight, m.p. 61.5–62.5
◦C. The molecular formula was determined by high-resolution liquid second ion mass
spectrometry to be C14H17Br3N2O2. In agreement with this assignment, the isotope pattern
was characteristic of a tribrominated compound [14].

In 2020, four new indole diterpenoids, ascandinines A-D (16–19), were isolated from
an Antarctic sponge-derived fungus Aspergillus candidus HDN15-152 by Zhou et al. Ascan-
dinine A (16) possesses an unprecedented 2-oxabicyclo [2.2.2]octan-3-ol motif embedded
in a pentacyclic ring system, while ascandinines B–D (17–19) represent a rare type of indole
diterpenoid featuring the 6/5/5/6/6/6/6-fused ring system. Ascandinine C (18) displayed
anti-influenza virus A (H1N1) activity with an IC50 value of 26 µM, while ascandinine D
(19) showed cytotoxicity against HL-60 cells with an IC50 value of 7.8 µM [15] (Figure 3).
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Figure 3. The structure of compounds 15–19.

Meridianin A–G (20a–g) was discovered by Gompel et al. to be an effective inhibitor
of various protein kinases, including casein kinase 1, glycogen synthase kinase-3, cyclic
nucleotide-dependent kinases, and cyclin dependent kinases. Meridianins can penetrate
cells and disrupt the function of kinases necessary for cell division and death. This results
in the prevention of cell proliferation and the induction of apoptosis. These findings imply
that meridianins represent a potentially useful framework for the development of more
powerful and specific protein kinase inhibitors [16]. The synthesis of meridianin C, D,
F, and G (20c, d, f, and g) (Scheme 2) via a one-pot Masuda borylation-Suzuki coupling
sequence was recently introduced by Kruppa et al. [17].
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From the boreal sponge Geodia barretti, which was discovered off the coast of Nor-
way, several compounds were isolated, including barettin (21), 8,9-dihydrobarettin (22),
6-bromoconicamin (23), and a brand-new brominated marine indole. The compounds
were evaluated as inhibitors of electric eel acetylcholinesterase. Compounds 21 and 22 dis-
played significant inhibition of the enzyme, with inhibition constants (Ki) of 29 and 19 µM,
respectively, towards acetyl cholinesterase via a reversible noncompetitive mechanism [18].

Indole derivatives including new bromoindoles have been isolated from the South
Pacific marine sponges Rhopaloeides odorabile and Hyrtios sp. Their potential cytotoxic,
antioxidant, and phospholipase A2 (PLA2) inhibiting properties were valued. The new
derivative 5,6-dibromo-L-hypaphorine (24) isolated from Hyrtios sp. revealed a weak bee
venom PLA2 inhibition (IC50 = 0.2 mM) and a significant antioxidant activity with an
Oxygen Radical Absorbance Capacity (ORAC) value of 0.22 [19].

A novel indole diterpene known as penicindopene A (25) was discovered in the
Penicillium sp. YPCMAC1 deep-sea mold. Containing IC50 values of 15.2 and 20.5 µmol,
respectively, compound 25 was the first instance of an indole diterpene with a 3-hydroxyl-
2-indolone moiety, and it showed mild cytotoxicities against the A549 and HeLa cell
lines [20].

From the Red Sea sponge Hyrtios sp., Youssef et al. (2013) discovered three novel alka-
loids, hyrtioerectines D-F (26a–c). The rare marine alkaloids known as hyrtioerectines D-F
(26a–c) have a C-3/C-3 linkage between the indole and β-carboline moiety of the molecule.
Variable antibacterial, free radical scavenging, and cancer growth suppression properties
were shown by hyrtioerectines D-F (26a–c). According to Table 1 [21], compounds 26a and
b were more active than compound 26c (Figure 4).
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Table 1. Cancer cell line inhibition by hyrtioerectines D-F (26a–26c).

Compound
Cell Line (GI50 (µM))

MDA-MB-231 A549 HT-29

26a 25 30 28
26b 90 100 85
26c 42 35 45

Doxorubicin a 0.30 0.35 0.40
a Positive antiproliferative control.

Fumigatosides E (27a) and F (27b), two novel alkaloids, were discovered in the deep-
sea fungus Aspergillus fumigatus SCSIO 41012. Both compound 27a and compound 27b
demonstrated strong antifungal activity against Fusarium oxysporum f. sp. momordicae
with MIC values of 1.56 g/mL and 6.25 g/mL, respectively [22,23] (Figure 5).
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3. Indolyl Peptides

Two N-acylanthranillic acids (28a,b), one of which is a new natural product, were
isolated as co-metabolites of bacillamides (29a,b) and N-acetyltryptamine by Akiyama et al.
using metabolome mining in a strain known as Laceyella sacchari. Anthranilic acid and
Ac2O or propionyl chloride were combined to synthesis compounds 28a and 28b (Scheme 3),
which were then tested for bioactivity and structure. The physicochemical properties of the
synthetic 28a and 28b were essentially the same as those of the natural products [23].

Molecules 2023, 28, x FOR PEER REVIEW 7 of 25 
 

 

.

propionyl chloride

NH2

COOH

NH

COOH

O

NH2

COOH

NH

COOH

O

Ac2O

pyridine, r.t., 24h

pyridine, r.t., 24h

28a

28b

 

Scheme 3. The total synthesis of two N-acylanthranillic acids (28a,b). 

A series of linearly fused prenylated indole alkaloids was isolated from Aspergillus 
versicolor, a fungus isolated from the mud of the South China Sea. (Figure 7) and of these 
compounds, asperversiamides A-C and E (30–32 and 34) each contain a rare anti-bicyclo 
[2.2.2] diazaoctane ring, and asperversiamide D (33) contains the analogous syn-ring 
(when the C21-C22 and C17-N13 bonds are cofacial, the ring is defined as “syn”, and when 
the C21-C22 and C17-N13 bonds are on opposite faces, the ring is considered “anti”) [26,27]. 

The first linearly fused indole alkaloid discovered with a rare fused-imine-containing 
pyrrole ring structure is asperversiamide A (30). Additionally, molecules 31, 32 and 33, 34 
are corresponding pairings of C-3 and C-21 epimers. Asperversiamide G (36) has a unique 
Z-geometry of the double bond between C-10 and C-11, while asperversiamide F (35) is 
the C-17 epimer of dihydrocarneamide A (37) [28]. Compound 37, which has an isoprenyl 
unit at C-3 and is a key precursor of spiro-bicyclo [2.2.2] diazaoctane type indole alkaloids, 
is based on the biosynthesis route (31-32). By additional modification, co-isolated deox-
ybrevianamide E (38) might be used as a precursor to a number of structurally similar 
prenylated indole alkaloids [29]. 

Scheme 3. The total synthesis of two N-acylanthranillic acids (28a,b).

While 28b, 29a, and 29b were initially discovered from Bacillaceae or Thermoactinomyc-
etaceae-28b from Bacillus pantothenicus [24], 29a from a marine Bacillus sp. as an algicide se-
lective to dinoflagellates and raphydophytes, and 29b from B. endophyticus [25]-compound
28a was isolated for the first time as a natural product (Figure 6).
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A series of linearly fused prenylated indole alkaloids was isolated from Aspergillus
versicolor, a fungus isolated from the mud of the South China Sea. (Figure 7) and of these
compounds, asperversiamides A-C and E (30–32 and 34) each contain a rare anti-bicyclo
[2.2.2] diazaoctane ring, and asperversiamide D (33) contains the analogous syn-ring (when
the C21-C22 and C17-N13 bonds are cofacial, the ring is defined as “syn”, and when the
C21-C22 and C17-N13 bonds are on opposite faces, the ring is considered “anti”) [26,27].
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The first linearly fused indole alkaloid discovered with a rare fused-imine-containing
pyrrole ring structure is asperversiamide A (30). Additionally, molecules 31, 32 and 33,
34 are corresponding pairings of C-3 and C-21 epimers. Asperversiamide G (36) has a
unique Z-geometry of the double bond between C-10 and C-11, while asperversiamide
F (35) is the C-17 epimer of dihydrocarneamide A (37) [28]. Compound 37, which has an
isoprenyl unit at C-3 and is a key precursor of spiro-bicyclo [2.2.2] diazaoctane type indole
alkaloids, is based on the biosynthesis route (31–32). By additional modification, co-isolated
deoxybrevianamide E (38) might be used as a precursor to a number of structurally similar
prenylated indole alkaloids [29].
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4. Bis-Indole Alkaloids

Due to its strong biological activity and novel structural features, there is a strong
interest in some bis-indole secondary metabolites containing spacer units derived from
imidazole or piperazine, like hamacanthin A (39) and B (40) [30]. These two compounds,
discovered by Gunasekera and his colleagues [31], are two isomeric bis-indole alkaloids
isolated from the deep-sea species Hamacantha sp. Compound 39 is a 3,6-bis-indole deriva-
tive and is similar to dragmacidins, but compound 40 is 3,5-isomer, whose structure is rare
among these alkaloids. Since these alkaloids are relatively rare in nature and difficult to
extract, the importance of finding a method for total synthesis is apparent. In 2005, Takashi
et al. reported the method of total synthesis of marine bisindole alkaloids, compounds 39
and 40 (Figure 8). Therein, they describe the total synthesis of compounds 39 and 40 via
cyclization and transamidation of N-(2-aminoethyl)-2-oxoethanamide derived from (S)-
indolylglycinol (Scheme 4) [32,33]. We can obtain similar compounds from many sources,
including dihydro derivatives and debrominated derivatives [34].
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Both compounds 39 and 40 show significant antimicrobial activity against Candida
albicans ATCC 44506 and Cryptococcus neoformans ATCC 32045 with MIC value of
1.6–6.2 µg/mL [34]. However, compound 40 shows weak antibacterial activity against
Candida albicans and the MIC is 25–100 µg/mL [35]. The activity of compound 39 is pretty
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strong (MIC, 0.78–3.12 µg/mL), especially against Methicillin-resistant Staphylococcus
aureus (MIC, 3.12 µg/mL) and also has potent antifungal activity against Candida albicans
(MIC, 6.25 µg/mL) [30,31].

Dragmacidin (41) was originally isolated from the deep-water marine sponge of
dragmacidin sp., and later discovered from Hexadella sp. [36]. Along with it, several bis-
indole compounds which have similar structure were discovered, including dragmacidin
A (42) and B (43) [37,38]. A year later, Faulkner and co-workers isolated a new alkaloid
named dragmacidin C (44) from the encrusting gray tunicate Didemnum candidum, which
was collected in the southern Gulf of California [39].

Dragmacidin D (45) was found in a deep-water marine sponge called Spongosorites sp.
that was obtained off the coast of southern Australia and had a rotational measurement of
+12.5, according to Capon and colleagues [40]. A novel alkaloid known as dragmacidin E
(46) was discovered in Spongosorites sp. that were gathered during a trawling operation off
the southern coast of Australia. More recently, a marine sponge of the species Halicortex
that was obtained in 2000 [41] off the southern coast of Utica Island, Italy, was shown to
contain dragmacidin F (47)-a novel bioactive bromoindole alkaloid (Figure 9).
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Due to their wide range of both biological and pharmacological activities, the necessity
of the total synthesis is obvious. Jiang and co-workers reported the total synthesis of
compound 41 [42] (Scheme 5). In the same year, Cava and co-workers reported a simple
synthesis of compound 43 [43]. A short synthetic strategy for various bis-indole marine
natural products, including compound 43, was described by Horne [44]. The first total
synthesis of racemic compound 42 via indolyl glycines was accomplished by Kawasaki
and co-workers, and the method could be applicable to the syntheses of other members
of the dragmacidin family and analogues [45]. In 2005, the facile formal total synthesis
of compounds 43 and 44 was reported [46]. The chiral bis-indole alkaloid compound 41
was reported to inhibit in vitro growth of P388 murine leukemia cells (IC50 = 15 µg/mL).
Additionally, it inhibited the expansion of the cancer cell lines A-549 (human lung), HCT-6
(human colon), and MDAMB (human mammary) (IC50 = 1–10 g/mL) [46]. Serine-threonine
protein phosphatase inhibitors have been found as substance 46 and compound 45, its
cometabolite [47].
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Nortopsentin A–C (48–50) (Figure 10) are a new class of compounds discovered
in recent years, isolated by Sun and his colleagues from Bahamas’ deep-water sponge,
halihondride sponge Spongosorites ruetzleri [11]. Nortopsentin D (51) is the simplest
bis-indole imidazole alkaloid obtained by catalytic hydrogenation of compounds 48–50, the
existence of which has been isolated from Halicondride sponge Spongosorites ruetzleri [11].
Pietra and his colleagues reported a new bis-indole alkaloid named nortopsentin E (52),
including its separation, structure determination, and biological activity study. The alkaloid
is from the deep-water axinellid sponge Dragmacidon sp. collected in the south of New
Caledonia [48].
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In 1994, Ohta and his colleagues reported the synthesis of compound 51 using a
continuous and regioselective di-arylation method, based on the treatment of N-protected
2,4,5-tri- and 4,5-di-bromoimidazole derivatives with N-silylated 3-indolylboric acid in the
presence of palladium(0) [49]. Using a similar scheme, in 1996, they performed the total
synthesis of compounds 48–51 (Schemes 6–8 [30]. Many different synthetic routes have
been developed to synthesize these compounds [50,51]. Different from the above scheme,
Moody and his colleagues developed a new synthetic route, indole-3 carbonamide prepared
from the corresponding amide through thioamide were reacted with 3-bromoacetylindole
to obtain 2,4-bis(indolyl)imidazole, N-protected compounds 49 and 51 [48].
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Nortopsentins have antifungal activity, and some also have antitumor activity. Com-
pared with their parent compound, their methylated derivatives show a significant in-
crease in the biological activity of P388 [49]. Compounds 48–51, tri- and tetramethylated-
nortopsentin B in vitro inhibited P388 murine leukemia cells with IC50 of 7.6, 7.8, 1.7, 0.9,
and 0.34 µg/mL [11]. In addition to this, in vitro, they inhibited the growth of Bacillus sub-
tilis and Cadida albicans. Compound 50 inhibits the activity of neural nitric oxide synthase
and calcineurin, which targets calmodulin, a cofactor shared by the above two enzymes [49].
Activity data show that the brominated compound 49 carrying only one R group is cy-
totoxic at 0.2 µg/mL, and is more cytotoxic than compound 48 and 50 brominated with
two R groups, for P-388 cells, in other words, this change reduces their cytotoxicity to
1.7 µg/mL [30]. Compound 52 is inactive against KB tumor cells, and has almost no antibac-
terial activity against Staphylococcus aureus. However, after the introduction of methyl
groups, although the antibacterial or antifungal activity was not measured, the cytotoxicity
towards the KB cell line was highly raised (EC50 = 0.014 µg/mL) [48].

Bartik and his colleagues reported on three new bis-indole alkaloids, topsentin (53),
bromotopsentin (54), and deoxytopsentin (55), isolated and determined from the Mediter-
ranean sponge Topsentia genitrix collected near Banyuls, France in 1987 [30]. Compound
53 is the first example of brominated bis-indole alkaloids, whose structural feature is to
insert a 2-acylimidazole between two indole units substituted or unsubstituted on the ben-
zene ring [52]. After that, Bartik et al. reported the separation of topsentin alkaloids, and
Rinehart and colleagues also published a paper that separated compounds 53 and 54 from
Caribbean deep-sea sponges and explained their structure. Moreover, they also discovered
another new bis-indole alkaloid 4,5-dihydro-6”-deoxybromotopsentin (56) [53]. Topsentin
C (57), a new brominated bisindole alkaloid, was discovered and isolated from the Pacific
Ocean sponge Hexadella sp. off the coast of British Columbia [38]. The continued interest in
these compounds is undoubtedly influenced by their wide range of biological properties.
Capon and his colleagues reported on their chemical research on deep-water Spongosprites
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sp. collected on the southern Australian coast. In their paper, they introduced isobromo-
topsentin (58), which had never been reported before [40]. In 1999, four bis-indole alkaloids
of topsentins were discovered by Shin’s research team in a sponge Spongosorites genitrix
collected from Jaeju island in South Korea, including two new brominated compounds,
named bromodeoxytopsentin (59) and isobromodeoxytopsentin (60) [54] (Figure 11).
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In 1987, Braekman and his colleagues reported the first total synthesis of compound
55 [52]. In 1988, Rinhert and his colleagues reported the synthesis of compound 53 [53]
(Scheme 9). Then, in 2000, under the catalysis of a palladium catalyst, compound 53 was
synthesized by cross-coupling reaction at the 5-position of the imidazole ring and acylation
at the 2-position [53]. It is believed that the compound 53 molecule is pseudo-symmetric
and may be formed by the synthesis of two tryptamine equivalents and the synthon
selected in the synthesis is glyoxal indole. If a suitable mixture of indole is selected, it can
be condensed with ammonia in equal amounts to obtain the desired asymmetric imidazole
(and the other three products), if a single indole is used, a single imidazole is obtained. To
confirm the structure of compound 53, Rinehart and his colleagues reported the synthesis
of compound 53, whose route is completely different from the route reported by Braekman
et al. [53]. As shown in Scheme 9, the total synthesis of compound 53 is achieved by the
condensation of 3-glyoxalylindole and 6-benzyloxy-3-glyoxal in the presence of ammonia,
but the synthesis yield is low and non-regioselective [53]. After that, Achab reported a
new synthetic method that relies on the continuous introduction of indole to functionalized
imidazole derivatives [49].
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The family of topsentins compounds exhibits diverse and effective biological activ-
ities, such as cytotoxicity, anticancer activity, antifungal activity, antiviral activity, and
antibacterial activity. Compound 53 can inhibit the proliferation of cultured human and
murine tumor cells at a concentration level of µM (IC50 values ranged from 4 to 40 µM) [30].
It shows in vitro activity against P-388 (IC50 = 3 µg/mL) and human tumor cell (HCT-8,
A-549, T47D: 20 µg/mL) and in vivo activity against P-388 (T/C 137%, 150 mg/kg) and B16
Melanoma (T/C 144%, 37.5 mg/kg) [55]. In 2020, topsentin’s photoprotective properties on
UVB-irradiated human epidermal keratinocyte HaCaT cells were discovered by Hwang
et al. Topsentin inhibits the expression of COX-2 and the AP-1 and MAPK upstream signal-
ing pathways. Additionally, topsentin blocks the expression of tumor necrosis factor alpha
induced protein 2 (TNF-IP2), a target gene for miR-4485, a novel biomarker chosen from
a microarray. A model of reconstructive human skin verified topsentin’s photoprotective
effects. These results imply that topsentin might be a good cosmetic formulation candidate
for skin inflammatory-mediated disorders [56]. Compounds 54 and 58 showed moderate
cytotoxicity to the human leukemia cell line K-562 and the IC50 of 54 and 58 were 0.6 and
2.1 µg/mL, respectively [57]. In addition to anti-tumor activity, compound 54 also has a
very effective local anti-inflammatory activity, being a better inhibitor of phospholipase A2
than manoalide [55]. In addition to the above, compounds 53 and 54 also showed good
antiviral activity against HSV-1 vesicular stomatitis virus and the coronavirus A-59.

In 1997, caulersin (61) was separated from the alga Caulerpa serrulata and became
the first member of the bis-indole alkaloid family, with a functionalized seven-membered
ring between two indole molecules [58]. Another of these compounds is caulerpin (62), a
bis-indole whose structure is related to compound 61 isolated from several different green
and red algae. It can act as a plant growth regulator and has been shown to inhibit algae
growth. It acts in the multixenobiotic resistance (MXR) pump in algae, thereby enhancing
the toxicity of xenobiotics [30,59–61]. In addition, it can also be used as rust inhibitor in
low carbon steel [62] (Figure 12).
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Figure 12. Structures of compounds 61–64.

The synthesis of compound 61 is carried out in seven steps. The construction of the cen-
tral seven-membered ring is based on the Michael-type addition of 2,3′-bis(indolyl)-ketone
to methylvinyl ketone, followed by intramolecular nucleophilic attack of the resulting 3-
oxoalkylation product leading to the substitution of the chlorine atom and ring closure [60]
(Scheme 10).
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from 3-formylindol-2-yl acetic ester with a yield of 5% [61]. Then in 2004, Wahlstrom and
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his colleagues reported a three-step synthesis of compound 62 [63]. Recently, Mikki and his
team reported a four-step synthesis method of compound 61 [64] (Scheme 11). Functional
analogues of the bisindole alkaloid compound 62 have been prepared by Canche Chay
et al. [65] (Scheme 12). Using as starting materials 5-substituted indoles, the Vilsmeier
Haack reaction with POCl3 and DMF forms the corresponding indole aldehyde in good to
excellent yields. Subsequent use of dilauroyl peroxide DLP as an oxidative agent which
reacts through radical oxidative aromatic substitution of xanthate to produce corresponding
malonate derivatives. Further decarboxylation and transesterification reactions between
malonate derivatives and NaOMe in MeOH provide monoester indole products. Using
piperidine and diethylamine as the base in xylene, the final caulerpin analog can be obtained
through the reflux cyclization reaction of monoester indole.
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Compounds 61 and 62 have a variety of biological activities. Mao et al. isolated
compound 62, caulerpal A (63), and caulerpal B (64) from the Chinese green alga C. taxifolia
(Vahl) C. Agardh and tested their inhibitory activity on hPTP1B [66]. The results show that
compound 62 has a strong inhibitory activity on PTP1B, IC50 = 3.77 µM, but the inhibitory
mechanism has not yet been elucidated.

Caulerpin’s antinociceptive and anti-inflammatory were demonstrated by de Souza et al.
Compound 62 significantly inhibited capsaicin induced mouse ear edema by 55.8%, and
carrageenan-induced peritonitis by reducing the number of recruit cells by 48.3% [67].
Cavalcante-Silva et al. reported that compound 62 (40 mg/kg) exerts an antinociceptive
effect through α2-adrenoceptors and 5-HT3 receptors in the writhing test. Therefore,
compound 62 is considered to have the prospect of being developed as a dual-acting target
analgesic [68].

Liu et al. reported the anti-tumor activity of compound 62 as a cellular hypoxia-
targeted [69]. In an experiment based on T47D cells, compound 62 inhibited hypoxia-
induced and 1,10-phenanthroline-induced HIF-1 activation. HIF-1 regulates angiogenic
factors, including vascular endothelial growth factor (VEGF).

At the same time, in preliminary tests, compound 62 caused a 100% fatality rate on
Culex pipiens mosquito larvae at 500 mg/L. As the age of larvae increased, the toxic
effect of compound 62 on larvae decreased slightly. This study shows that compound
63 provides potential mosquito control principles that can be used to develop biological
control strategies [70].

Canché Chay and his colleagues evaluated compound 62 and its six analogues as an
inhibitor of the growth of the Mycobacterium tuberculosis strain, H37Rv. Compound 63
inhibits Mycobacterium by more than 70% and its IC50 = 0.24 µM. Besides, its activity is
more than twice that of rifampin (IC50 = 0.55 µM), which is often used to treat Mycobac-
terium. Studies have shown that compound 63 is likely to be a potential lead compound
for new anti-tuberculosis drugs [65].

In 2013, two new 5-hydroxyindole alkaloids named hyrtinadine B (65) and scalaridine
A (66) were isolated from a Dokdo marine sponge Scalarispongia sp. by Lee et al. The
cytotoxicity levels of compounds 65 and 66 against human leukemia cells (K562) are IC50
= 215.4 µM and 39.5 µM. Compounds 65 and 66, which are mono- or bis-indoles with
heteroaromatic rings, would serve as excellent probes for further research of cancer [71].

Aspertoryadins A–G (67–73), a group of seven novel quinazoline-containing indole
alkaloids, were identified from the marine-derived Aspergillus sp. HNMF114 of the bi-
valve mollusc Sanguinolaria chinensis. Using the techniques previously described, the
antibacterial activities of the new compounds against Staphylococcus aureus, Escherichia
coli, Bacillus subtilis, and Streptococcus agalactiae as well as the quorum sensing (QS)
inhibitory activity against Chromobacterium violaceum CV026 were all assessed. With
MIC values of 32 and 32 µg/well, compounds 72 and 73 shown QS inhibitory activity
against C. violaceum CV026 [72] (Figure 13).

In 2021, Li et al. discovered one novel pteridine alkaloid, asperpteridinate A, two
new prenylated indole alkaloid homodimers, di-6-hydroxydeoxybrevianamide E (74) and
dinotoamide J (75), and eleven recognized compounds from the marine-derived fungus
Aspergillus austroafricanus Y32-2. Therefore, compound 75 exhibited proangiogenic activity
in a PTK787-inducedvascular injury zebrafish model in a dose-dependent manner [73].

Li et al. isolated one new dimeric indole derivative (76) from the sponge-derived
actinomycete Rubrobacter radiotolerans. It exhibited the most effective antichlamydial activity
with IC50 values of 46.6–96.4 µM in the production of infectious progeny. It appeared to
target the mid-stage of the chlamydial developmental cycle by interfering with reticular
body replication, but not directly inactivating the infectious elementary body [74].

Antibacterial-guided fractionation of an extract of a deep-water Topsentia sp. marine
sponge led to the isolation of two new indole alkaloids, tulongicin A (77) and dihydrospon-
gotine C (78). Compound 77 is the first natural product to contain a di(6-Br-1H-indol-3-
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yl)methyl group linked to an imidazole core. Both compounds showed strong antimicrobial
activity against Staphylococcus aureus (MIC = 1.2 and 3.7 µg/mL) [75] (Figure 14).
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Dionemycin (79) and 6-OMe-7′,7′ ′-dichorochromopyrrolic acid (80), two novel chlo-
rinated bis-indole alkaloids, were discovered from the deep-sea-derived Streptomyces sp.
SCSIO 11791. Compound 79 demonstrated anti-staphylococcal activity with a MIC range
of 1–2 µg/mL against six clinic strains of methicillin-resistant Staphylococcus aureus
(MRSA) obtained from human and pig, according to in vitro antibacterial and cytotoxic
studies. Furthermore, compound 79 demonstrated cytotoxic action with an IC50 range of
3.1–11.2 µM against human cancer cell lines NCI-H460, MDA-MB-231, HCT-116, HepG2,
and noncancerous MCF10A [76] (Figure 15).
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5. Conclusions and Prospect

A valuable source of natural compounds can be found in marine species. Numerous
heterocyclic alkaloids and related congeners have been identified and characterized over the
past ten years. In recent years, many hetero cyclic alkaloids and congeners with developing
value have been derived from them. Most of these indoles have potent cytotoxic activity,
and some of them have anti-inflammatory, antifungal, or antiviral activities, making further
modification and derivatization of these compounds highly desirable; many derivatives
with good activity have been designed and synthesized. In addition, the blank areas of
synthetic research on these compounds have been complemented, contributing significantly
to their structure–activity studies. Despite the fact that there are more articles about the
subject of this review in the literature than ever before, it is reasonable to expect that future
research will result in the application of molecules used in clinical treatment.
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